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Tutorials for Lecture Course on Modeling and System Identification (MSI)
Albert-Ludwigs-Universität Freiburg – Winter Term 2023-2024

Emergency Guide to Linear Algebra
Recall of important Matrix Properties and Operation

Prof. Dr. Moritz Diehl, Tobias Schöls, Katrin Baumgärtner, Alexander Petrov, Reworked by Jakob Harzer

1 Motivation (or why would you do this?)
Matrices are common in many fields of engineering, i.e. measurements are often stored as a matrix, for example series of voltage
measurements. On top of that formulating the math that is used to process these data as matrix operations is usually more compact
and convenient. Therefore you will have to deal with matrices a lot during this course. However, we understand that matrices
might not be intuitive for everyone, especially if you have not dealt with them in a long time. This tutorial is meant to get you
used to working with matrices (again).
Along with this tutorial, we also provide a jupyter notebook that gives examples on how to use PYTHON to perform the operations
in each of the sections.

1.1 Warm-Up Exercises
The following exercises are meant to refresh your memory and get you used to matrices again. We recommend you calculate the
tasks by hand first and then check the result using PYTHON .

A =

[
1 3
4 2

]
B =

[
5 7
8 6

]
C =

[
0 1 5 6
1 0 3 1

]
v =

[
v1
v2

]
=

[
1
2

]

(A+B)v = (1)

Av +Bv = (2)

(A+B)C = (3)

AA−1 = (4)

v⊤v = (5)

vv⊤ = (6)

A(BC) = (7)

(AB)C = (8)

A⊤ = (9)

(Av)⊤ = (10)

v⊤A⊤ = (11)
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v⊤A⊤Av = (12)

2∑
i=1

vi = (13)

[
1 1

]
v = (14)

Convert the following system of equations into it’s equivalent matrix form Ax = b by defining the matrix A and the vector b.

3x1 + 2x2 + 6x3 − 5 = 0

4x2 + 0.5x3 = 10

A = x =

x1

x2

x3

 b = (15)

2 Matrix and Vector Properties and Operations

2.1 Norm of a Vector
In linear algebra norms are functions that compute the length or a similar measure of a vector. There are several ways to define a
norm. We will only use two:

• Euclidean norm Most common norm definition, straight-line distance between two points (here x and the origin).

∥x∥2 =
√

x2
1 + · · ·+ x2

n

∥x∥22 =x2
1 + · · ·+ x2

n = x⊤x

• 1-norm

∥x∥1 =

n∑
i=1

|xi|

Calculate both the euclidian and the 1-norm of the vector v =
[
2 −4 4

]⊤
.

∥v∥2 = ∥v∥1 = (16)

2.2 Rank of a Matrix
The rank of a matrix is the number of linear independent rows. This is equivalent to saying the rank of a matrix is the number of
independent columns. A matrix is said to have full rank if all rows or columns are linearly independent, that is the rank matches
the dimension of that matrix. For linear equation systems this means that a unique solution exists.

Compute the rank of the remaining two matrices[
1 0
0 0

]
does not have full rank, since it contains a zero row.3 4 1

5 7 9
6 8 2

 (17)

8 1 6
3 5 7
4 9 2

 (18)
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2.3 Inverse
A square matrix A ∈ Rn×n is called invertible if there exists a matrix B ∈ Rn×n such that

AB = BA = In

where In is a n-by-n identity matrix. If B exists, it is unique and called the inverse of A, denoted by A−1. Note that non-square
matrices do not have an inverse.
Let A be a square matrix. Then the following statements are equivalent:

• A is invertible.

• A has full rank.

• The determinant of A is not zero.

• A has only non-zero eigenvalues.

If A is not invertible, then A is called singular or degenerate.

Calculating the Inverse For a non-singular 2-by-2 matrix the inverse can be calculated in the closed form[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
but for larger matrices more complicated methods are needed.

Solution of Linear Systems With the above we find a solution to the linear system Ax = b by performing the following
calculation

Ax = b ⇔ A−1Ax = A−1b ⇔ Ix = A−1b ⇔ x = A−1b

Solve following linear system using the calculation above.[
1 2
3 4

] [
x1

x2

]
=

[
1
1

]
x =

[
x1

x2

]
= (19)

2.4 Eigenvalues and Eigenvectors
Vectors that do not change the direction when multiplied with A are called eigenvectors here denoted as v. When A is multiplied
with one of its eigenvectors the result is just a scalar multiple of that eigenvector. This can be formulated in a formula as

Av = λv

where v is an eigenvector and λ is the corresponding eigenvalue.1

As an example, consider the following equation Ax = b where A is defined as

A =

[
1.25 −0.75
−0.75 1.25

]
This is a linear map from R2 to R2. Its eigenvalues are λ1 = 0.5 and λ2 = 2 the corresponding eigenvectors are v1 =

− 1√
2

[
1 1

]⊤
and v2 = − 1√

2

[
1 −1

]⊤
. In the 2-D case this can be visualized by the deformation of a unit circle (figure 2) and

a unit square (figure 1).
From math class you may remember that the eigenvalues are the roots of the characteristic polynomial. For this class you do not
need to compute them by hand and you can rely on PYTHON to find them for you in the exercises.
Optional: Come up with your own matrix and plot the deformation of the unit square/circle, similar to the figures above.

2.5 Outlook on Covariance Ellipsoids
Throughout this course you will be dealing with some random variables that follow a certain distribution. The spread of this
distribution and the correlation between different variables is contained in a covariance matrix. To visualize the spread of
distributions and the relation between different variables you will use deformed unit circles (similar to what you have seen
above). These ellipses are called confidence ellipses. [Don’t panic! You have seen this already.] Take a look at the figure 3
below. The thing we are talking about is the light blue circle around the blue dot that marks the (most likely) position.

1http://math.mit.edu/˜gs/linearalgebra/ila0601.pdf
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Figure 1: Deformation of a unit square through example
transformation.
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Figure 2: Deformation of a unit circle through example
transformation.

Figure 3: Example Confidence Ellipse: location estimate and area in which the actual position is most likely to lie in.

3 Special Matrices

3.1 Symmetric Matrices
A matrix A is called symmetric if it is equal to its transpose, i.e. A = A⊤. An example for this is the matrix[

1 2
2 4

]
Please note that only square matrices can be symmetric and that the product of a matrix with its transpose is symmetric. Thus,
for any B ∈ Rm×n it holds

B⊤B = B⊤ (
B⊤)⊤ =

(
B⊤B

)⊤
where we used (AB)⊤ = B⊤A⊤ and

(
A⊤)⊤ = A. In addition, symmetric matrices have only real eigenvalues.

Fill in the gaps or compute the the following symmetric matrices
a b . . .

. . . d e

c . . . f

 (20)

[
v
w

] [
v w

]
= (21)

[
v w

] [a b
b c

] [
v
w

]
= (22)

3.2 Positive/Negative (Semi-)Definite Matrices
If a symmetric matrix has no negative eigenvalue (all are positive or zero) it is called positive semi-definite (PSD). The same
holds for positive definite matrices only that the zero is not allowed as eigenvalue. Similarly a negative definite matrix has only
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strictly negative eigenvalues and a negative semi-definite has no positive eigenvalue (all negative or zero).
An alternative definition of positive/negative (semi-)definiteness is the following: Let M ∈ Rn×n be a symmetric matrix. If for
all x ∈ Rn, x ̸= 0, it holds

x⊤Mx < 0, then M is called negative-definite.

x⊤Mx ≤ 0, then M is called negative-semi-definite.

x⊤Mx > 0, then M is called positive-definite

x⊤Mx ≥ 0, then M is called positive-semi-definite.

If none of the above is true, then M is called indefinite.

Square symmetric matrices of dimension n we sometimes use the symbol Sn, i.e. Sn = {A ∈ Rn×n|A = A⊤}. For any
symmetric matrix A ∈ Sn we write A≽0 if it is a positive semi-definite matrix, i.e. all its eigenvalues are larger or equal to zero,
and A≻0 if it is positive definite, i.e. all its eigenvalues are positive. This notation is also used for matrix inequalities that allow
us to compare two symmetric matrices A,B ∈ Sn, where we define for example A≽B by A−B≽0.
A positive-definite matrix is always invertible. The inverse of a positive-definite matrix is also positive-definite.

For positive semi-definite matrices, the following properties hold:

• For any matrix A ∈ Rm×n, it holds that A⊤A is positive semi-definite (PSD).

• For M PSD, it holds that for all r > 0 that rM is PSD.

• If M is PSD, then A⊤MA is also PSD.

Determine if the matrices below are positive semi-definite and give a short reason.[
1 3
4 2

]
(23)[

1 3
4 2

] [
1 4
3 2

]
(24)[

8 1 6
3 5 7

]
(25)8 3

1 5
6 7

[
8 1 6
3 5 7

]
(26)

[
8 1 6
3 5 7

]8 3
1 5
6 7

 (27)

 2 −1 0
−1 2 −1
0 −1 2

 (28)

1 0 0
0 1 0
0 0 1

 (29)

3.3 Orthogonal Matrices
Square matrices that if multiplied with their own transpose equal the identity matrix are called orthogonal matrix. In mathematical
terms this is expressed as: If AA⊤ = A⊤A = I, then A is called an orthogonal matrix. This is equivalent to:

A⊤ = A−1

Examples for such matrices are:[
1 0
0 1

] [
0.866 −0.5
0.5 0.866

] [
0.7071 −0.7071
0.7071 0.7071

] [
cosα − sinα
sinα cosα

]
Orthogonal matrices have interesting properties:

• An orthogonal matrix is always invertible.

• The determinant of an orthogonal matrix is always ±1.

Check if the following matrices are orthogonal.[
2 0
0 1

2

]
(30)[

0 1
1 0

]
(31)

1

3

2 −2 1
1 2 2
2 1 −2

 (32)
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3.4 Upper/Lower Triangular Matrices
If all entries of a square matrix above the main diagonal are zero this matrix is called a lower triangular matrix. Similarly if all
entries of a square matrix below the main diagonal are zero this matrix is called a upper triangular matrix. Examples for such
matrices are:

upper triangular matrix:

1 99 5
0 3 6
0 0 1

 lower triangular matrix:

a 0 0
b c 0
d e f

 (33)

Some properties are:

• The transpose of an upper triangular matrix is a lower triangular matrix and vice versa.

• The determinant of a triangular matrix equals the product of the diagonal entries.

Calculate the determinant of the matrices above. What do you notice?

Upper and lower triangular matrices play an important role when solving linear equation systems, as a linear system in this form
is easy to solve. This is illustrated by the following task:

Solve the this system of equations for x1, x2, and x31 99 5
0 3 6
0 0 1

x1

x2

x3

 =

12013
2


x1 = x2 = x3 = (34)

3.5 Diagonal Matrices
Matrices in which the off-diagonal entries are zero are called diagonal matrix, i.e. for a diagonal matrix any entry di,j with i ̸= j
is 0.

Fill out the gaps such that this is a diagonal matrix. 1 . . . . . .
. . . 2 . . .
. . . . . . 3

 (35)

This definition also applies for non-square matrices. To be a little bit more specific: Only entries di,j with i = j may be non-zero.
For example 

1 0 0
0 2 0
0 0 3
0 0 0


a 0 0 0
0 b 0 0
0 0 c 0


are both diagonal matrices.
For diagonal matrices, the following properties hold:

• The sum of diagonal matrices is again diagonal

• The product C = AB of two diagonal matrices A and B is again a diagonal matrix where the diagonal entry ci,i is given
by the product of the corresponding diagonal entries in A and B, i.e. ci,i = ai,i · bi,i.

• The inverse of a diagonal square matrix is defined if all diagonal entries are non zero. The inverse is then given by a
diagonal matrix with inverse of the diagonal entries.

Please do the following calculations (without PYTHON ).1 0 0
0 4 0
0 0 7

+

4 0 0
0 −1 0
0 0 5

 = (36)

1 0 0
0 4 0
0 0 7

4 0 0
0 −1 0
0 0 5

 = (37)

1 0 0
0 4 0
0 0 7

−1

= (38)
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4 Matrix and Vector Valued Functions
In linear algebra functions are not defined for scalars but for vectors or matrices. This works similarly but might be a bit
unintuitive at first.
Examples for such functions that take the vector x = [x1 x2]

T as input are

f(x) =

 3x2

x1 + x2

x1x2

 g(x) =

x1 0 0
0 −x2 0
0 0 x1x2


Notice that f is vector-valued and g is matrix-valued.

Create a function h that inverts the order of the input vector x =
[
x1 x2 x3

]T
.

h(x) = (39)

4.1 Linear and Affine Functions
Any function that can be written as f(x) = Ax is called a linear function. If a linear function is extended by a constant term it
becomes an affine function and has the form f(x) = Ax+ b.

Please reformulate the following functions in the form f(x) = Ax+ b, where f =

f1(x)...
fn(x)


f(x) =

[
f(x)

]
= 5x1 + 7x2 + 9 x =

[
x1

x2

]
A = b = (40)

g(x) =

[
g1(x)
g2(x)

]
=

[
5x1 + 7x2 + 9

24x1 + 23x3 − 42

]
x = A = b = (41)

h(x) =

h1(x)
h2(x)
h3(x)

 =

 5x1 + 7x2 + 9
x2 +

1
2

25x1 − 49x2 + 81

 x = A = b = (42)

4.2 Quadratic Functions
Quadratic functions have a a slightly different structure than their scalar complements.

f(x) = x⊤Ax+Bx+ c

Please reformulate the following functions in the form f(x) = x⊤Ax+Bx+ c

f1(x) = 7x2
1 + 4x1x2 + 2x2

2 x = A = B = c = (43)

g1(x) = f1(x) + 5x1 + 7x2 + 9 x = A = B = c = (44)
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4.3 Derivatives
Derivatives are very common and have many applications. For a function f : Rn → Rm we define the derivative with respect to
its parameter vector x as follows (instead f(x) we write f here for cleaner notation):

∂f

∂x
=

[
∂f
∂x1

· · · ∂f
∂xn

]
=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

 ∈ Rm×n

The matrix above is called the Jacobian matrix. For a scalar function f : Rn → R, we define the gradient vector as

∇f(x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 ∈ Rn

Thus, we have ∇f(x) = ∂f
∂x (x)

T . Based on the above definitions, we can derive a number of differentiation rules. The list below
includes some important rules that will be handy for this course. Let A be a matrix of appropriate size.

f = x :
∂f

∂x
= In

f = Ax :
∂f

∂x
= A

f = x⊤Ax :
∂f

∂x
= x⊤A+ (Ax)⊤ = x⊤(A+A⊤)

f = x⊤A⊤Ax :
∂f

∂x
= x⊤A⊤A+ (A⊤Ax)⊤ = 2x⊤A⊤A

Above we considered the partial derivatives of f , i.e. when calculating ∂f
∂xi

, we consider all other variables xj , j ̸= i, to be
constants. However, this is not always reasonable. Regard for example a function f(x, t) that depends on the position x and the
time t. The position, however, changes with time, we actually have x = x(t). Rather than calculating ∂f

∂t , we would in this case
be interested in the so-called total derivative. Here, it is given by

df

dt
=

∂f

∂t
+

∂f

∂x

∂x

∂t

where we made use of the chain rule. Note that for scalar functions, the partial and total derivative coincide.
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