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1. We would like to know the unknown probability θ that a phone breaks when it is dropped. We assume that the phone thrown onto the ground
either breaks or has no damage. In an experiment we have dropped 100 smartphones and obtained 19 broken smartphones. What is the negative
log likelihood function f(θ) that we need to minimize in order to obtain the maximum likelihood (ML) estimate of θ ?

(a) − log(81θ)− log(19(1− θ)) (b) −81 log θ − 19 log(1− θ)

(c) x −19 log θ − 81 log(1− θ) (d) log(19θ) + log(81(1− θ))

2. You are given a pendulum which is by nature a nonlinear system and can be modeled by y(t) = θ1 cos(θ2t+ θ3), where y(t) are the measure-
ments. Which of the following algorithms should you use to estimate the parameters θ?

(a) Weighted Least Squares (WLS) (b) Linear Least Squares (LLS)

(c) Recursive Least Squares (RLS) (d) x Nonlinear Least Squares (NLS)

3. Consider a model that is linear in parameter (LIP). Which of the following algorithms could you use to estimate the parameters without running
into memory problems or high computational costs for a continuous and infinite flow of measurement data?

(a) LLS (b) ML (c) WLS (d) x RLS

4. You are asked to give a computationally efficient approximation of the covariance of the estimate computed in the previous question Σθ̂ . The
model is given as yN = ΦNθ + εN with εN ∼ N (0,Σε), QN = Φ>NΦN and L(θ, yN ) is the negative log likelihood function. The covariance
matrix can be approximated by Σθ̂ ≈ . . .

(a) (Φ>NΣεN ΦN )−1 (b) x Q−1
N (c) Φ+

NΣ−1
εN Φ+

N

> (d) (∇2
θL

2(θ, yN ))−1

5. Let θR denote the regularized LLS estimator using L2 regularization. Which of the following is NOT true?

(a) θR can be computed analytically. (b) θR incorporates prior knowledge about θ.

(c) x θR is asymptotically biased. (d) θR is biased.

6. We use the Gauss-Newton (GN) algorithm to solve a nonlinear estimation problem. Which of the following statements is NOT true in general?

(a) The idea of GN is to linearize the residual function. (b) GN uses a Hessian approximation.

(c) x GN finds the global minimizer of the objective function. (d) The inverse of the GN Hessian approximates Σθ .

7. Which of the following models with input u(k) and output y(k) is NOT linear-in-the-parameters w.r.t. θ ∈ R2?

(a) y(k) = θ1u(k)4 + θ2 exp(u(k)) (b) x y(k) = θ1 exp(θ2u(k))

(c) y(k) = θ1
√
u(k) + θ2u(k) (d) y(k) = y(k − 1) · (θ1 + θ2u(k))

8. Given is a set of measurements yN = [y(1), y(2), . . . , y(N)]> and the linear model yN = ΦNθ + εN with i.i.d. Gaussian noise εN , where
ΦN = [ϕ(1), ϕ(2), . . . , ϕ(N)]>. Using an RLS algorithm where QN is updated recursively with QN+1 = QN + ϕ(N + 1)ϕ(N + 1)>,
which of the following minimisation problems is solved at each iteration step to estimate the parameter θ̂(N + 1) after N + 1 measurements?
θ̂(N + 1) = arg min

θ

1
2
. . .

(a) ‖θ − θ̂(N)‖2QN
+ ‖y(N)− ϕ(N)>θ‖22 (b) ‖yN − ΦN · θ‖2QN

(c) ‖θ − θ̂(N)‖22 + ‖y(N + 1)− ϕ(N + 1)>θ‖22 (d) x ‖yN+1 − ΦN+1 · θ‖22
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9. Suppose you are given the Fisher information matrix M =
∫
yN
∇2
θL(θ0, yN ) · p(yN |θ0)dyN of an unbiased estimator, what is the relation with

the covariance matrix Σθ̂ of your estimate θ̂? We assume that the true value θ0, as well as the PDF pY (y) of the measurements is known.
Σθ̂ � M−1

10. Give the name of the theorem that provides us with the above result.
Cramer-Rao Inequality

11. Given the probability density function pX(x) = θe−θx for x ≥ 0 (and 0 otherwise) with unknown θ and positive i.i.d. measurements yN =
[y(1), y(2), . . . , y(N)]T that are assumed to follow the above distribution, what is the minimisation problem you need to solve for a ML-estimate
of θ? The problem is: min

θ
. . .?

(a) ‖y(k)− θe−θ‖22 (b) − log
∑N
k=1 θe

−θy(k)

(c) ‖θe−θy(k)‖22 (d) x −N log(θ) + θ
∑N
k=1 y(k)

12. For the problem in the previous question, what is a lower bound on the covariance Σθ̂ for any unbiased estimator θ̂(yN ), assuming that θ0 is the
true value? Σθ̂ � . . .

(a) N/θ2 (b) x θ20/N

(c)
∫
yN

NθN−2
0 exp[−θ

∑
k yk]dyN (d)

( ∫
yN

NθN−2 exp[−θ
∑
k yk]dyN

)−1

13. Which of the following models is time invariant?

(a) t · ÿ(t) =
√
u(t) (b) x ẏ(t) = u(t)2 + 1 (c) ÿ(t)2 =u(t)t+eu(t) (d) ẏ(t) = t4 − u(t)

14. In L1 estimation the measurement errors are assumed to follow a . . . distribution and it is generally speaking more . . . to outliers compared to
L2 estimation.

(a) Laplace, sensitive (b) Gaussian, robust (c) Gaussian, sensitive (d) x Laplace, robust

15. The PDF of a random variable Y is given by pY (y) = 1

2
√
2π

exp
(
− 1

2

‖y−θ‖22
2

)
, with unknown θ ∈ R. We obtained three measurements,

y(1) = 2, y(2) = 2, and y(3) = 5. What is the minimizer θ∗ of the negative log-likelihood function ?

(a) 5 (b) x 3 (c) 4 (d) 2

16. Which of the following statements is NOT correct. Recursive Least Squares (RLS):

(a) implicitly assumes that there is only i.i.d. and Gaussian

measurement noise

(b) computes an estimation with a computational cost indepen-

dent of the number of past measurements

(c) x can be used as an alternative to Maximum Likelihood Esti-

mation

(d) can use prior knowledge on the estimated parameter θ

17. Which of the following model equations describes a FIR system with input u and output y? y(k + 1) = . . .

(a) u(k) + eiπ·k (b) x u(k)− π2u(k − 2) (c) 1
2
u(k + 1) + y(k) (d) u(k) · y(k)

18. In practice, how do we estimate the covariance matrix of a parameter estimate θ∗ with the objective f(θ) = ‖R(θ)‖22 and R(θ) being a possibly

nonlinear residual function with Jacobian J(θ) = ∂R(θ)
∂θ
∈ RN×d ? Σθ̂ =

‖R(θ∗)‖22
N−d · (. . . )

(a) R(θ∗)R(θ∗)> (b) ∇f(θ∗)>∇f(θ∗) (c) J(θ∗)J(θ∗)> (d) x (J(θ∗)>J(θ∗))−1

19. You want to estimate the paramters θ of a linear model yN = Φθ. For this you minimze the objective f(θ) = ‖yN − Φθ‖22, but unfortunately
your minimization problem minθ f(θ) turns out to be ill-posed. Which of the following statements is NOT true:

(a) x Regularized LLS can find a unique minimizer of f(θ) (b) the set of solutions is θ∗ = {θ|∇f(θ) = 0}

(c) the set of solutions is θ∗ = {θ|Φ>Φθ − Φ>y = 0} (d) Φ>Φ is not invertible

20. Suppose you are fitting a model to 500 noisy measurements using MAP. Afterwards you compute the R-Squared value of the fit. Which of the
following values suggests a meaningful fit?

(a) 3.23 (b) −1 (c) x 0.86 (d) 1
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