
Chapter 2

Stability

2.1 Definition

Stability Let x(t, a) be a solution to the differential equation with initial condition a. The
solution x(t, a) is stable in the sense of Lyapunov if other solutions that start near a stay close to
x(t, a).

∀ε > 0,∃δ > 0 : ‖b− a‖ < δ ⇒ ‖x(t, b)− x(t, a)‖ < ε,∀t > 0 (2.1)

If the solution x(t, a) is not stable, we call it unstable.
If x(t, a) = xe is an equilibrium point of the system, condition (2.1) becomes:

∀ε > 0,∃δ > 0 : ‖x(0)− xe‖ < δ ⇒ ‖x(t)− xe‖ < ε,∀t > 0 (2.2)

When the solution at xe is stable, we say the equilibrium point is stable.

Asymptotic stability A solution x(t, a) is asymptotically stable if it is stable, and also for all

b sufficiently close to a, we have: x(t, b)
t→∞−−−→ x(t, a).

A solution is locally stable (or locally asymptotically stable) if it is stable (or locally asymptoti-
cally stable) against perturbed initial conditions x ∈ Br(a), where the ball is defined as

Br(a) = {x : ‖x− a‖ < r} (2.3)

A solution is globally stable if it is locally stable for all r > 0.

2.2 Stability of LTI systems

Recap Eigenvalues and Eigenvectors

• Eigenvalue λ and eigenvector v of a matrix A are defined by the following equation:

Av = λv (2.4)

• The characteristic polynomial of A is defined bya

p(λ) , det(λI−A) (2.5)

• Eigenvalues λi are the roots of the characteristic polynomial, i.e., solution of the
characteristic equation p(λ) = 0.

aAn alternative definition would be p(λ) , det(A− λI). We use the definition above to obtain p(λ) =
λn + an−1λn−1 + · · · .
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For linear systems, due to the properties of linearity, if a solution is stable then other solutions
at different initial conditions are also stable, hence we talk about stability of the system rather
than the stability of a particular solution.

The system
dx

dt
= Ax (2.6)

is asymptotically stable if and only if all the eigenvalues of A have strictly negative real parts,
and is unstable if any eigenvalue of A has a strictly positive real part.

For nonlinear system: it can be linearized at equilibrium points in order to analyze stability of
the approximate linear systems.

2.3 Diagonalization and Modal Canonical Form

In the following, we consider a simple case that the eigenvalues of A are distinct, i.e. λi 6= λj for
i 6= j.

As a consequence, the matrix V composed of the eigenvectors v1, . . . ,vn by

V , [v1, . . . ,vn] (2.7)

is invertible, i.e. ∃V−1 : V−1V = I.
We also have the relation

A = VDV−1 ↔ D = V−1AV (2.8)

with

D =

 λ1
. . .

λn

 (2.9)

Regarding the state space system

ẋ(t) = Ax(t) + Bu(t) (2.10)

y(t) = Cx(t) + Du(t) (2.11)

We use linear transformation with the new state variables z(t) defined by

z(t) , V−1x(t) (2.12)

As a result, the ODE reads

ż(t) = Dz(t) + V−1Bu(t) (2.13)

y(t) = CVz(t) + Du(t) (2.14)

This representation is denoted modal canonical form. Since D is diagonal, each state zi evolves
independently and is called a dynamic mode, characterized by the eigenvalue λi. The solution for
each mode is: zi(t) = zi(0)eλit.

For a general linear system, when there are complex eigenvalues, or multiple eigenvalues that
are the same, the matrix V composed of eigenvalues is not invertible, and we cannot diagonalize
the system. In such case, we can transform the matrix A into the Jordan canonical form (always
possible for linear systems). A Jordan matrix is a block-diagonal matrix:

J =

 J1
. . .

Jk

 (2.15)
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where each Ji is called a Jordan block, having the triangular form:

Ji =


λi 1 0 . . .
0 λi 1 . . .
...

. . .
. . .

0 . . . 0 λi

 (2.16)

with λi the eigenvalue, the dimension of Ji shows how many eigenvalues locate at λi.
Based on the Jordan form, we can identify stability of a linear system ẋ = Ax having eigen-

values with zero real part (i.e. Re(λ) = 0): if it has no eigenvalues with strictly positive real part,
and there are one or more eigenvalues with zero real part, then the system is stable if and only if
the Jordan blocks corresponding to each eigenvalue with zero real part are scalar (1× 1) blocks.

2.4 Lyapunov function

Stability of the solution at an equilibrium point xe = 0 of a nonlinear dynamical system can be
checked using Lyapunov functions. A Lyapunov function V : Rn → R satisfies these conditions:

V (x) > 0 for x 6= 0,x ∈ Br, V (0) = 0 (2.17)

V̇ ,
∂V

∂x

dx

dt
=
∂V

∂x
F (x) ≤ 0,∀x ∈ Br, t ≥ 0 (2.18)

We say V is positive definite, V̇ is negative semidefinite. If such a function V exists, then
x = 0 is locally stable. If instead of V̇ ≤ 0 in (2.18), we have V̇ < 0, then V̇ is called negative
definite, and for that case x = 0 is locally asymptotically stable.

We usually use an energy function as Lyapunov function, to show stability at an equilibrium
point. The theorem of Lyapunov stability (for asymptotic stability) can then be interpreted
that: the energy of the system is monotonically decreasing, however the energy would still be
nonnegative, hence it will approach the minimum energy (zero) and stay at that point.

2.5 Constructing Lyapunov function for linear systems

Finding Lyapunov functions is not always easy. However for linear systems of the form v̇x = Ax,
it is possible to construct Lyapunov functions in a systematic manner. To do so, we consider
quadratic functions of the form

V (x) = xTPx (2.19)

where P is a symmetric matrix (PT = P). The condition that V be positive definite is equivalent
to the condition that P be a positive definite matrix, denoted P � 0. It can be shown that if P is
symmetric, then P is positive definite if and only if all of its eigenvalues are real and positive.

Given a candidate Lyapunov function V (x) = xTPx, we can now compute its derivative with
respect to time:

V̇ =
∂V

∂x

dx

dt
= xT (ATP + PA)x := −xTQx (2.20)

Hence in order to satisfy the condition (2.18), we need Q � 0. It can be shown that if all the
eigenvalues of the matrix A are in the left half-plane, then there is always symmetric matrices P
and Q that satisfy:

P � 0 (2.21)

ATP + PA = −Q (2.22)

Q � 0 (2.23)

We can first choose a positive definite matrix Q, then solve the linear equation (2.22) to find P.
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