Exercise 10: Moving Horizon Estimation

Prof. Dr. Moritz Diehl, Dr. Dang Doan, Benjamin Stickan, Katrin Baumgärtner

In the following, we consider a discrete system of the form

$$x_{k+1} = f(x_k) + w_k$$
$$y_k = h(x_k) + v_k.$$

Linear System We consider the following linear state and output functions:

$$f(x) = \begin{bmatrix} 0.9 & 0\\ 0 & 0.8 \end{bmatrix} x, \qquad h(x) = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} x.$$

We assume that $w_k \sim \mathcal{N}(0, 0.001 \cdot \mathbb{I})$ and $v_k \sim \mathcal{N}(0, 0.2 \cdot \mathbb{I})$. In addition, we assume a random initial state following a Gaussian distribution with mean $(2, 1)^{\top}$ and covariance $0.1 \cdot \mathbb{I}$.

- 1. Implement Matlab functions that compute f, h as well as their Jacobians $J_f = \frac{\partial f}{\partial x}, J_h = \frac{\partial h}{\partial x}$.
- 2. Plot the provided dataset.
- 3. Implement two Matlab functions predict and update that compute the predict and update/innovation step of the Extended Kalman Filter. The functions should have the following signatures:

function [x_predict, P_predict] = predict_ekf(x_estimate, P_estimate, f, J_f, Q)
function [x_estimate, P_estimate] = update_ekf(y, x_predict, P_predict, h, J_h, R)

Note that we would only need the linear Kalman Filter here, for the next part, however, the system is nonlinear.

- 4. Run the Kalman Filter on the provided dataset. How do you have to choose Q and R? Which quantities do you have to initialize? Which values do you use?
- 5. Implement a Matlab function that computes the MHE cost function. Use the results of the Kalman Filter predict step for the arrival cost.
- 6. Implement MHE with horizon length N = 5 using the function fmincon. Make sure you use the current solution to initialize the next MHE problem.
- 7. Plot the estimates obtained from Kalman Fitlering and MHE in one figure and compare the results.

Nonlinear Constrained System We consider the following state and output functions:

$$f(x) = \begin{bmatrix} 0.99 \cdot x_1 + 0.3 \cdot x_2 \\ -0.05 \cdot x_1 + 0.9 \cdot \sin(x_2) \end{bmatrix}, \qquad h(x) = x_1 - 3x_2$$

We assume a random initial state following a Gaussian distribution with mean $(0.8, 0.8)^{\top}$ and covariance I. The measurement noise v_k follows Gaussian distribution with $v_k \sim \mathcal{N}(0, 0.05 \cdot \mathbb{I})$. We assume that the state noise $w_k = abs(z_k)$ and $z_k \sim \mathcal{N}(0, 0.05 \cdot \mathbb{I})$, i.e. the disturbance will always be positive.

- 1. Implement Matlab functions that compute f, h as well as their Jacobians $J_f = \frac{\partial f}{\partial x}$, $J_h = \frac{\partial h}{\partial x}$.
- 2. Run the Kalman Filter on the provided dataset and assume $w_k = z_k$, i.e. Gaussian state noise.

- 3. Run MHE on the provided dataset using zero arrival cost and a horizon of length N = 15. Again assume $w_k = z_k$.
- 4. We can incorporate the fact that the state disturbance will always be positive into our MHE formulation by adding constraints. Write a function c(x) that you can pass to fmincon such that $w_k \ge 0$ is enforced. Check the documentation of fmincon to make sure your function has the correct format.
- 5. Plot the estimates obtained from Extended Kalman Filtering as well as constrained and unconstrained MHE in one figure. Compare the results.