Exercises for Course on State-Space Control Systems (SSC) Albert-Ludwigs-Universität Freiburg – Summer Term 2019

Exercise 5: Linear Quadratic Regulator

Prof. Dr. Moritz Diehl, Dr. Dang Doan, Benjamin Stickan, Katrin Baumgärtner

Exercises

1. Discrete-time LQR. Consider the discrete-time infinite horizon linear quadratic regulator problem. The optimal linear quadratic regulator given by the feedback law $\kappa_{\infty}(x) = -K_{\infty}x$ minimizes the cost function

$$V(x_0, \mathbf{u}) = \sum_{k=0}^{\infty} x_k^{\top} Q x_k + u_k^{\top} R u_k$$

where x_k is the solution at time k of

$$x_{k+1} = Ax_k + Bu_k$$

where the initial state is x_0 and the input sequence is u.

Suppose that $Q, R \succ 0$ and (A, B) controllable. We show that the infinite horizon regulator $\kappa_{\infty}(x)$ asymptotically stabilizes the origin $x_e = 0$ for the closed-loop system. To this end, we proceed as follows.

• Show that the optimal cost $V^*(x_0)$ defined as

$$V^*(x_0) = \min_{\mathbf{u}} V(x_0, \mathbf{u})$$

is finite for any x_0 .

• Show that the cost-to-go along the closed-loop trajectory defined as

$$V_k(x_k) = \sum_{k'=k}^{\infty} x_{k'}^{\top} Q x_{k'} + \kappa_{\infty}(x_{k'})^{\top} R \kappa_{\infty}(x_{k'})$$

is monotonically decreasing for $x_k \neq \mathbf{0}$.

- Use the previous results to conclude that $x_k \to 0$ and $u_k \to 0$ as $k \to \infty$.
- 2. **Continuous-time LQR.** Consider the normalized, linearized inverted pendulum model which is described by

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

• Find a state feedback u = -Kx that minimizes the quadratic cost function

$$J = \int_0^\infty \left(q_1 x_1^2 + q_2 x_2^2 + q_u u^2 \right) \mathrm{d}t$$

where $q_2 \ge 0$ is the penality on the position, $q_1 \ge 0$ is the penalty on the velocity, and $q_u > 0$ is the penalty on the control actions.

- Compute the characteristic polynomial of the closed-loop system.
- Does K change, if we replace q_1, q_2, q_u by $\tilde{q}_1 = cq_1, \tilde{q}_2 = cq_2, \tilde{q}_u = cq_u$ for some constant c > 0.
- Simulate the closed-loop system and compare the trajectories you obtain for different values of q_1, q_2, q_u .