Exercises for Lecture Course on Numerical Optimal Control (NOC)
Albert-Ludwigs-Universitit Freiburg — Summer Term 2019

Exercise 5: Algorithmic Differentiation

Prof. Dr. Moritz Diehl, Dimitris Kouzoupis, Andrea Zanelli, Florian Messerer

The aim of this exercise is to gain experience with the two modes of algorithmic differentiation (AD)
discussed in the class.

1. Forward and backward algorithmic differentiation: Consider the following discrete-time
dynamical system:

Tpy1 = T + h((1 — 2p) 78 + Up), (1)

where x;, € R and u; € R are the state and control input of the system respectively and h is a
constant parameter (you can think of it as the time step of an explicit Euler integrator). We
are interested in simulating the dynamics forward for N steps starting from the initial value
o = o and computing the derivatives of the obtained states with respect to controls:

(a)

8.732'

8uj,1

. Yi,j=1,..,N. 2)

Fix 29 = 0.5, N = 50, h = 0.1. Make sure to define them once only, so you can easily
adapt their values later. Using CasADi, implement the function ® : RY — R that maps
controls to the obtained state trajectory

= D(u), (3)

where and u denote the vector of stacked states and controls respectively. Define a
CasADi function that outputs the Jacobian of x with respect to u

_ 99()
» = 220, (4)

You will use the output of this function as a reference for your implementations in the
rest of the exercise.

(1 point)

Implement a MATLAB function forw_AD(u, m, x0, h) that takes as input a vector
containing the values for v and a scalar m and returns the derivative ai_i’ i.e., the m-th
column of the Jacobian, evaluated at input u, using forward AD. Check that the result
provided by your implementation is equal to the corresponding entries in the output
obtained with CasADi, e.g., by evaluating both at randomly generated values of u, u_tst
= rand (N, 1), and comparing the maximum of their elementwise absolute difference. You
should be able to reach machine precision, i.e., order of magnitude around 10716,

(3 points)
Analogously, implement a MATLAB function back_AD that takes as input u, a scalar m
as well as the parameters. It returns the derivative ‘r’g—TT, i.e., the m-th row of the Jacobian,

using backward AD. Check that the result provided by your implementation is equal to
the corresponding entry in the output obtained with CasADi.

(3 points)

()

Implement now a function J_FAD that takes as inputs u and a scalar m and, using forward
AD, computes the last m rows of the Jacobian 8(152“) containing the derivatives of the
last m states in the simulation with respect to the all the controls. Again, validate your
results against the reference output. Note: You could just call forw_AD several times, but
then you would unnecessarily repeat some computations. How can you do better?

(1 points)

Analogously, implement a function J_BAD that takes as inputs w and a scalar m and

computes the last m rows of the Jacobian 83—78“) using your implementation of backward
AD and validate it against the reference. Again: You could just call back_AD several times,

but then you would unnecessarily repeat some computations. How can you do better?

(1 points)
Which of the two implementation do you expect to be more performant for small values
of m? Which one for high values of m? Why?

(1 point)
Run your implementations for m ranging from 1 to N and measure the execution time
using the MATLAB functions tic and toc. For this simulation choose h = 0.01 and

N = 500. Plot the obtained execution times as a function of m. Do the results validate
your considerations from the previous question?

(1 point)

This sheet gives in total 11 points

