
i
i

“linearAlgebra” — 2018/11/2 — 17:56 — page 1 — #1 i
i

i
i

i
i

Tutorials for Lecture Course on Modeling and System Identification (MSI)
Albert-Ludwigs-Universität Freiburg – Winter Term 2018-2019

Emergency Guide to Linear Algebra:
Recall of important Matrix Properties and Operations

Prof. Dr. Moritz Diehl, Tobias Schöls, Katrin Baumgärtner, Alexander Petrov

1 Motivation (or why would you do this?)
Matrices are common in many fields of engineering, i.e. measurements are often stored as a matrix, for example series of voltage
measurements. On top of that formulating the math that is used to process these data as matrix operations is usually more compact
and convenient. Therefore you will have to deal with matrices a lot during this course. However we understand that matrices
might not be intuitive for everyone, especially if you have not dealt with them in a long time. This tutorial is meant to get you
used to working with matrices (again).

Please do not hesitate to ask us any questions!

1.1 Warm-Up Exercises
The following exercises are meant to refresh your memory and get you used to matrices again. We recommend to calculate the
tasks by hand first and then check the result using MATLAB.

A =

[
1 3
4 2

]
B =

[
5 7
8 6

]
C =

[
0 1
1 0

]
v =

[
v1
v2

]
=

[
1
2

]

(A+B)v = (1)

Av +Bv = (2)

(A+B)C = (3)

AC +BC = (4)

CA+ CB = (5)

AA−1 = (6)

v>v = (7)

vv> = (8)

A(BC) = (9)

(AB)C = (10)

CBA = (11)

A> = (12)

(Av)> = (13)

v>A> = (14)

v>A>Av = (15)

2∑
i=1

vi = (16)

[
1 1

]
v = (17)

1

i
i

“linearAlgebra” — 2018/11/2 — 17:56 — page 2 — #2 i
i

i
i

i
i

2 Linear Algebra for MSI
To mix things up a bit we will use an example that will take us through the material: Say hi to Max! He is a passionate bicyclist
who likes to record his tracks using a GPS device that records his position every 5 seconds [s]. The position is captured in three
dimensions, i.e. x, y, and z (longitude, latitude, and altitude) all in meters [m].
He imported the measurements from his last trip into MATLAB and shared them with us to help him with the analysis.
Please start MATLAB now, open linearAlgebra.m and run the first section to see how far he got. In the MATLAB Tutorial
Max learned how to plot his data. He recorded data for a series of times tk, these he stored in a variable called timeStamps,
the GPS positions he stored in positions.
The positions Max recorded can be understood as evaluations of a function f at times tk [s]. Written in mathematical terms

f(t) =

x(t)
y(t)
z(t)


where f(t) is Max’s 3-D position for a given time t. Based on his measurements Max wants to compute his speed. He recalls
that velocity is the first derivative of the position with respect to time from which he can then compute his speed.

2.1 Advanced Matrix Operations
Derivatives Derivatives are very common and have many applications. For a function f : Rn → Rm we define the derivative
with respect to its parameter vector x as follows (instead f(x) we write f here for cleaner notation):

∂f

∂x
=
[

∂f
∂x1

· · · ∂f
∂xn

]
=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

 ∈ Rm×n

The matrix above is called the Jacobian matrix. For a scalar function f : Rn → R, we define the gradient vector as

∇f(x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 ∈ Rn

Thus, we have∇f(x) = ∂f
∂x (x)T . Based on the above definitions, we can derive a number of differentiation rules. The list below

includes some important rules that will be handy for this course. Let A be a matrix of appropriate size.

f = x :
∂f

∂x
= In

f = Ax :
∂f

∂x
= A

f = x>Ax :
∂f

∂x
= x>A+ (Ax)> = x>(A+A>)

f = x>A>Ax :
∂f

∂x
= x>A>A+ (A>Ax)> = 2x>A>A

Above we considered the partial derivatives of f , i.e. when calculating ∂f
∂xi

, we consider all other variables xj , j 6= i, to be
constants. However, this is not always reasonable. Regard for example a function f(x, t) that depends on the position x and the
time t. The position, however, changes with time, we actually have x = x(t). Rather than calculating ∂f

∂t , we would in this case
be interested in the so-called total derivative. Here, it is given by

df

dt
=
∂f

∂t
+
∂f

∂x

∂x

∂t

where we made use of the chain rule. Note that for scalar functions, the partial and total derivative coincide.

Back to Max, he has read the above and wrote down the following

∂f

∂t
=


∂x
∂t
∂y
∂t
∂z
∂t


and also figured out parts of the implementation, but he is missing the derivation step. Therefore he left a gap in the Derivatives-
section, please fill this gap for him.
Hint: Approximate the derivative using finite differences, i.e. use the following approximation formula

∂f

∂t
(t0) ≈ f(t0 + ∆t)− f(t0)

∆t
(18)

for small ∆t. The command diff might be helpful.

2

i
i

“linearAlgebra” — 2018/11/2 — 17:56 — page 3 — #3 i
i

i
i

i
i

Great, now Max knows his speed per direction (x, y, z)! But he is actually interested in his total speed and he heard that this can
be computed using norms.

Norms In linear algebra norms are functions that compute the length or the size of a vector. There are several ways to define a
norm. We will only use two:

• Euclidean norm Most common norm definition, straight-line distance between two points (here x and the origin).

‖x‖2 =
√
x21 + · · ·+ x2n

‖x‖22 =x21 + · · ·+ x2n = x>x

• 1-norm

‖x‖1 =

n∑
i=1

|xi|

Which norm would you recommend Max to use and why? Implement the norm you chose in the Norms-section of the script and
plot the speed over time.
Hint: Recall what the .-operator does and look up the following MATLAB-commands: sqrt, abs

Optional: Can you calculate the length of Max’s bike trip and his average speed?

To monitor his speed during the ride Max bought a bike computer that measures the covered distance by counting the full rota-
tions of the front wheel. For accurate speed measurements Max needs to input the radius of his front wheel. To figure it out he
makes another tour with front wheel radius in the bike computer set to 27.5cm. After his trip the bike computer detected 5342
full rotations of the front wheel and the distance measured by his bike computer was 2 km less than the GPS track.
Max wants to formulate his problem as a linear equation system of the form Ax = b, please fill in the gaps for him:. .

. .


︸ ︷︷ ︸

A

[
ractual
rinitial

]
︸ ︷︷ ︸

x

=

.
.


︸ ︷︷ ︸

b

(19)

Max is wondering if this equation system is solvable (uniquely). Read the following section to find out how this can be deter-
mined.

Rank of a Matrix The rank of a matrix is the number of linear independent rows. This is equivalent to saying the rank of a
matrix is the number of independent columns. A matrix is said to have full rank if all rows or columns are linearly independent,
that is the rank matches the dimension of that matrix. For linear equation systems this means that a unique solution exists.
The rank can be computed with the MATLAB-command rank().

Examples [
1 0
0 0

]
does not have full rank, since it contains a zero row.3 4 1

5 7 9
6 8 2

 . . . (20)

8 1 6
3 5 7
4 9 2

 . . . (21)

Determine if the matrix for Max’s problem has full rank.

rank(A) = . . . (22)

Inverse A square matrix A ∈ Rn×n is called invertible if there exists a matrix B ∈ Rn×n such that

AB = BA = In

where In is a n-by-n identity matrix. If B exists, it is unique and called the inverse of A, denoted by A−1. Note that non-square
matrices do not have an inverse.

3

i
i

“linearAlgebra” — 2018/11/2 — 17:56 — page 4 — #4 i
i

i
i

i
i

-3 -2 -1 0 1 2 3

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

unit square

image of unit square

first eigenvector

second eigenvector

Figure 1: Deformation of a unit square through example
transformation.

-3 -2 -1 0 1 2 3

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

unit square

image of unit square

first eigenvector

second eigenvector

Figure 2: Deformation of a unit circle through example
transformation.

Let A be a square matrix. Then the following statements are equivalent:

• A is invertible.

• A has full rank.

• The determinant of A is not zero.

• A has only non-zero eigenvalues.

If A is not invertible, then A is called singular or degenerate. The MATLAB-command to calculate the inverse is inv.
With the above Max can solve his problem. He did the following calculation

Ax = b⇔ A−1Ax = A−1b⇔ Ix = A−1b⇔ x = A−1b

Please calculate x (in MATLAB). What is the actual radius of Max’s front wheel?

ractual = . . . (23)

Eigenvalues and Eigenvectors Vectors that do not change the direction when multiplied with A are called eigenvectors here
denoted as v. When A is multiplied with one of its eigenvectors the result is just a scalar multiple of that eigenvector. This can
be formulated in a formula as

Av = λv

where v is an eigenvector and λ is the corresponding eigenvalue.1

Ok, great! - And now what does all this mean?

Consider the following equation Ax = b where A is defined as

A =

[
1.25 −0.75
−0.75 1.25

]
This is a linear map from R2 to R2. Its eigenvalues are λ1 = 0.5 and λ2 = 2 the corresponding eigenvectors are v1 =

− 1√
2

[
1 1

]>
and v2 = − 1√

2

[
1 −1

]>
. In the 2-D case this can be visualized by the deformation of a unit circle (figure 2) and

a unit square (figure 1).
From math class you may remember that the eigenvalues are the roots of the characteristic polynomial. For this class you do not
need to compute them by hand and you can rely on MATLAB to find them for you in the exercises. The MATLAB-command to
calculate eigenvalues and eigenvectors is called eig(). Please find out how the results are returned.
Fill in the gaps in the Eigenvalues and Eigenvectors-section of the MATLAB script.
Optional: Come up with your own matrix and plot the deformation of the unit square/circle, similar to the figures above.

Outlook Throughout this course you will be dealing with some random variables that follow a certain distribution. The spread
of this distribution and the correlation between different variables is contained in a covariance matrix. To visualize the spread
of distributions and the relation between different variables you will use deformed unit circles (similar to what you have seen
above). These ellipses are called confidence ellipses. [Don’t panic! You have seen this already.] Take a look at the figure 3
below. The thing we are talking about is the light blue circle around the blue dot that marks the (most likely) position.

1http://math.mit.edu/˜gs/linearalgebra/ila0601.pdf

4

i
i

“linearAlgebra” — 2018/11/2 — 17:56 — page 5 — #5 i
i

i
i

i
i

Figure 3: Example Confidence Ellipse: location estimate and area in which the actual position is most likely to lie in.

Matrix exponential There is an exp-function for matrices called matrix exponential. For this class it is not important to
calculate the matrix exponential by hand, however you will need the MATLAB-command which is expm().

2.2 Special Matrices
Symmetric Matrices A matrix A is called symmetric if it is equal to its transpose, i.e. A = A>. Please note that only square
matrices can be symmetric and that the product of a matrix with its transpose is symmetric. Thus, for any B ∈ Rm×n it holds

B>B = B>
(
B>
)>

=
(
B>B

)>
where we used (AB)> = B>A> and

(
A>
)>

= A. In addition, symmetric matrices have only real eigenvalues.

Examples [
1 2
2 4

]

a b . . .

. . . d e

c . . . f

 (24)

[
v
w

] [
v w

]
= . . . (25)

[
v2 vw
wv w2

] [
v w

] [a b
b c

] [
v
w

]
= . . . (26)

Optional: Calculate the determinant and the eigenvalues for the first matrix. You can use the MATLAB-symbolic-toolbox to check
your results. The MATLAB-command to compute the determinant is called det().

Positive/Negative (Semi-)Definite Matrices If a symmetric matrix has no negative eigenvalue (all are positive or zero) it is
called positive semi-definite (PSD). The same holds for positive definite matrices only that the zero is not allowed as eigenvalue.
Similarly a negative definite matrix has only strictly negative eigenvalues and a negative semi-definite has no positive eigenvalue
(all negative or zero).
An alternative definition of positive/negative (semi-)definiteness is the following: Let M ∈ Rn×n be a symmetric matrix. If for
all x ∈ Rn, x 6= 0, it holds

x>Mx < 0, then M is called negative-definite.

x>Mx ≤ 0, then M is called negative-semi-definite.

x>Mx > 0, then M is called positive-definite

x>Mx ≥ 0, then M is called positive-semi-definite.

If none of the above is true, then M is called indefinite.

5

i
i

“linearAlgebra” — 2018/11/2 — 17:56 — page 6 — #6 i
i

i
i

i
i

A positive-definite matrix is always invertible. The inverse of a positive-definite matrix is also positive-definite.

For positive semi-definite matrices, the following properties hold:

• For any matrix A ∈ Rm×n, it holds that A>A is positive semi-definite (PSD).

• For M PSD, it holds that for all r > 0 that rM is PSD.

• If M is PSD, then A>MA is also PSD.

Determine if the matrices below are positive semi-definite and give a short reason:[
1 3
4 2

]
(27)[

1 3
4 2

] [
1 4
3 2

]
(28)[

8 1 6
3 5 7

]
(29)8 3

1 6
6 7

[8 1 6
3 5 7

]
(30)

[
8 1 6
3 5 7

]8 3
1 6
6 7

 (31)

 2 −1 0
−1 2 −1
0 −1 2

 (32)

1 0 0
0 1 0
0 0 1

 (33)

Orthogonal Matrices Square matrices that if multiplied with their own transpose equal the identity matrix are called orthog-
onal matrix. In mathematical terms this is expressed as: If AA> = A>A = I, then A is called an orthogonal matrix. This is
equivalent to:

A> = A−1

Orthogonal matrices have interesting properties:

• An orthogonal matrix is always invertible.

• The determinant of an orthogonal matrix is always ±1.

Examples [
1 0
0 1

] [
0.866 −0.5
0.5 0.866

] [
0.7071 −0.7071
0.7071 0.7071

] [
cosα − sinα
sinα cosα

]

Please check if the following matrices are orthogonal [
2 0
0 1

2

]
(34)[

0 1
1 0

]
(35)

1

3

2 −2 1
1 2 2
2 1 −2

 (36)

Upper/Lower Triangular Matrices If all entries of a square matrix above the main diagonal are zero this matrix is called a
lower triangular matrix. Similarly if all entries of a square matrix below the main diagonal are zero this matrix is called a upper
triangular matrix.

• The transpose of an upper triangular matrix is a lower triangular matrix and vice versa.

• The determinant of a triangular matrix equals the product of the diagonal entries.

Examples

upper triangular matrix:

1 99 5
0 3 6
0 0 1

 lower triangular matrix:

a 0 0
b c 0
d e f

 (37)

Please calculate the determinant of the matrices above. What do you notice?

6

i
i

“linearAlgebra” — 2018/11/2 — 17:56 — page 7 — #7 i
i

i
i

i
i

Upper and lower triangular matrices play an important role when solving linear equation systems, as a linear system in this form
is easy to solve. This is illustrated by the following example:

Example Backward Substitution

Solve the following equation system for x1, x2, and x31 99 5
0 3 6
0 0 1

x1x2
x3

 =

120
13
2



x1 = . . . x2 = . . . x3 = . . . (38)

Diagonal Matrices Matrices in which the off-diagonal entries are zero are called diagonal matrix, i.e. for a diagonal matrix
any entry di,j with i 6= j is 0.

Example  1
. . . 2 . . .
. 3

 (39)

This definition also applies for non-square matrices. To be a little bit more specific: Only entries di,j with i = j may be non-zero.

For diagonal matrices, the following properties hold:

• The sum of diagonal matrices is again diagonal

• The product C = AB of two diagonal matrices A and B is again a diagonal matrix where the diagonal entry ci,i is given
by the product of the corresponding diagonal entries in A and B, i.e. ci,i = ai,i · bi,i.
• The inverse of a diagonal square matrix is defined if all diagonal entries are non zero. The inverse is then given by a

diagonal matrix with inverse of the diagonal entries.

Examples 
1 0 0
0 2 0
0 0 3
0 0 0


a 0 0 0

0 b 0 0
0 0 c 0


In MATLAB a vector can be turned into a diagonal matrix with the diag() command. If diag() is called with a matrix the
diagonal of the matrix is returned.

Please do the following calculations (without MATLAB):1 0 0
0 4 0
0 0 7

+

4 0 0
0 −1 0
0 0 5

 =

1 0 0
0 4 0
0 0 7

4 0 0
0 −1 0
0 0 5

 =

1 0 0
0 4 0
0 0 7

−1 =

7

i
i

“linearAlgebra” — 2018/11/2 — 17:56 — page 8 — #8 i
i

i
i

i
i

2.3 Special Function Classes
In linear algebra functions are not defined for scalars but for vectors or matrices. This works similarly but might be a bit
unintuitive at first.

Linear and Affine Functions Any function that can be written as f(x) = Ax is called a linear function. If a linear function is
extended by a constant term it becomes an affine function and has the form f(x) = Ax + b.

Please reformulate the following functions in the form f(x) = Ax + b, where f =

f1(x)
...

fn(x)


f1(x) = 5x1 + 7x2 + 9 x =

[
x1
x2

]
A = b = (40)

g1(x) = f1(x)

g2(x) = 24x1 + 23x3 − 42 x = A = b = (41)

h1(x) = f1(x)

h2(x) = x2 +
1

2
x = A = b = (42)

h3(x) = 25x1 − 49x2 + 81

Quadratic Functions Quadratic functions have a a slightly different structure than their scalar complements.

f(x) = x>Ax +Bx + c

Please reformulate the following functions in the form f(x) = x>Ax +Bx + c

f1(x) = 7x21 + 4x1x2 + 2x22 x = A = B = c = (43)

g1(x) = f1(x) + 5x1 + 7x2 + 9 x = A = B = c = (44)

The exercises on this sheet give no points that would count towards the exercise points.

8

