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Exercises for Course on Modeling and System Identification (MSI)
Albert-Ludwigs-Universität Freiburg – Winter Term 2018-2019

Exercise 8: Nonlinear Least Squares
(to be returned on Jan 18, 2019, 10:00 in SR 00-010/014,

or before in building 102, 1st floor, ’Anbau’)

Prof. Dr. Moritz Diehl, Tobias Schöls, Katrin Baumgärtner, Alexander Petrov

In this exercise you will learn how to practically solve nonlinear least squares problems, compute estimates
of the covariance of your estimated parameters and make statements about the correctness of the model
assumptions.

Exercise Tasks

1. Covariance approximation (3 points)

Consider a nonlinear function f : Rn → R that maps a random vector X = (X1, . . . , Xn)> to a
scalar random variable Y , i.e.

Y = f(X) = f(X1, . . . , Xn).

We have E {X} = µx = (µ1, . . . , µn)> and cov (X) = Σx ∈ Rn×n.

(a) ON PAPER: Give an approximation of the expected value E {Y } and the covariance matrix
cov (Y ) of Y using a first order Taylor expansion of f around µx. (2 points)

(b) ON PAPER: Suppose X1, . . . , Xn are independent. Simplify your covariance approximation
from part (a). (1 point)

2. Parameter estimation for output error minimization (8 points)

You operate a two-wheeled robot with unknown dimensions (left wheel radiusRL, right wheel radius
RR, and axle length L), as simulated in Exercise 7. After observing the movement of the robot, you
would like to estimate these dimensions θ = (RL, RR, L)>, with lsqnonlin1 . Assuming that the
robot system has only output errors, and that these errors are Gaussian with zero mean and variances
σ2
x = 1.6 · 10−3 m2 and σ2

y = 4 · 10−4 m2, then the Maximum Likelihood Estimation problem to
estimate θ is:

θ∗ = arg min
θ∈R3

N∑
k=0

‖yk −Mk(u, q0,θ)‖2
Σ−1

y
,

where yk = (x, y)> ∈ R2 with x and y being the coordinates of the robot and N is the number of
measurements; Σy is the weighing matrix containing the variances on the x and y measurements
defined as:

Σy =

[
σ2
x 0

0 σ2
y

]
;

Mk(u, q0,θ) denotes the modeled position at timestep k for given u, q0, θ where u ∈ R(N−1)×2 is a
matrix that contains all applied control inputs, consisting of the angular velocity of the left and right
wheel respectively (ωL and ωR); q0 contains the robot’s initial pose (x-y-position and orientation)
q0 = (x0, y0, β0) = (0, 0, 0) which we assume to be perfectly known. The measurements are taken
at a sampling time of ∆t = 0.01 s.

1lsqnonlin takes as input a vector function f(θ) = [f1(θ), . . . , fN (θ)], and minimizes ‖f(θ)‖22 with respect to θ. Thus,
you have to stack the residuals obtained for different timesteps to obtain a single residual vector.
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The kinematic model is given by

q̇ =

 v · cos β

v · sin β
ωLRL−ωRRR

L

 , (1)

where the robot’s velocity v is given by v = ωL·RL+ωR·RR

2
and q = (x, y, β)> is the robot’s pose.

(a) ON PAPER: First formulate a discrete time model for the robot’s dynamics F : R3 → R3

using a one-step Euler integrator and the kinematic model given in (1). Then formulate the
output model

Mk : R(N−1)×2 × R3 × R3 → R2, (u, q0,θ) 7→ ŷk

Hint: You may use F for the formulation of Mk. (1 point)

(b) MATLAB: Implement a function:
residual(theta, q0, u, k deltaT, y, sigma y), which computes the resid-
ual vector between the given measured location yk and the modeled location Mk(u, q0,θ) .
Keep in mind to incorporate the measurement variances Σy correctly, i.e. weight the residual
and to perform the right number of integration steps. (2 points)

(c) MATLAB: Use lsqnonlin to estimate θ∗. (1 point)

(d) MATLAB: Compute the simulated trajectory using θ∗ and plot it versus the measurements
using the provided code and compare it to the 4th order polynomial fit shown in Figure 1 (this
is what you did for the last exercise sheet).
ON PAPER: What do you observe? (1 point)

(e) ON PAPER: Check if the assumptions made on the noise were correct by plotting a histogram
for the residual in x and y (using θ∗). (1 point)

(f) MATLAB: Approximate the covariance matrix Σθ∗ of your estimate θ∗ (check page 48 of the
lecture notes). (2 points)

3. ON PAPER: Suppose you have identified the robot’s kinematic model as done in task 2. You are
now given another series of controls U ∈ RN−1×2 and are asked to predict the robot’s end pose and
to give an estimate for the covariance matrix ΣyN of your prediction. Describe how this can be done.
You may use any result or quantity introduced or computed in tasks 1 and 2. (2 points)

Figure 1: Fit from Exercise 7

This sheet gives in total 13 points.
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