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Engineering
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• Passenger cars and vans

• Commercial vehicles and work machines

• Rail, marine, aviation

• Energy and water management



Proximity to Customers in Germany
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Presentation Outline
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1. Introduction to Wind Turbine control problem

2. Aero-Elastic modeling of wind turbines

3. Conventional control applied to wind turbines

4. Advanced control concepts for wind turbines



1. Mechanical setup of variable-speed turbines
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 Wind energy is a „mechanical engineering“ dominated domain – lots of steel and concrete

 It‘s a huge, heavy and flexible machine!
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1. Growth is continuous trend in wind energy
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 Higher hub allows for larger rotor diameters

 More persistent wind conditions higher above ground
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1. Growth is continuous trend in wind energy
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 Higher hub allows for larger rotor diameters

 More persistent wind conditions higher above ground
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Impacts on LCOE

• Hub height: wind persistence → AEP/capacity factor

• Rotor diameter → AEP/capacity factor

• Generator & Power elec. capacity → rated turbine power

• Component optimization → (material) invest costs

• Intelligent operations and turbine control (WIND4.0)

• AEP/capacity factor

• Operating costs / O&M
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1. „Growth rate“ regionally different – due to economic drivers
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 Turbine location, Grid situation, O&M costs, availability of land, etc.

Quelle: MAKE

EMEA AMER

Sub 1,5 MW

1,5 – 1,9 MW

2 – 2,4 MW

2,5 – 2,75 MW

3 – 4,5 MW

5 - 8 MW

APAC

48%

74%

++



1. Typical life-cycle costs break-down of a wind turbine
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 Wind turbine is a capital intensive → costs accumulate in seemingly „simple“ components

 Significant operating costs despite free „fuel“ wind
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1. Negative impact of turbine growth
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 Higher hub allows for larger rotor diameters

 More persistent wind conditions higher above ground

 Higher Hub + larger rotor  higher forces

 Increased mass + inertia lower eigenfrequencies

A. Paul: A Comparative Analysis of the Two-Bladed and the Three-Bladed Wind Turbine for Offshore Wind Farms, Master Thesis, 2010



1. Negative impact of turbine growth
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 Higher Hub + larger rotor  higher forces

 Increased mass + inertia lower eigenfrequencies  Eigenfrequencies move into excitation spectrum

Hz

Excitation of structural oscillations

• Temporal stochastic wind field

• Aerodynamic imbalace / tower shadow

• Rotor mass imbalance

• Waves (offshore)

A. Paul: A Comparative Analysis of the Two-Bladed and the Three-Bladed Wind Turbine for Offshore Wind Farms, Master Thesis, 2010



1. Operarting strategy for wind turbines
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Operational intervals

I. Low wind / idle

IIA. Minimal rotor speed

IIB. Subrated regime → max. energy capture

Competing control objectives

• Maximize energy capture

• Limit of aerodynamic torques and forces (maintain power and

rotor speed limits)

Minimize mechanical loads and fatigue

Damp torsional oscillations in drive-train

Avoid excessive actuator usage (esp. pitch)

Limit power fluctations

 Look-up table derived from steady state considerations

Wind speed [m/s]

IIC. Enforce max. rotor speed

III. Rated regime → min. power jitter / constraint enforcement

IV. Excessive wind speed shut-down
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2. System theoretic view of a wind turbine
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Aero-
dynamics

Elasto-
dynamics

Generator
(Elect. Sys.)

Pitch 
actuator

Control

inputs

Driving

disturbance

Control 

variables

Available measurements

• Electrical power

• Generator speed

• Tower top accel.

• Single-point wind speed

• Blade accel. / blade 

root bending moment



2. Aero-dynamics – static model
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Energy transformation

Wind speed into torque (rotation)
Wind speed into thrust (bending)

Tip speed ratio (TSR)

Maximum at 



2. Aero-dynamics fully define operating strategy
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Operational intervals

IIA. Minimal rotor speed / fine pitch to maximize Cp

IIB. Subrated regime → enforce , no pitching

 Look-up table derived from steady state considerations

IIC. Max. rotor speed → maximize Cp, no pitching

III. Rated regime → maintain energy balance

Wind speed [m/s]



2. Elasto-dynamics – dynamical model (Diss. Arne Körber, 2014)
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Model simplification – only capture what is relevant for control

Modeling assumptions:

• Blade is a stiff rotating beam

• Tower approx. as simple mass-spring-damper

• Drive-train modeled as 2-mass-oscillator

Blade flap

motion
Tower FA

motion

DT 

rotational

motion



2. Elasto-dynamics – dynamical model based on first principles
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Drive-train schematics Equations of motions (ODEs)

Tower-blades schematics (inverted pendulum like)

A. Körber: Extreme and Fatigue Load Reducing Control for Wind Turbines: A Model Predictive Control Approach using Robust State Constraints, 2014 Diss., TU Berlin



2. Open-loop simulation for NRELs FAST 5MW Turbine  
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Stepwise wind excitation response Tower and Blade motion

 Flap-wise motions of blades are mainly damped aerodynamically through effective wind speed feedback

JONKMAN, et al. Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2009.
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3. State-of-the-art turbine control in commercial turbines
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Conventional turbine control architecture dominated by 

SISO (PID) control loops + complex switching logics
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3. State-of-the-art turbine control in commercial turbines
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Generator speed controller

• Regime IIA-IIB: zero pitch, maintain torque balance

Generator speed controller

• Regime III: max. torque/Pelec , only pitch

 Reference-free torque control law „Cpmax Tracking Law“

 Pitch-loop uses constant reference (rated GenSpd)

 Coordination of „competing“ control loops via „complex“ blending and switching logic
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3. Closed-loop simulation for NRELs FAST 5MW Turbine 
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 Response to temporally turbulent wind around rated operation



3. Closed-loop simulation for NRELs FAST 5MW Turbine 
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 Strong tower movements visible



3. Model-based controller design (your favourite type)
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MIMO state-feedback controller for rated turbine operation

• Linearize model at rated wind speed (at steady-state OP)

Observe, that here

• LQR Design to track rated GenSpd and electrical power

State 

estimator

Wind 

Turbine

Feedback

law

Feedback law coordinates torque and pitch
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4. Advanced turbine control via model predictive control
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 MPC focuses on optimizing the economics of plant operation 

 Tracking controller stabilizes rotor speed reference in the face of unexpected wind speed disturbances

Advantages

• Intuitive tuning mainly via model

• Harmonization of competing objectives

• Explicit handling of constraints

• Direct exploitation of reference & 

disturbance forecasts  preventive 

control moves

State-feedback and recurrent optimization at 

appropriate rate 

• Compensate for modeling errors

• Robustness to unknown external 

disturbances 



4. Ingredients of model predictive turbine control
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Valid operating 

regime

Dynamic 

plant model

Performance 

metric

„stabilizing“ 

terminal costs

„performance 

indicating” stage costs

„Feedback“ constraint

input & state 

constraints

s.t.



4. Working principle of model predictive control

29

Basic steps:

1. Dynamic model to make forecast of plant’s 

future behavior

2. Online optimization to compute optimal 

control moves for defined prediction horizon

3. Application of initial control trajectory

4. Observe response & update state information

t0 t1

y(t)

u(t)

t0+Ts

MPC = solve optimal control problem periodically, for 

current dynamic plant state
 Look into the future, instead into the   

past!



4. Typical controller configuration

30

„Economically“ inspired tracking MPC performance metric

Proxy fatigue metric

Constraints: 

 Objectives: power capture ↔ structural loads ↔ actuator wear
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GROS, SCHILD: Real-time economic nonlinear model predictive control for wind turbine control. International Journal of Control, 2017



4. Closed-loop simulation comparison BC vs. MPC @ NRELs 5W 
Turbine
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 MPC achieves better GenSpd tracking and softer pitch utilization



4. Closed-loop simulation comparison BC vs. MPC @ NRELs 5W 
Turbine
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 Positive: MPC improves power capture & reduces tower oscillations

 Negative: higher power fluctuations observed



Conclusions
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• Wind energy enters digitization era → innovations by means of „intelligence“ and IoT

• Traditional control concepts focus on energy maximization

• Progressing energy revolution demands for much more complex operating strategies 

• Control-oriented modeling of wind turbines requires significant abstraction and simplification

• Advanced control concepts like MPC will be part of the solution to overcome future challenges

• Sustainable market penetration of such innovative technologies requires industrialization of 

research results  significant effort to increase reliability & robustness
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