

Control-oriented modeling and controller design for wind turbines

Wind energy systems lecture, University Freiburg Dr. Axel Schild, Gifhorn, June 2018

Engineering

- Rail, marine, aviation
- Energy and water management

Proximity to Customers in Germany

Presentation Outline

- 1. Introduction to Wind Turbine control problem
- 2. Aero-Elastic modeling of wind turbines
- 3. Conventional control applied to wind turbines
- 4. Advanced control concepts for wind turbines

1. Mechanical setup of variable-speed turbines

 \rightarrow Wind energy is a "mechanical engineering" dominated domain – lots of steel and concrete

 \rightarrow It's a huge, heavy and flexible machine!

1. Growth is continuous trend in wind energy

Höhe in m Windgeschwindigkeit in m/s

Eiffelturm Vestas V164-8MW

\rightarrow Higher hub allows for larger rotor diameters

 \rightarrow More persistent wind conditions higher above ground

1. Growth is continuous trend in wind energy

	LCOE =	$\sum_{t=1}^{n}$	$Investment_t + O + M_t + Fuel_t + Carbon_t + Decommissioning_t$	
			$(1+i)^t$	
			$\sum_{t=1}^{n} \frac{Electricity_t}{t}$	
			$\sum t=1$ $(1+i)^t$	

Impacts on LCOE

- Hub height: wind persistence \rightarrow AEP/capacity factor
- Rotor diameter \rightarrow AEP/capacity factor
- Generator & Power elec. capacity \rightarrow rated turbine power
- Component optimization \rightarrow (material) invest costs
- Intelligent operations and turbine control (WIND4.0)
 - AEP/capacity factor
 - Operating costs / O&M

\rightarrow Higher hub allows for larger rotor diameters

 \rightarrow More persistent wind conditions higher above ground

1. "Growth rate" regionally different – due to economic drivers

\rightarrow Turbine location, Grid situation, O&M costs, availability of land, etc.

1. Typical life-cycle costs break-down of a wind turbine

 \rightarrow Wind turbine is a capital intensive \rightarrow costs accumulate in seemingly "simple" components

 \rightarrow Significant operating costs despite free "fuel" wind

1. Negative impact of turbine growth

Figure 6-6: Simple model for the monopile

 $f_{nat} \cong \frac{3.04}{4\pi^2} \frac{E_{steel}I}{(M_{top} + 0.227\mu L)L^3}$

 f_{nat} – Natural frequency of the support structure [Hz]

E_{steel} – Young's modulus (of steel) [N/m²]

M_{top} – Mass of the nacelle and rotor [kg]

- μ Mass per unit length of the monopile [kg/m]
- L Length of the monopile [m]
- I Moment of inertia of the monopile cross section [m⁴]

$$I = \frac{\pi}{64} (D_o^4 - D_i^4)$$

 D_o – Outer diameter of the monopile [m] D_i – Inner diameter of the monopile [m]

A. Paul: A Comparative Analysis of the Two-Bladed and the Three-Bladed Wind Turbine for Offshore Wind Farms, Master Thesis, 2010

- \rightarrow Higher hub allows for larger rotor diameters
- \rightarrow More persistent wind conditions higher above ground
- \rightarrow Higher Hub + larger rotor \rightarrow higher forces
- \rightarrow Increased mass + inertia \rightarrow lower eigenfrequencies

1. Negative impact of turbine growth

Excitation of structural oscillations

- · Temporal stochastic wind field
- Aerodynamic imbalace / tower shadow
- · Rotor mass imbalance
- Waves (offshore)

0 0.2 0.4 0.6 0.8 1 Hz

A. Paul: A Comparative Analysis of the Two-Bladed and the Three-Bladed Wind Turbine for Offshore Wind Farms, Master Thesis, 2010

- \rightarrow Higher Hub + larger rotor \rightarrow higher forces
- \rightarrow Increased mass + inertia \rightarrow lower eigenfrequencies

 \rightarrow Eigenfrequencies move into excitation spectrum

1. Operarting strategy for wind turbines

Competing control objectives

- Maximize energy capture
- Limit of aerodynamic torques and forces (maintain power and rotor speed limits)
- Minimize mechanical loads and fatigue
- Damp torsional oscillations in drive-train
- Avoid excessive actuator usage (esp. pitch)
- Limit power fluctations

Operational intervals

- I. Low wind / idle
- IIA. Minimal rotor speed
- IIB. Subrated regime \rightarrow max. energy capture

IIC. Enforce max. rotor speed

- III. Rated regime \rightarrow min. power jitter / constraint enforcement
- IV. Excessive wind speed \rightarrow shut-down

\rightarrow Look-up table derived from steady state considerations

Presentation Outline

- 1. Introduction to Wind Turbine control problem
- 2. Aero-Elastic modeling of wind turbines
- 3. Conventional control applied to wind turbines
- 4. Advanced control concepts for wind turbines

2. System theoretic view of a wind turbine

Available measurements

- **Electrical power** •
- **Generator speed** •
- Tower top accel. •
- Single-point wind speed ٠
- Blade accel. / blade . root bending moment

2. Aero-dynamics – static model

Energy transformation

Wind speed into torque (rotation)

Wind speed into thrust (bending)

$$F_{\rm T} = \frac{\rho}{2} A_r C_T(\beta, \lambda) v_{\rm w}^2$$

2. Aero-dynamics fully define operating strategy

automotive engineerina

Look-up table derived from steady state considerations \rightarrow

20

15

10

5

0

2. Elasto-dynamics – dynamical model (Diss. Arne Körber, 2014)

Model simplification – only capture what is relevant for control

Modeling assumptions:

- Blade is a stiff rotating beam
- Tower approx. as simple mass-spring-damper
- Drive-train modeled as 2-mass-oscillator

2. Elasto-dynamics – dynamical model based on first principles

Equations of motions (ODEs)

$$0 = \Theta_{g} \ddot{\varphi}_{G} - (b_{\phi} \Delta \dot{\varphi} + k_{\phi} \Delta \varphi) + i_{GE} M_{G}$$

$$0 = \Theta_{R} (\ddot{\varphi}_{G} + \Delta \ddot{\varphi}) + b_{\phi} \Delta \dot{\varphi} + k_{\phi} \Delta \varphi - T_{aero} (\lambda, \beta, v_{e})$$

Tower-blades schematics (inverted pendulum like)

A. Körber: Extreme and Fatigue Load Reducing Control for Wind Turbines: A Model Predictive Control Approach using Robust State Constraints, 2014 Diss., TU Berlin

2. Open-loop simulation for NRELs FAST 5MW Turbine

Tower and Blade motion

Stepwise wind excitation response

JONKMAN, et al. Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2009.

 \rightarrow Flap-wise motions of blades are mainly damped aerodynamically through effective wind speed feedback

Presentation Outline

- 1. Introduction to Wind Turbine control problem
- 2. Aero-Elastic modeling of wind turbines
- 3. Conventional control applied to wind turbines
- 4. Advanced control concepts for wind turbines

3. State-of-the-art turbine control in commercial turbines

Conventional turbine control architecture dominated by SISO (PID) control loops + complex switching logics

3. State-of-the-art turbine control in commercial turbines

20

25

Generator speed controller

Regime IIA-IIB: zero pitch, maintain torque balance ٠

E. Bossanyi: Wind Turbine Control for Load Reduction, Wind Energy, 2003

- Reference-free torque control law \rightarrow " C_{pmax} Tracking Law" \rightarrow
- Pitch-loop uses constant reference (rated GenSpd) \rightarrow
- Coordination of "competing" control loops via "complex" blending and switching logic \rightarrow

3. Closed-loop simulation for NRELs FAST 5MW Turbine

 \rightarrow Response to temporally turbulent wind around rated operation

3. Closed-loop simulation for NRELs FAST 5MW Turbine

3. Model-based controller design (your favourite type)

MIMO state-feedback controller for rated turbine operation

• Linearize model at rated wind speed (at steady-state OP)

$$\begin{split} \delta \dot{\boldsymbol{x}} &= \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}} (\boldsymbol{x}^r, \boldsymbol{u}^r, \boldsymbol{d}^r) \delta \boldsymbol{x} + \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{u}} (\boldsymbol{x}^r, \boldsymbol{u}^r, \boldsymbol{d}^r) \delta \boldsymbol{u} + \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{d}} (\boldsymbol{x}^r, \boldsymbol{u}^r, \boldsymbol{d}^r) \delta \boldsymbol{d} \\ &= \boldsymbol{A} \delta \boldsymbol{x} + \boldsymbol{B} \delta \boldsymbol{u} + \boldsymbol{E} \delta \boldsymbol{d} \\ \delta \boldsymbol{y} &= \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{x}} (\boldsymbol{x}^r, \boldsymbol{u}^r, \boldsymbol{d}^r) \delta \boldsymbol{x} + \frac{\partial \boldsymbol{f} \boldsymbol{h}}{\partial \boldsymbol{u}} (\boldsymbol{x}^r, \boldsymbol{u}^r, \boldsymbol{d}^r) \delta \boldsymbol{u} + \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{d}} (\boldsymbol{x}^r, \boldsymbol{u}^r, \boldsymbol{d}^r) \delta \boldsymbol{d} \\ &= \boldsymbol{C} \delta \boldsymbol{x} + \boldsymbol{D} \delta \boldsymbol{u} + \boldsymbol{F} \delta \boldsymbol{d} \end{split}$$

Observe, that here
$$\delta \boldsymbol{y} = \begin{pmatrix} 1 & 0 \\ \eta i_{\text{GB}} M_{\text{gen}}^r & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \delta x_1 \\ \delta x_3 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & \eta i_{\text{GB}} \dot{\varphi}_G^r \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \delta u_1 \\ \delta u_3 \end{pmatrix}$$

• LQR Design to track rated GenSpd and electrical power

$$J(\delta \boldsymbol{x}, \delta \boldsymbol{u}) = \delta \boldsymbol{x}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{C} \delta \boldsymbol{x} + 2\delta \boldsymbol{x}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{D} \delta \boldsymbol{u} + \delta \boldsymbol{u}^{\mathrm{T}} \boldsymbol{D}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{D} \delta \boldsymbol{u} + \delta \boldsymbol{u}^{\mathrm{T}} \boldsymbol{R} \delta \boldsymbol{u}$$

 $\rightarrow \delta u = K \delta x$ Feedback law coordinates torque and pitch

Presentation Outline

- 1. Introduction to Wind Turbine control problem
- 2. Aero-Elastic modeling of wind turbines
- 3. Conventional control applied to wind turbines
- 4. Advanced control concepts for wind turbines

4. Advanced turbine control via model predictive control

Advantages

- Intuitive tuning mainly via model
- Harmonization of competing objectives

automotive

- Explicit handling of constraints
- Direct exploitation of reference & disturbance forecasts → preventive control moves

State-feedback and recurrent optimization at appropriate rate

- Compensate for modeling errors
- Robustness to unknown external disturbances

- \rightarrow MPC focuses on optimizing the economics of plant operation
- → Tracking controller stabilizes rotor speed reference in the face of unexpected wind speed disturbances

4. Ingredients of model predictive turbine control

automotive engineering

4. Working principle of model predictive control

automotive engineering

MPC = solve optimal control problem periodically, for current dynamic plant state

→ Look into the future, instead into the past!

Basic steps:

- 1. Dynamic model to make forecast of plant's future behavior
- 2. Online optimization to compute optimal control moves for defined prediction horizon
- 3. Application of initial control trajectory
- 4. Observe response & update state information

4. Typical controller configuration

"Economically" inspired tracking MPC performance metric

$$J(\mathbf{X}, \mathbf{U}) = \sum_{0}^{N-1} Q_{\dot{\varphi}}(v_{wk}) \left(\dot{\varphi}_{Gk} - \dot{\varphi}_{G}^{\star}(v_{wk}) \right)^{2} + Q_{\beta}(v_{wk}) \left(\beta_{k} - \beta_{k}^{\star}(v_{wk}) \right)^{2} + L_{F} \left(\mathbf{x}_{k}, \mathbf{u}_{k} \right)$$

Proxy fatigue metric

$$L_F(\boldsymbol{x}_k, \boldsymbol{u}_k) = Q_T \dot{x}_{Tk}^2 + Q_B \dot{x}_{Bk}^2 + Q_{\dot{\beta}} \dot{\beta}_k^2 + Q_{\dot{M}_G} \dot{M}_{Gk}^2$$

Constraints:

$$\frac{\dot{\beta}}{\dot{\beta}} \leq \dot{\beta} \leq \frac{\ddot{\beta}}{\dot{M}_{\rm G}} \leq \frac{\ddot{\beta}}{\dot{M}_{\rm G}} \qquad \qquad \frac{\dot{\varphi}_{\rm G}}{\dot{\theta}_{\rm G}} \leq \dot{\varphi}_{\rm G} \leq \overline{\dot{\varphi}}_{\rm G} \\ \begin{array}{c} \frac{\dot{\varphi}_{\rm G}}{\dot{\theta}_{\rm G}} \leq \dot{\varphi}_{\rm G} \leq \overline{\dot{\varphi}}_{\rm G} \\ 0 \leq P_{\rm E} \leq \overline{P}_{\rm E} \\ 0 \leq M_{\rm G} \leq \overline{M}_{\rm G} \end{array}$$

GROS, SCHILD: Real-time economic nonlinear model predictive control for wind turbine control. International Journal of Control, 2017

 \rightarrow Objectives: power capture \leftrightarrow structural loads \leftrightarrow actuator wear

4. Closed-loop simulation comparison BC vs. MPC @ NRELs 5W Turbine

automotive engineering

\rightarrow MPC achieves better GenSpd tracking and softer pitch utilization

4. Closed-loop simulation comparison BC vs. MPC @ NRELs 5W Turbine

automotive engineering

→ Positive: MPC improves power capture & reduces tower oscillations

 \rightarrow Negative: higher power fluctuations observed

Conclusions

- Wind energy enters digitization era \rightarrow innovations by means of "intelligence" and IoT
- Traditional control concepts focus on energy maximization
- Progressing energy revolution demands for much more complex operating strategies
- Control-oriented modeling of wind turbines requires significant abstraction and simplification
- Advanced control concepts like MPC will be part of the solution to overcome future challenges
- Sustainable market penetration of such innovative technologies requires industrialization of research results → significant effort to increase reliability & robustness

Contact

Dr. Axel Schild

IAV GmbH

Rockwellstr. 16, 38518 GIFHORN (GERMANY) Phone +49 5371 80-55890

Dr.axel.schild@iav.de

www.iav.com