
i
i

“exercise2solution” — 2018/6/7 — 8:46 — page 1 — #1 i
i

i
i

i
i

Wind Energy Systems
Albert-Ludwigs-Universität Freiburg – Summer Semester 2018

Exercise Sheet 2 SOLUTION: Momentum Theory and the Blade Element Momentum Method

Prof. Dr. Moritz Diehl und Rachel Leuthold

Deadline: midnight before June 6th, 2018
https://goo.gl/forms/MzgssbCxzzA3c2Lp1

In this exercise sheet we’ll explore with the Momentum theory and the Blade Element Momentum theory. We’ll see what sorts of
assumptions go into each model and how to apply it to predict the output of the full wind turbine.

Classic Momentum Theory [10 pt]

1. Let’s tackle the momentum theory. To do this, let’s consider a boat which extracts energy from the current to go faster than the
wind. This boat is shown in the following sketch.

boat velocity V

freestream wind velocity W∞
propeller with radius RP

freestream current U∞

turbine with radius RT

freestream air pressure pair

freestream water pressure pwater

x̂

ẑ

gearbox with η = 1

Assume a constant water density ρwater and air density ρair, and that the boat is travelling parlllel to both the uniform freestream
wind velocity W , the uniform freestream current U , and x̂ which is perpendicular to the acceleration of gravity.

(a) Bernoulli and the streamtubes [3 pt]

i. Make a sketch of the streamtubes around both the propeller and the turbine. Label the ’far-upstream’ cross-section
position as ’0’, the actuator-disk cross-section position as ’1’, and the ’far-downstream’ cross-section position as ’2’.
Further, label the cross-section immediately upstream of ’1’ as ’1−’, and the cross-section immediately downstream of
’1’ as ’1+’. (Hint: remember which direction the fluid accelerates.) [0.5 pt]

The propeller streamtube has areas AP,0, AP,1, and AP,2 at the specific cross-sections labelled. The turbine streamtube
has areas AT,0, AT,1, and AT,2, at its cross-sections. The flow through the propeller streamtube has velocities W0, W1
and W2 at the cross-sections; the turbine streamtube has velocities U0, U1, U2.
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boat velocity V

freestream wind velocity W∞
propeller with radius RP

freestream current U∞

turbine with radius RT

freestream air pressure pair

freestream water pressure pwater

x̂

ẑ

gearbox with η = 1

ii. What is the mass flow rate through the turbine ṁT and propller streamtubes ṁP? [0.5 pt]

The mass flow rate is the product of the fluid density and the speed of the fluid travelling through a given
area.

Since we’ve said that all of the velocities in this picture are parallel, then the speed of the fluid through the
streamtube cross-sections must be the magnitude of the vector.

That is:

ṁT = ρwaterAT,0U0 = ρwaterAT,1U1 = ρwaterAT,2U2,

ṁP = ρairAP,0W0 = ρairAP,1W1 = ρairAP,2W2.

iii. Between which pairs of the 10 cross-sections (0, 1−, 1, 1+, 2 for turbine and propeller) can we plausibly argue that
Bernoulli’s principle holds? [0.5 pt]

We’ll have most luck arguing for the assumptions behind Bernoulli’s principle within individual streamtubes.
But, we know from problem 1 that it will only work where we do not have turbomachinery extracting/adding
work from/to the flow. So, there are only four pairs of cross-sections where there is any hope that a Bernoulli
argument could be made:

0T to 1−T , 1+T to 2T, 0P to 1−P , 1+P to 2P

(Note that this is not saying that all of the assumptions made in problem 1 hold in these sections. Only that
they are not obviously violated...)

iv. Use Bernoulli’s expression to compare the dynamic pressure (q = 1
2 ρv2 + p, with a generic speed v and pressure p)

between the pairs of cross-sections you selected above. (Hint: what is the velocity immediately up- and down-stream of
the actuator disk?) (Hint: what is the air pressure at the far-upstream and far-downstream cross-sections?) [1. pt]
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First, we should say that there is no average height difference along the streamtubes, because the boat velocity
and the streamtubes are all perpendicular to the z axis. Then:

1
2 ρwaterU2

0 + pT,0 = 1
2 ρwaterU2

1− + pT,1−
1
2 ρwaterU2

2 + pT,2 = 1
2 ρwaterU2

1+ + pT,1+
1
2 ρairW 2

0 + pP,0 = 1
2 ρairW 2

1− + pP,1−
1
2 ρairW 2

2 + pP,2 = 1
2 ρairW 2

1+ + pP,1+



W1− ≈W1+ ≈W1
U1− ≈U1+ ≈U1

pT,0 ≈ pT,2 ≈ pwater
pP,0 ≈ pP,2 ≈ pair−−−−−−−−−−−−−−→


1
2 ρwaterU2

0 + pwater = 1
2 ρwaterU2

1 + pT,1−
1
2 ρwaterU2

2 + pwater = 1
2 ρwaterU2

1 + pT,1+
1
2 ρairW 2

0 + pair = 1
2 ρairW 2

1 + pP,1−
1
2 ρairW 2

2 + pair = 1
2 ρairW 2

1 + pP,1+

We made the approximations that the flow velocity immediately up- and down-stream of the actuator disk
are equivalent to the velocity at the disk itself, because our flow is incompressible, so there cannot be sudden
shocks in the velocity.

We made the approximation that the far-upstream and far-downstream pressures have recovered to the free-
stream pressure, because otherwise, the fluid in the streamtube would never reach equilibrium with the
freestream. That would effectively mean that the streamtube would grow or shrink forever, and that (concep-
tually) sounds a lot like perpetual motion.

v. What is the relationship between U0, U2, pT,1− and pT,1+? [0.25 pt]

Let’s subtract the turbine Bernoulli relations from each other. This gives:

1
2

ρwater(U2
0 −U2

2 ) = pT,1− − pT,1+ .

vi. What is the relationship between W0, W2, pP,1− and pP,1+? [0.25 pt]

Let’s subtract the propeller Bernoulli relations from each other. This gives:

1
2

ρair(W 2
0 −W 2

2 ) = pP,1− − pP,1+ .

(b) the turbine actuator [2 pt]

i. If the force across the actuator disk is a pressure difference over some area, what is the force FT exerted by the turbine
on the flow? Please give a vector, not just a magnitude, within the coordinate system x̂, ẑ shown in the sketch... [0.5 pt]

The force exerted by the turbine has a magnitude
(

pT,1− − pT,1+
)

AT1 and must point along x̂ because the
flow is being slowed down. Since we’re pulling energy out of the flow at the actuator disk, there has to be a
drop in pressure. Then pT,1− ≥ pT,1+ , so that the force is:

FT =
(

pT,1− − pT,1+
)

AT1x̂

And, we know from the previous questions that this pressure difference can be evaluated as:

FT =
1
2

ρwater(U2
0 −U2

2 )AT1x̂

ii. If the force across the actuator disk is equivalent to the rate of change in momentum of the flow within the streamtube,
what is the force FT exerted by the turbine on the flow? [0.5 pt]

The force on the flow is the mass-flow rate of the fluid within the streamtube mulitplied by the change in
velocity from the small x̂ position to the large x̂ position. That is:

FT = ṁT(U0−U2)x̂= ρwaterAT,1U1(U0−U2)x̂.

iii. Let’s define a turbine induction factor aT such that U1 =U0(1−aT). Then, what is the relationship between U2, aT, and
U0? [0.5 pt]
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We now have two relationships for FT. Let’s set them equal, and see what we find...

1
2

ρwater(U2
0 −U2

2 )AT1x̂= ρwaterAT,1U1(U0−U2)x̂

If we simplify, we get:
1
2
(U0 +U2) =U1

Now, plug in the induction factor definition, and re-arrange:

U2 = 2U1−U0 = 2(1−aT)U0−U0 =U0(1−2aT).

iv. How much power PT does the turbine extract from the flow? [0.5 pt]

Power is force times velocity. So, the power exerted by the turbine on the flow must be:

P = FT ·U1 =−
1
2

ρwater(U2
0 −U2

2 )AT1U1

Remember that the flow through the turbine is moving in the −x̂ direction...

We can use the induction factor expressions from above to simplify:

P =−1
2

ρwaterU2
0
(
1− (1−2aT)

2)AT1U0(1−aT) =−2ρwaterU3
0 AT,1aT(1−aT)

2

Then the power PT extracted from the flow is the negative of the amount exerted on the flow. So:

PT =−P = 2ρwaterU3
0 AT,1aT(1−aT)

2

(c) the propeller actuator [2 pt]

i. If the force across the actuator disk is a pressure difference over some area, what is the force FP exerted by the propeller
on the flow? Please give a vector, not just a magnitude, within the coordinate system x̂, ẑ shown in the sketch... [0.5 pt]

The force exerted by the propeller has a magnitude
(

pP,1+ − pP,1−
)

AP1 and must point along−x̂ because the
flow is being accelerated. Since the propeller adds energy to the flow over the actuator disk, there must be a
pressure jump. Then, pP,1+ ≥ pP,1− , this gives the force as:

FP =
(

pP,1− − pP,1+
)

AP,1x̂

And, we know from the previous questions that this pressure difference can be evaluated as:

FP =
1
2

ρair(W 2
0 −W 2

2 )AP,1x̂

ii. If the force across the actuator disk is equivalent to the rate of change in momentum of the flow within the streamtube,
what is the force FP exerted by the propeller on the flow? [0.5 pt]

The force on the flow is the mass-flow rate of the fluid within the streamtube multiplied by the change in
velocity from the small x̂ position to the large x̂ position. That is:

FP = ṁP(W0−W2)AP,1x̂= ρairAP,1W1(W0−W2)x̂.

iii. Let’s define a propeller induction factor aP such that W1 =W0(1+aP). Then, what is the relationship between W2, aP,
and W0? [0.5 pt]
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We now have two relationships for FP. Let’s set them equal, and see what we find...

FP =
1
2

ρairAP,1(W 2
0 −W 2

2 )x̂= ρairAP,1W1(W0−W2)x̂.

If we simplify, we get:
1
2
(W0 +W2) =W1.

Now, plug in the induction factor definition, and re-arrange:

W2 = 2W1−W0 = 2(1+aP)W0−W0 =W0(1+2aP).

iv. How much power PP does the propeller exert on the flow? [0.5 pt]

Power is force times velocity. So, the power exerted by the propeller on the flow must be:

PP = FP ·W1

Remember that the flow through the propeller is along −x̂.

Then:
PP =−1

2
ρair(W 2

0 −W 2
2 )AP,1W1

We can use the induction factor expressions from above to simplify:

PP =
1
2

ρairW 2
0 ((1+2aP)

2−1)AP,1W0(1+aP) = 2ρairW 3
0 AP,1aP(1+aP)

2

(d) propel the boat! [3 pt]

i. Conceptually, what does changing the turbine and propeller induction factors mean for the boat’s motion? [0.5 pt]

By definition, if we increase the turbine’s induction factor aT, we will extract more energy that can be used
for propulsion. Similarly, if we increase the propeller’s induction factor aP, then we will gain more forwards
thrust.

But, we should remember that increasing the turbine induction will increase the drag on the boat. So, we
need to find a ’sweet spot’ where the energy extracted by the turbine provides enough thrust through the
propeller to overcome the turbine (and boat) drag.

ii. Consider the effective free-stream velocities W0 and U0. We learn that there are nondimensional values ω := ||W∞||2 / ||V ||2
and υ := ||U∞||2 / ||V ||2. What are the magnitudes and directions of W0 and U0? [0.5 pt]
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We’ll use a shorthand to write the vector magnitudes: ||A||2 = A.

The effective free-stream velocity is the difference between the fluid’s freestream velocity and the boat ve-
locity. So:

W0 =W∞−V = (V −W∞)(−x̂), and U0 =U∞−V = (U∞ +V )(−x̂).

So, the directions of the velocities can be written as:

Ŵ0 =−x̂, and Û0 =−x̂,

and their magnitudes written as:

W0 =V −W∞, and U0 =U∞ +V.

Then, we learn that ω = W∞

V and υ = U∞

V . That would then give the magnitudes as:

W0 =V (1−ω), and U0 =V (υ +1).

iii. For some combination of υ and ω , how much longer must the propeller blade be than the turbine blade? Let’s assume
our gearbox has a perfect efficiency η = 1. [0.5 pt]

If the gearbox has an efficiency of one, then all of the power extracted by the turbine is being exerted on the
flow by the propeller. That means PP = PT. That is:

PT = 2ρwaterU3
0 AT,1aT(1−aT)

2 = 2ρairW 3
0 AP,1aP(1+aP)

2 = PP

We can rearrange this to give:

AP,1

AT,1
=

ρwater

ρair

(
U0

W0

)3 aT

aP

(
(1−aT)

(1+aP)

)2

Also, the propeller radius AP,1 = πR2
P and the turbine radius AT,1 = πR2

T. We can rearrange the above rela-
tionship as:

RP,1

RT,1
=

(
ρwater

ρair

(
U0

W0

)3 aT

aP

(
(1−aT)

(1+aP)

)2
) 1

2

We now need to use the effective free-stream velocities defined in part (1(d)ii). We then have:

RP,1

RT,1
=

(
ρwater

ρair

(
1+υ

1−ω

)3 aT

aP

(
(1−aT)

(1+aP)

)2
) 1

2

iv. What is then the resultant force F on the boat in the x̂ direction? The drag coefficient CD of the boat is defined within
the water according to the boat’s wetted area A and the freestream velocity. [0.5 pt]
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The boat experiences three forces: the force exerted by the air on the turbine (−FT), the force exerted by the
water on the propeller (−FP), and the boat drag (FD).

F = FD−FT−FP

For the boat drag, we might assume that the drag from the water will significantly outweigh the drag from
the air because the density of water is approximately 1000x greater. Then we can use the definition of the
drag coefficient to say that:

FD =CD
1
2

ρwaterU0U0A =−CD
1
2

ρwaterV 2 (υ +1)2 Ax̂

Since, we have learned in (1(b)iii) and (1(c)iii) that:

W2 =W0(1+2aP) =V (1−ω)(1+2aP), and U2 =U0(1−2aT) =V (υ +1)(1−2aT),

we can plug in the expressions that we’d previously found in (1(b)i) and (1(c)i):

FT =
1
2

ρwater(U2
0 −U2

2 )AT1x̂= 2ρwaterV 2(υ +1)2AT1aT(1−aT)x̂

and
FP =

1
2

ρair(W 2
0 −W 2

2 )AP,1x̂= 2ρairV 2(1−ω)2AP,1aP(1+aP)(−x̂)

From (1(d)iii), we know that:

AP,1 = AT,1
ρwater

ρair

(
(υ +1)
(1−ω)

)3 aT

aP

(
(1−aT)

(1+aP)

)2

This re-writes FP as:

FP = 2ρairV 2(1−ω)2AT,1
ρwater

ρair

(
(υ +1)
(1−ω)

)3 aT

aP

(
(1−aT)

(1+aP)

)2

aP(1+aP)(−x̂)

= 2V 2AT,1ρwater

(
(υ +1)3

(1−ω)

)
aT

(
(1−aT)

2

(1+aP)

)
(−x̂)

Now, let’s put everything together...

F =
1
2

ρwaterV 2(υ +1)2
(
−CDA−4AT1aT(1−aT)+4AT,1

(
(υ +1)
(1−ω)

)
aT

(
(1−aT)

2

(1+aP)

))
x̂

=
1
2

ρwaterV 2(υ +1)2
(
−CDA+4

(
πR2

T
)

aT(1−aT)

((
(υ +1)
(1−ω)

)(
(1−aT)

(1+aP)

)
−1
))

x̂ (1)

v. How long does a turbine blade need to be so that the boat travels with a constant (non-zero) speed? Please write this
expression in terms of the wetted area A and the nondimensional variables. [1 pt]

For the boat to travel with a constant speed, then F · x̂= 0. Based on the resultant force described above, we
know that:

−CDA+4
(
πR2

T
)

aT(1−aT)

((
(υ +1)
(1−ω)

)(
(1−aT)

(1+aP)

)
−1
)
= 0

From rearranging, we see that:

R2
T =

CDA

4πaT(1−aT)
((

(υ+1)
(1−ω)

)(
(1−aT)
(1+aP)

)
−1
) =

(
CDA

4πaT(1−aT)

)(
(1−ω)(1+aP)

(υ +1)(1−aT)− (1−ω)(1+aP)

)
.

Then:

RT =

((
CDA

4πaT(1−aT)

)(
(1−ω)(1+aP)

(υ +1)(1−aT)− (1−ω)(1+aP)

)) 1
2
.
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Blade Element Momentum Method [10 pt]

2. In this problem, we want to see how the Blade Element Momentum (BEM) method gives the total thrust on a wind turbine.

To do this, consider an infinitesimally thin annulus (with radius r) sliced from a three-bladed (B = 3) wind turbine rotor of radius
R. (Assume for the following problem that tip losses can be neglected, such that the tip loss factor F = 1.) We will also again use
µ = r/R the normalized radial position of the annulus.

The effective velocity at the rotor annulus is called W (r) =W (sinφ x̂+ cosφ t̂), where x̂ points along the axis of rotation in the
downwind direction, and t̂ points tangentially in the direction of rotation. Assume that the problem is axially symmetric so that
all the blades behave identically.

In problems (2(d)iii), (2(e)ii) and (2(e)iii), we will use a demonstration turbine called ’Turbine A.’ Turbine A is defined by the
following parameters: tip speed ratio λ = 7, the local chord solidity σ(r) = 8/(441µ), the rotor radius R = 50m, the effective
velocity angle φ = 5deg, and the 2D lift and drag coefficients c` = 1 and cd = 0.01. Turbine A is running in a freestream wind of
u∞ = 12m/s with air density ρ = 1.225kg/m3.

(a) geometry [1.25 pt]

i. What is the area dA of the annulus, if the annulus has a thickness of dr? [0.25 pt]

The area is the area of an annulus, with a thickness dr:

dA = 2πrdr

ii. Assume that that the rotor is in a uniform flow field with a freestream wind u∞ that is aligned with the rotor axis. What
is the freestream dynamic pressure q∞? [0.25 pt]

The freestream dynamic pressure is:

q∞ =
1
2

ρair ||u∞||22

iii. Find the magnitude of the effective velocity W in terms of some parameters of the wind turbine system: the freestream
velocity u∞ = ||u∞||2, the tip speed ratio λ , the annulus radius r, rotor radius R, and the induction factors. [0.25 pt]

We know the components of W :

W = u∞(1−a)x̂+ rΩ(1+a′)t̂.

Since Ω = u∞λ/R, the magnitude W = ||W ||2 can be found to be:

W = u∞

(
(1−a)2 +(1+a′)2

λ
2(r/R)2) 1

2

iv. What is the effective dynamic pressure qe(r) based on the magnitude of the effective wind velocity? [0.25 pt]

The effective dynamic pressure is found the same way the freestream dynamic pressure was:

qe(r) =
1
2

ρW 2 =
1
2

ρu2
∞

(
(1−a)2 +(1+a′)2

λ
2(r/R)2)

v. Let’s define the chord solidity σ(r) as:

σ(r) =
B

2πµ

c
R
.

If c(r) is the chord length of the blade at the annulus, what is the area dS of the blade section at the annulus? [0.25 pt]

We know that the area is the product of the chord and the annulus thickness: dS = c(r)dr. Using the definition
of chord solidity, this simplifies to:

dS =
2πr
B

σdr

8
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(b) momentum expressions [1.5 pt]

i. What is dT (r), the change in axial momentum in the flow due to that annulus, in terms of axial a and tangential a′

induction factors? [0.75 pt]

We know the change in axial momentum based on the thrust coefficient:

dT (r) =CTq∞dA(r)

where the thrust coefficient reads as:
CT = 4a(1−a)

If we wanted to expand this, we would get:

dT (r) = 4(1−a)a(ρu2
∞)(πrdr)

ii. What is dQ(r), the change in angular momentum in the flow due to that annulus, in terms of axial a and tangential a′

induction factors? [0.75 pt]

The change in angular momentum can be found with:

dQ = 4a′(1−a)(λ
r
R
)q∞rdA(r) = 4a′(1−a)λρu2

∞πr2 r
R

dr

(c) blade element expressions [2 pt]

i. If you know that the blade section experiences lift (dL) and drag (dD) forces, what is the thrust dT (r) on the blade
section (for one blade)? [0.75 pt]

Given the angle φ , we know that:

dT = ||dL||2 cosφ + ||dD||2 sinφ

ii. Under the same conditions, what is the the torque dQ(r) on the blade element? [0.75 pt]

The torque will be the cross product of the moment arm and the force, so:

dQ = (||dL||2 sinφ −||dD||2 cosφ)r

iii. Use the 2D lift and drag coefficients c` and cd to write your blade element thrust and torque expressions in terms of the
defining parameters: B, u∞, λ , r, R, a, a′, φ , and σ . [0.5 pt]

As ||dL||2 = c`qedS and ||dD||2 = cdqedS, we can rewrite dT and dQ:

dT =
σ

BR2 πr
(
(1+a′)2

λ
2r2 +(1−a)2R2)

ρu2
∞(c` cosφ + cd sinφ)dr

dQ =
σ

BR2 πr2 ((1+a′)2
λ

2r2 +(1−a)2R2)
ρu2

∞(c` sinφ − cd cosφ)dr

(d) the blade element momentum method [2.25 pt]
Let’s define a residual function to find the induction factors for the annulus. (Hint: A residual is an implicit function that is
defined as the difference between two expressions that should ideally be equal.)

i. What dimension does this residual function need to have? Stated another way, how many implicit equations do you
need? [0.25 pt]

We want to find two unknowns (a and a′). To do this, we need two implicit equations. That means that the
dimension of the residual f (a,a′) must be:

f : R2→ R2

9
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ii. Please give one possible version of this residual function. [0.50 pt]

One possible version of f (a,a′) would be to subtract the [dT,dQ]> from the momentum model away from
the [dT,dQ]> from the blade element model (for all B blades), since these two should hopefully be equal.

That is:

f (a,a′,µ) =
(

4(1−a)a(ρu2
∞)(πrdr)− σ

R2 πr
(
(1+a′)2λ 2r2 +(1−a)2R2

)
ρu2

∞(c` cosφ + cd sinφ)dr
4a′(1−a)λρu2

∞πr2 r
R dr− σ

R2 πr2
(
(1+a′)2λ 2r2 +(1−a)2R2

)
ρu2

∞(c` sinφ − cd cosφ)dr

)

A ’nicer’ version, would factor this expression (because, remember, we want to set the residual to zero to
solve):

f (a,a′,µ) =
(
ρu2

∞πrdr
)(1 0

0 r

)(
4(1−a)a− σ

R2

(
(1+a′)2λ 2r2 +(1−a)2R2

)
(c` cosφ + cd sinφ)

4a′(1−a)λ r
R −

σ

R2

(
(1+a′)2λ 2r2 +(1−a)2R2

)
(c` sinφ − cd cosφ)

)

Let’s call what’s remaining after the factorization f̃ (a,a′,µ), because it can be useful in the next part of the
problem:

f̃ (a,a′,µ) =
(

4(1−a)a−σ
(
(1+a′)2λ 2µ2 +(1−a)2

)
(c` cosφ + cd sinφ)

4a′(1−a)λ µ−σ
(
(1+a′)2λ 2µ2 +(1−a)2

)
(c` sinφ − cd cosφ)

)

iii. Consider now Turbine A, as described at the top of this problem. Solve (approximately) the residual function visually
for the following nondimensional radial locations. (Hint: You may find contour plots of the equation(s) in your residual
to be useful.)

A. µ = 0.1 [0.5 pt]
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Let’s make a contour plot of the first component (the thrust element) of f̃ (a,a′,0.1):
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a
'

thrust element of f tilde, at mu = 0.1

We can do the same thing for the second component (the torque element) of f̃ (a,a′,0.1):

-0.02

0
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0.04

0.06

0.08

0.1

0.0 0.1 0.2 0.3 0.4 0.5

0.00
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0.04

0.05

a

a
'

torque element of f tilde, at mu = 0.1

In these two contour plots, we can see where the components of the residual function each independently
vanish, depending on a and a′.

So, we can put those two curves together:

0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.01

0.02

0.03

0.04

0.05

a

a
'

where residual vanishes, at mu = 0.1

and, at the intersection, the residual function must be equivalent to a vector of length zero. That is, at the
intersection, we’ve solved our implicit function for a and a′.

This intersection point can be found by zooming in very closely, (or by numerical rootfinding) to be:

a≈ 0.07, a′ ≈ 0.007

B. µ = 0.5 [0.5 pt]
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We can repeat the above procedure to get:
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'

where residual vanishes, at mu = 0.5

with an intersection at:
a≈ 0.14, a′ ≈ 0.003

C. µ = 0.9 [0.5 pt]

We can repeat the above procedure to get:
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0.00
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0.03
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a

a
'

where residual vanishes, at mu = 0.9

with an intersection at:
a≈ 0.29, a′ ≈ 0.003

(e) the full rotor thrust [3 pt]

i. You happen to learn that the induction factors can be approximated as:

a(µ)≈ (0.8+28µ) ·10−2, a′(µ)≈ (0.3+0.6/µ +2.9µ) ·10−3

What is the thrust distribution over µ on one blade? [0.5 pt]
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Let’s take the momentum expression for rotor thrust and divide it by B to get the thrust distribution for one
blade. (Again, the momentum and blade element expressions should be equal except for the factor of B, so
let’s take the one that’s ’simpler’.)

Then,

dT (µ) =
4
B
(1−a)a(ρu2

∞)(πµR2dµ)

* Appologies for the mix-up in notation, here...

Replacing a and a′, and using our Turbine A parameters, we get:

dT (µ) = q∞(170µ +5800µ
2−1600µ

3)dµ

0.2 0.4 0.6 0.8 1.0
mu

1000

2000

3000

4000

dT / q infty / dmu

ii. For Turbine A, what is the thrust on the whole rotor? [1.5 pt]

Then, we can find T by integrating dT for all B blades:

T = B
ˆ 1

0
dT (µ)≈ 4.2 ·105N

iii. For Turbine A, What is the thrust coefficient CT for the full rotor? [0.25 pt]

Using the definition of the thrust coefficient:

CT =
T

q∞πR2 ≈ 0.6

iv. Briefly, do you think that the modelling assumptions made here are valid? [0.75 pt]
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This is not a highly loaded rotor, so the thrust coefficient approximation (CT = 4a(1− a)) we made in the
momentum section is probably reasonable. (When the streamtubes expand too much, one needs a correction
factor, such as from Glauert.)

Further, the assumptions of independence of streamtubes, and the neglect of radial expansion require that our
flow does not expand ’too’ much. For this, the fact that our axial induction factors range between small and
moderate, seems reasonable.

0.2 0.4 0.6 0.8 1.0

mu

0.05

0.10

0.15

0.20

0.25

0.30

a

We did not assume any tip losses - where the flow ’escapes’ around the blade tips and between the blades
themselves. This would break down our ’uniform’ induction assumption near the blade tips (especially the
outer 30 or so percent). We also assumed that circulation is constant along the blade span, which cannot be
true at the hub where almost no lift is generated. So, we should also expect that our model is less accurate
near the tip.

But, on the whole, yes, we have applied BEM in a scenario (un-pitched and un-yawed with equivalently
behaving blades) where it is likely to make a reasonable approximation.
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