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Wind Energy Systems
Albert-Ludwigs-Universität Freiburg – Summer Semester 2018

Exercise Sheet 1 SOLUTION: The Power Harvesting Factor, Wind Resource, and Momentum Theory

Prof. Dr. Moritz Diehl und Rachel Leuthold

Deadline: midnight before May 16th, 2018
https://goo.gl/forms/wjVjknhrsrUl5PyO2

In this exercise sheet we want to explore a concept mentioned during class - the power harvesting factor. Next, we want to take a quick
look at the wind resource. Further, we want to learn about the classic momentum theory for actuator disks. In this exercise sheet, we
want to see where this theory comes from, and what it means.

Power harvesting factors along a blade [10 pt]

1. Let’s explore the power harvesting factors along the blades of a turbine.

Consider a symmetrical, three-bladed (B = 3) wind turbine with rotor radius R. Assume a constant angular velocity Ω of the rotor
and a uniform wind field with velocity u∞ so that the dominant wind direction x̂ is along the turbine axis or rotation. We will also
use a nondimensional spanwise position µ = r/R that is 0 at the blade root/rotor hub, and 1 at the blade tips.

(a) What is the tip speed ratio λ of the turbine? [0.5 pt]

The tip speed ratio λ = ΩR
u∞

is the ratio between the blade speed ub at the tip and the freestream wind speed
u∞.

(We’ll use the abreviation that v = ||v||2 from here on.)

(b) What is the local speed ratio λr at some spanwise location µ? [0.5 pt]

The local speed ratio is the equivalent concept to the tip speed ratio, but considered at different spanwise
positions µ . That is:

λr = µλ = µ
ΩR
u∞

.

(c) What is the effective wind (also called apparent velocity) ua at the position µ? [0.5 pt]

The apparent wind ua is the difference between the freestream wind velocity u∞ and the blade’s motion ub
at the station. That is:

ua = u∞−ub.

The velocity of the blade points in the tangential direction t̂, with magnitude λu∞. That is:

ub = µΩRt̂= µλu∞t̂.

So, the apparent velocity at position µ is:

ua = u∞x̂−µλu∞t̂

(d) Sketch the velocity triangles for the following positions:

i. µ = 0.1 [0.5 pt]

ii. µ = 0.9 [0.5 pt]
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t̂

x̂

u∞

ubua

where ub = λ µu∞... u∞

ub
ua

µ = 0.1 µ = 0.9

λu∞

µ = 1

(e) You’ve heard that the lift c` and drag cd coefficients are related to the angle of attack α . Assume that the blades are uniformly
pitched with an angle φ , but have a ’perfect’ twist distribution θ(µ) so that α always takes its design value of 6 degrees.
What is θ(µ)? [0.5 pt]

The angle of attack is the angle between the chord line and the apparent velocity.

u∞

ub

ua

α

θ +φ

This gives:

α = φ +θ + tan−1
(

1
λ µ

)
= φ +θ + cot−1(λ µ).

If α = 6π/180 rad, then:

θ =
1

30
(
−30cot−1(λ µ)−30φ +π

)
(f) If the blade were unpitched and untwisted, where (on the blade) would the angle of attack be greatest? Smallest? [0.5 pt]

If φ = θ = 0, then α = cot−1(λ µ).

As you can see in the sketched velocity triangles, this angle is smallest at the blade tips where the rotational
velocity contributes most to the apparent velocity. The angle is largest at the blade root where the rotational
velocity will vanish.

(g) For arbitrary lift c` and drag cd coefficients, what is the aerodynamic force dFaero for an infinitesimal segment of area dA
around a position µ? Assume that the blades point straight, radially outwards. [1 pt]
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We know that the aerodynamic force is the sum of the lift and drag forces

dFaero = dFL +dFD.

By using the definitions of the coefficients, we can see that:

dFL = c`
1
2

ρ ||ua||22 dAl̂, dFD = cd
1
2

ρ ||ua||22 dAd̂

We know the orientations of these forces because the drag force must be along the apparent velocity, and the
lift force must be perpedicular to the drag and the span.

d̂=
ua

||ua||2
=

u∞x̂−µλu∞t̂∣∣∣∣u∞x̂−µλu∞t̂
∣∣∣∣

2

=
x̂−µλ t̂√
1+µ2λ 2

To give a right-handed coordinate system r̂, t̂, x̂ in the sketch above: r̂ must point down into the page. Then:

l̂=
ua× r̂

||ua× r̂||2
=

u∞t̂+λ µu∞x̂∣∣∣∣u∞t̂+λ µu∞x̂
∣∣∣∣

2

=
t̂+µλ x̂√
1+µ2λ 2

Now we can put all of these expressions together:

dFaero =
1
2

ρu2
∞

(
1+µ

2
λ

2) 1
2
(
c`
(
t̂+µλ x̂

)
+ cd

(
x̂−µλ t̂

))
dA

(h) What is the mechanical power production dP(µ) of that segment around position µ? [1 pt]

The power is the force acting parallel to the blade’s motion:

dP = dFaero ·ub.

Since we know that the blade’s motion is in the t̂ direction, we can use the above force expression:

dP =
1
2

ρu2
∞

(
1+µ

2
λ

2) 1
2 dA(c`− cdµλ )(λ µu∞) =

1
2

ρu3
∞λ µ

(
1+µ

2
λ

2) 1
2 dA(c`− cdµλ ) .

Just for abbreviation, let’s define ξn := c`− cdµλ .

(i) If the lift c` and drag cd coefficients can be found with the following relations, what is the power harvested by the blade
segment around position µ? [0.25 pt]

c`(µ) = 1.2µ,
c`
cd
(µ) = 100µ

Let’s start with the dP expression from above:

dP =
1
2

ρu3
∞λ µ

(
1+µ

2
λ

2) 1
2 dA(c`− cdµλ ) .

If we plug the above lift and drag (cd = c`/(c`/cd)) expressions into this power statement then, it gives the
following:

dP =
1
2

ρu3
∞λ µ

(
1+µ

2
λ

2) 1
2 dA

(
1.2µ− 1.2

100
µλ

)
.

(j) What is the relationship between the power harvesting factor ζ and µ? [1 pt]
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The power harvesting factor is the harvested power divided by the power density and the segment area. That
is:

ζ =
dP

1
2 ρu3

∞dA
= λ µ

(
1+µ

2
λ

2) 1
2 ξn

Note: we had a brief moment of confusion concerning the power of the (λ µ) term within this expression.
It’s relevant to notice here that:

(λ µ)2

√
1+

1
(λ µ)2 = λ µ

√
1+(λ µ)2.

(k) The chord c of the blade is a smooth function of the spanwise distance µ: c = c(µ). What is a reasonable approximation of
the blade area dA(µ) between two points µ− and µ+ that are infinitessimally close? [0.5 pt]

We can use a trapezoidal approximation of area:

dA≈
(

c(µ−)+ c(µ+)

2

)(
µ
+−µ

−)R

Since c is a smooth function, as the upper and lower µ values get closer together, c(µ−)+c(µ+)
2 → c(µ). Then,

if we take the limit of (µ+−µ−)→ dµ , we get:

dA = c(µ)dµR

(l) What is dA(µ) if the chord is a linear interpolation between the chord c1 at the tip and the chord c0 at the root? [0.25 pt]

The function c(µ) can then be written as:

c(µ) = c0 +(c1− c0)µ.

This can be plugged into the above area function as:

dA = (c0 +(c1− c0)µ)dµR

(m) How would you go about finding the total power P harvested by the entire turbine? (Hint: just give the procedure; don’t
follow it yet.) [0.5 pt]

Everything in our problem so far has been symmetrical. That means that the total power must be the sum of
all segment powers for all blades:

P = B
ˆ

µ=1

µ=0
dP

Remember that dP = dP(dµ). So, we’ll have to integrate over µ .

(n) How would you go about finding the power coefficient CP of the entire turbine? [0.5 pt]

The power coefficient of the entire turbine is the total harvested power divided by the power density (at
hub-height, though this is not relevant in a uniform wind field) and the total rotor area πR2. That gives:

CP =
P

1
2 ρu3

∞ πR2
=

B
πR

ˆ
µ=1

µ=0
λ µ
(
1+µ

2
λ

2) 1
2 ξ cdµ

(o) If we use the above model that we’ve described to this point, for some given parameter values (λ = 7, rad, c0 = 0.15R,
c1 = 0.05R, u∞ = 10 m/s, ρ = 1.225 kg/m3, R = 50 m and B = 3), can you...

i. plot the power harvesting factor ζ vs. µ? [0.25 pt]
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ii. find how much power the full turbine will extract? [0.25 pt]

When we plug in our values into the dP expression, we get the following ugly numeric expression:

dP≈ 1.2×106
µ

2(1.5−µ)
√

49µ2 +1

We can integrate this expression numerically between µ = 0 and µ = 1 to get:

P = B
ˆ 1

0
dP≈ 4.5 ·106 W = 4.5 MW

(p) We should then mention that the dimensions of this exercise-turbine were approximated from the Enercon E-101, a turbine
rated for 3 MW. Brainstorm some possible reasons why the estimated power P is so different... [1 pt]

There are many assumptions made in this problem. But, I want to point out one particularly problematic
assumption that you may/may-not have noticed to this point. This problem is pretty much an appetizer for
the aerodynamics and wake-modelling chapter...

You may have noticed that we assumed that the wind turbine ’saw’ the freestream velocity u∞. Consider
quickly conservation of energy, which says that if the turbine extracts some energy from the flow, the flow
has to lose that amount of kinetic energy. This ’induction’ effect means that the wind turbine will only see
some fraction of the freestream velocity, rather than the full amount. You’ve already seen that the power
available is proportional to velocity cubed, so the velocity loss due to induction can have a large influence on
the turbine’s output.

So: I hope you’re looking forwards to the exciting topics coming soon!

The Wind Resource [10 pt + 3 bonus pt]

2. Let’s study the wind resource!

(a) First, let’s consider some real, local wind speeds, to get an idea of its probability distribution.

i. To do this, download the hourly windspeed data at the weather station ’Feldberg/Schwartzwald’ and take a moment to
familiarize yourself with the data:
https://www.dwd.de/DE/leistungen/klimadatendeutschland/klarchivstunden.html. [0.25 pt]

ii. Extract the wind speed measurements from the dataset, and remove the entries without valid datapoints. [0.25 pt]

iii. Where were the wind measurements taken: At what altitude above ground level z? At what latitude λ? [0.5 pt]
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iv. Consider some basic statistical properties of the wind speed dataset. What are:

A. the average wind speed U? [0.25 pt]

The mean wind speed U ≈ 8 m/s.

B. the standard deviation σ of the wind speed measurements? [0.25 pt]

The standard deviation σ ≈ 4.8 m/s.
v. Plot a histogram of the wind speeds, normalized so as to represent the probability density function. [0.25 pt]

0 5 10 15 20 25
u0.00

0.02

0.04

0.06

0.08

p

Note: the blue line that I’ve added here is a fit of the Weibull distribution. We will/have upload(ed) a
document that describes how to do this.

vi. If you want to quickly get an idea of the mean wind speed corresponding to a particular Weibull distribution, which of
the two parameters (shape k or scale c) should you look at? [0.25 pt]

We expect the scale parameter to have a similar order of magnitude to the mean wind velocity U .

vii. Estimate the Rayleigh distribution for this dataset, and add a plot of that Rayleigh distribution to your histogram. [1 pt]
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The Rayleigh distribution has only a scale parameter c. Then the mean (µ) of a Rayleigh distribution is:

µ = c
(

π

2

) 1
2
,

which can be rearranged when µ =U to give:

c =U
(

2
π

) 1
2

In this case, c≈ 6.4.

0 5 10 15 20 25
u0.00

0.02

0.04

0.06

0.08

0.10

p

Here, the pink line is the Rayleigh distribution.

viii. By comparing (visually) the histogram and Rayleigh distribution, do you think that the wind at this site is ’highly
variable’, ’somewhat variable’ or ’not variable?’ Please explain. [1 pt]

An answer here would be ’somewhat variable.’

Because the Weibull plot is more concentrated for low wind speeds, we see that the Weibull shape parameter
k must be smaller than the shape parameter when the Rayleigh distribution is put into Weibull form. (That is,
2.)

(Indeed, when we performed a fitting procedure previously, we found a k value of approx. 1.7 for the Weibull
distribution.)

And, small k values indicate that the site has ’greater variability about the mean.’ (see Burton et al. pg. 13).

But, since the Weibull plot is only concentrated slightly more towards the lower wind speed than the Rayleigh
distribution, we shouldn’t jump to extreme conclusions.

ix. Where is the probability density suggested by this plot likely to be accurate, and where not? Please explain. [1 pt]

’Enough’ historical data for reliability has only been agglomerated in the center parts of the distribution. The
high speed probabilities should not be considered reliable.

x. Because wind power grows with the cube of the wind speed, the average of cubed wind speeds is important for wind
turbine siting decisions.

A. Compute the average U3 of U3
i , and the cubed average speed U3. Which number is higher? [0.5 pt]

U3 ≈ 1135, U3 ≈ 505.

We can see that U3 >U3.

B. Would this relationship between U3 and U3 be the case for any arbitrary time series, i.e., is there a mathematical
reason for it? [1 pt]
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Notice that there are multiple ways to explain/answer this question. I’ve given two here...

Answer A Suppose there is a function f (x) = x3. (Notice that this is the function of Ui that we are interested
in.)

On the domain x >= 0, this function f is a convex function. It is a property of convex functions that
E [ f (x)]≥ f (E [x]).

Answer B Consider two dependent random variables A and B, and an expectation operator E [·]. Then, by
the definition of the covariance:

E [AB] = cov(A,B)+E [A]E [B]

If we redefine B :=CD, then we get:

E [ACD] = cov(A,CD)+E [A]E [CD] = cov(A,CD)+E [A]cov(C,D)+E [A]E [C]E [D]

Now, supposing that A, C, and D are all random variables representing the wind measurement Ui, we see that:

U3 = E
[
U3

i
]
= cov

(
Ui,U2

i
)
+Ucov(Ui,Ui)+U3

We happen further to know that the variance is defined as var(K) := cov(K,K) for random variable K. Since
the variance is the square of the standard deviation (var(K) = σ2

K), we know that:

U3 = cov
(
Ui,U2

i
)
+Uσ

2 +U3

Logically, we know that Ui and U2
i have to be positively correlated (because there are no negative wind speed

measurements), so we know that cov
(
Ui,U2

i
)

must be positive. Since (again) all wind speed measurements
are positive, we can see that:

U3 ≥U3

from a mathematical perspective.

C. Bonus! Assume you lost the time series data, but you still have available the average wind speed U and the standard
deviation σ . Can you make an informed estimate of U3 [1 bonus pt]

Let’s consider again a function f (U) =U3.

We can make a Taylor expansion of this function about the average velocity U :

f (U) = f (U)+
∂ f
∂U

(U)(U−U)+
1
2

∂ 2 f
∂U2 (U)(U−U)2 + ...

Including the fact that ∂ f
∂U = 3U2 and ∂ 2 f

∂U2 = 6U , gives:

f (U) = f (U)+3(U)2(U−U)+3(U)(U−U)2 + ...

If take the expectation of this Taylor expansion, we get:

E [ f (U)] = f (U)+3(U)2E
[
U−U

]
+3UE

[
(U−U)2]+ ...

(Notice here, that U and f (U) are known values, and no-longer a random variable.)

Since the expectation operator is linear, we know that E
[
U−U

]
= E [U ]−U = 0. Further, by the definition

of the variance, E
[
(U−U)2

]
= σ2.

If we plug back in the definition of f (U), and then truncate the Taylor expansion, we get:

U3 ≈U3
+3Uσ

2.

(b) Based on a long wind measurement campaign at a prospective site for a medium scale wind turbine with 60m hub height,
you have average wind speed values available at altitudes of 30m and of 60m, namely u30 = 6m/s and u60 = 7m/s. The site
developer got excited by these high values and wants you to investigate if it makes sense to place a larger turbine with a hub
height of 100m at this site.
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i. For a quick assessment, you assume a logarithmic wind profile and using the two existing values you can use it to
estimate the wind speed at 100m altitude. What is your estimate for u100? [1 pt]

The logarithmic wind profile uses two constants (here, a and z0) to find the wind at a given altitude:

u(z) = a log
(

z
z0

)
With two datapoints we can find a and z0:

u30 = a log
(

30
z0

)
, u60 = a log

(
60
z0

)
If we solve this set of equations, we find that:

a =
1

log2
, z0 =

15
32

We can then plug those values into the general expression to find u100:

u100 = a log
(

100
z0

)
= 7.7m/s.

ii. Bonus! In addition, if you like, list pros and cons of the larger turbine with higher hub height, and decide on your
recommendation to the developer. [1 bonus pt]

The main advantage of a larger/higher turbine is that more power could be extracted. If the larger radius is
R100 and the smaller radius is R60, we see that we can extract a factor of (u100/u60)

3(R100/R60)
2 more power.

On the other hand, u100/u60 is not so large (approximately 1.1). So, while the developer may want to use a
larger turbine, a higher hub-height might not be worth it...

Consider that a tower costs somewhere between 10 and 20 percent of the total wind turbine cost. That is, the
tower makes up a significant portion of the wind turbine cost. If the tower is significantly more expensive
due to its larger length (material cost, fabrication cost, transportation cost) a taller turbine may cost much
more without giving much of a return.

(c) Regard a high-pressure region in the northern hemisphere at a latitude of φ = 50o. We have learnt that geostrophic wind - as
well as its refinement, the gradient wind - is parallel to the isobars, and grows with the gradient of the pressure.

i. In what direction (as seen from above) does the air flow around the high pressure region described: clockwise or
counterclockwise? [0.5 pt]

An anticyclone will rotate clockwise in the northern hemisphere.

ii. The pressure gradient at a specific location A on the boundary of the high-pressure region is 5 Pa/km. What would be
the geostrophic wind at this location? [1 pt]

The geostrophic wind lies parallel to the isobars, with a magnitude proportional to the pressure gradient:

v =−∂ p
∂x

1
2ρ sinφω0

Here, ρ = 1.225kg/m3 is the density of the air, φ = 0.87 is the latitude, and ω0 = 2π/((24)(3600s)) =
7.3 ·10−5rad/s is the Earth’s rotation frequency.

Notice that ∂ p
∂x = 5 ·10−3Pa/m, in SI units. This gives: v≈−37m/s.

iii. Would the gradient wind be faster or slower than the geostrophic wind at this location? [1 pt]
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For curved isobars, there is a centrifugal force in addition to the Coriolis and pressure forces:

−∂ p
∂x

= 2ω0ρ sinφv+ρv2/R.

Notice that v points in the opposite direction from v2. This means that the centrifugal force ’helps’ the
pressure gradient, rather than the Coriolis force.

That means that the gradient wind will be faster than the geostrophic wind.

iv. Bonus! If the radius of curvature of the isobars at location A is given by R =2000km1, what size would the gradient
wind have? [1 bonus pt]

Gradient winds will still blow parallel to the isobars. We can now solve the above expression for v, and get
two roots: v =−46m/s or v =−177m/s. The first value has a more reasonable magnitude. (Notice that it is
just ’larger’ (magnitude) than the geostrophic wind found above.)

-200 -100 100 200
v

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

rootfinding error

1Our apologies that the sheet was uploaded with a typo of R = 500km.

10



i
i

“exercise1solution” — 2018/5/16 — 19:01 — page 11 — #11 i
i

i
i

i
i

Bernoulli’s principle [5 pt]

3. Now, we want to look into Bernoulli’s principle, which is a key component to the classic momentum theory.

Let’s define a thin tube-like control volume (CV) in which the fluid velocity is everywhere parallel to the tubular structure. Then,
fluid only enters the CV at one end of the CV and leaves the CV at the other end. Let’s call the entrance end ’face A’, and the exit
end ’face B’. The fluid passing through each face has a speed v, pressure p and height z, as shown in the sketch.

face A

face B
speed vA

speed vB

pressure pA

pressure pB

height zB

height zA

The first law of thermodynamics says that a change in the energy E inside the CV is due to: Q the heat added to the CV, W the
work done by the fluid in the CV, and EA and EB the energy that, respectively, enters and leaves the CV through faces A and B.

The work W can be divided into some parts: Wshaft the shaft work removed from the CV by machinery such as turbines and
pistons; Wflow the flow work expended by the fluid as it moves to fill the CV; Wviscous the viscous work lost to fiction.

dE
dt

= Q̇−Ẇ + ĖA− ĖB = Q̇−Ẇshaft−Ẇflow−Ẇviscous + ĖA− ĖB.

Let’s assume, for the following question, that the mass flow rate ṁ into the CV equals the mass flow rate out of the CV, so that the
mass m contained within CV is always constant. Further, assume that the fluid within the CV is incompressible, so that the fluid
density ρ is always constant. Then, we know that the flow work can be found to be: Ẇflow =

(
ṁB
ρB

pB− ṁA
ρA

pA

)
= ṁ

ρ
(pB− pA).

(a) What single-word name is given to a CV described by the picture and first paragraph? [0.5 pt]

This is a ’streamline.’ (If the CV is thicker, but made of a bundle of streamlines, then it is a ’streamtube.’

(b) Let’s define the rate of energy entering the CV as ĖA := U̇A + Ėkinetic,A + Ėpotential,A, where U is the internal energy, Ekinetic
is the kinetic energy and Epotential is the potential energy. Define the kinetic and potential energy entering the CV through
face A to express ĖA. [1 pt]

The rate of energy entering the CV is:

ĖA = U̇A + ṁ(
1
2

v2
A +gzA)

(c) Repeat the above question for face B. [1 pt]

The rate of energy leaving the CV is:

ĖB = U̇B + ṁ(
1
2

v2
B +gzB)

(d) What assumptions have we made to this point? [1 pt]

We’ve assumed the following so far:

• the CV is a STREAMLINE where the fluid velocity is everywhere parallel to the streamline;

• there is NO RADIATIVE ENERGY TRANSFER (equivalently, NO ENERGY EXCHANGE ACROSS
STREAMLINE WALLS);

• the fluid does ONLY SHAFT, FLOW, AND VISCOUS WORK;

• only POTENTIAL, KINETIC, AND INTERNAL ENERGY are transfered with the fluid;

• there are NO SOURCES/SINKS inside the CV (equivalently, CONSTANT MASS FLOW RATE); and

• the fluid is INCOMPRESSIBLE.
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(e) What remaining assumptions do we need to make in order to arrive at Bernoulli’s principle: [1.5 pt]

1
2

ρv2 +ρgz+ p = constant?

We know so far:

dE
dt

= Q̇−Ẇshaft−Ẇviscous +U̇A−U̇B + ṁ
(
(

1
2

v2
A +gzA)−

1
ρ
(pB− pA)− (

1
2

v2
B +gzB)

)
If the following assumptions are true:

• flow is STEADY such that d(·)
dt = 0;

• flow is ADIABATIC (no heat added) such that Q̇ = 0;

• CV contains NO MACHINERY such as turbines, pumps, etc, such that Ẇshaft = 0;

• flow is INVSICID (viscosity is zero) such that Ẇviscous = 0;

• there is NO INTERNAL ENERGY CHANGE (temperature) between the inflow and the exit faces such
that U̇A−U̇B = 0;

then, we simplify the above expression to:

(
1
2

v2
A +gzA)−

1
ρ
(pB− pA)− (

1
2

v2
B +gzB)≈ 0

We can do some re-arranging to get:

1
2

ρv2
A +ρgzA + pA =

1
2

ρv2
B +ρgzB + pB

Since we did not restrict where we cut the faces A and B, we see that ( 1
2 ρv2 + ρgz+ p) must be constant

when travelling along the stream-line.
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