exercise session 1

Rachel Leuthold and Moritz Diehl Wind Energy Systems, Summer-Semester 2018

Albert-Ludwigs-University, Freiburg, Germany

April 25, 2018

a question from you...

If we solve the question and we want to present it, do we have to check also the 10% box as well?

a question from you...

If we solve the question and we want to present it, do we have to check also the 10% box as well?

No.

The '10%-free points' are really 'free points'; you can take them or leave them as you wish, depending on how confident you are!

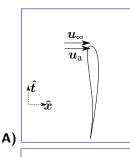
concept questions!

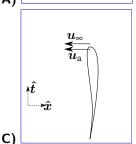
for $\lambda = \infty$, which is the velocity triangle?

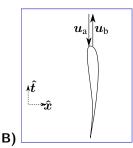
axes legend

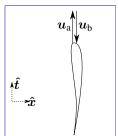
 \hat{x} : axial/downwind

 \hat{t} : tangential


 \hat{r} : radial


velocity legend


 u_a : apparent/effective


 u_b : blade

 u_{∞} : freestream

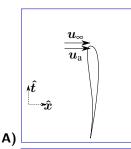
for $\lambda = \infty$, which is the velocity triangle?

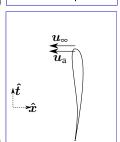
C)

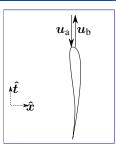
axes legend

 \hat{x} : axial/downwind

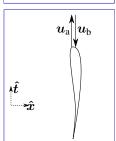
 \hat{t} : tangential

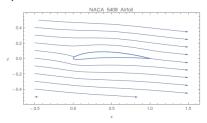

velocity legend


 u_a : apparent/effective

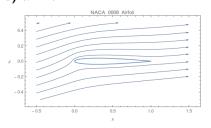

 $u_{\rm b}$: blade

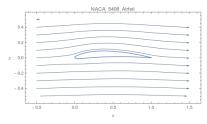
 \hat{r} : radial

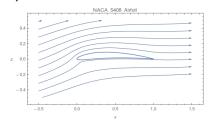

 u_{∞} : freestream



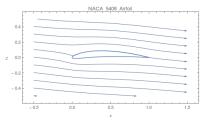
B)



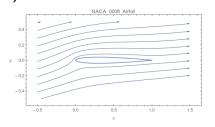

A)
$$\alpha = -5^{\circ}$$

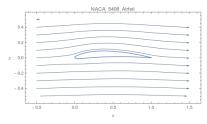

C)
$$\alpha = 10^{o}$$

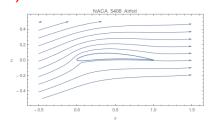
B)
$$\alpha = 0^o$$



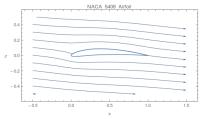
D)
$$\alpha = 10^{o}$$



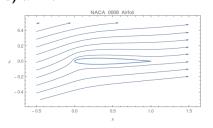

A)
$$\alpha = -5^{o}$$

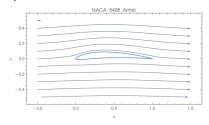

C)
$$\alpha = 10^{o}$$

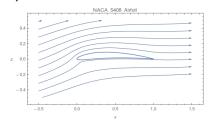
$$\mathbf{B)} \ \alpha = 0^o$$



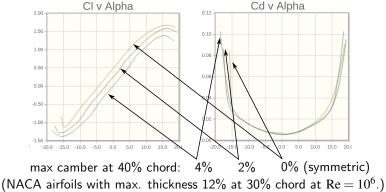
D)
$$\alpha = 10^{\circ}$$




A)
$$\alpha = -5^{o}$$


C)
$$\alpha = 10^{o}$$

$$\mathbf{B)} \ \alpha = 0^o$$


D)
$$\alpha = 10^{o}$$

thanks for pointing out an error!

 $c_{\rm d}$ vs α relationship is similar for airfoils with different camber but same thickness at same Reynolds number. (but c_d is slightly higher for less-cambered airfoils!)

to clarify (hopefully without causing too much confusion)...

the original solution would have been correct **if** I had asked about C_D rather than c_d , where:

$$C_{\rm D}$$
 3D (whole wing) coefficient $D = C_{\rm D} \frac{1}{2} \rho ||u||_2^2 S \hat{d}$
 $c_{\rm d}$ 2D (profile/cross-section) coefficient $D' = c_{\rm d} \frac{1}{2} \rho ||u||_2^2 c \hat{d}$

where:

D: the drag force (vector)

D': the drag force (vector) per unit span

ρ: fluid densityu: wind velocity

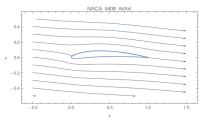
S: wing area (typically when looking down onto the wing)

c: chord of the wing

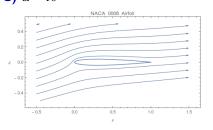
 $\hat{m{d}}\!\!:$ unit vector in the direction of the wind velocity $=m{u}/||m{u}||_2$

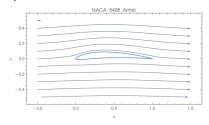
... and C_D increases (approximately) with the square of (3D) wing lift coefficient C_I^2 :

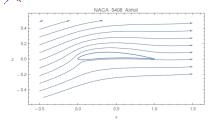
$$C_{\rm D} \approx C_{\rm D_0} + \kappa C_{\rm L}^2$$


because of a penalty (induced drag) due to the lift.

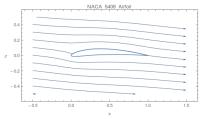
(the 'you don't get anything for free' explanation that I made a mess of today...)

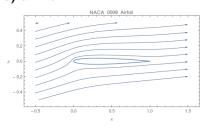

I'll try to motivate this all properly during my lecture (next week).

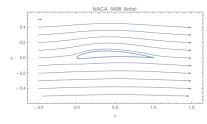

A)
$$\alpha = -5^{\circ}$$

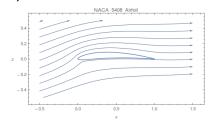

C)
$$\alpha = 10^{o}$$

B)
$$\alpha = 0^{\circ}$$

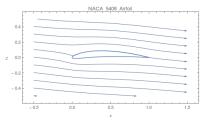

$$\alpha = 10^{\circ}$$

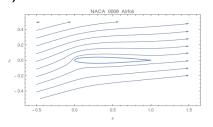

on which airfoil could $c_{\ell} = 0$?

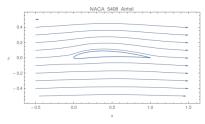

A)
$$\alpha = -5^{\circ}$$


C)
$$\alpha = 10^{o}$$

$$\mathbf{B)} \ \alpha = 0^o$$

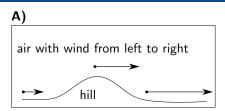

D)
$$\alpha = 10^{o}$$

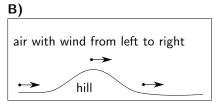

on which airfoil could $c_{\ell} = 0$?

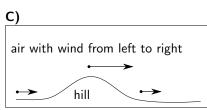

A)
$$\alpha = -5^{\circ}$$

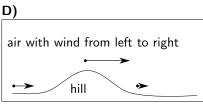
C)
$$\alpha = 10^{o}$$

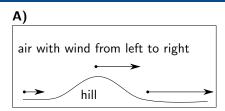
$$\mathbf{B)} \ \alpha = 0^o$$

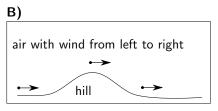


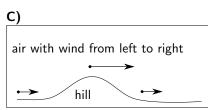

D)
$$\alpha = 10^{o}$$

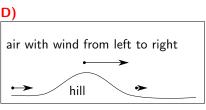


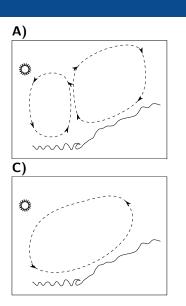

what does the wind over a hill look like?

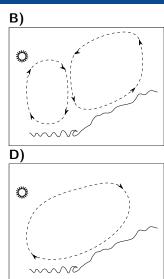




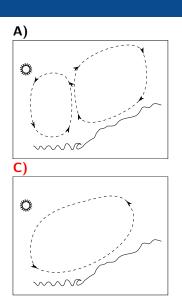


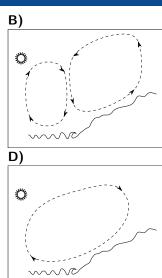

what does the wind over a hill look like?





what does the 'sea-breeze' look like?





what does the 'sea-breeze' look like?

presenting the homework solutions...