
Energy Systems: Hardware and Control

Lecture Notes for Control Part

at University of Freiburg

Michael Erhard, Gianluca Frison and Moritz Diehl

Preliminary Version of
November 20, 2017



Contents

1 Background on Dynamic Systems in State Space 4
1.1 System dynamics given by Ordinary Differential Equations . . . . . . . . . . . . . 4
1.2 Linear Time-Invariant (LTI) System . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Setup of State Space Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Solution of the State Space ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Diagonalization and Modal Canonical Form . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Dynamics and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Controllability 15
2.1 Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Extension to MIMO Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Gilbert Criterion and Kalman Decomposition . . . . . . . . . . . . . . . . . . . . . 18
2.4 Stabilizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 State Feedback Control 21
3.1 State Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 (*) Prefilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Prefilter as a Reference Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Pole Placement for SISO Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 (*) Transformation to Control Canonical Form and Ackermann’s Formula for LTI-

SISO Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 (*) Modal Control for MIMO Systems . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Linear Quadratic Regulator (LQR) 32
4.1 Lyapunov Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Optimal Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 (*) Optimal Controller - alternative derivation . . . . . . . . . . . . . . . . . . . . 35
4.4 Choice of Q and R Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Observability, State Estimation and Kalman Filter 37
5.1 Observability for SISO Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Extension to MIMO Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Luenberger Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Detectability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Observer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6 Control Loop with Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.7 Relation to Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Discrete Time Systems 46
6.1 Discrete Time LTI Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1.1 Homogeneous Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.2 Forced Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1



6.1.3 System output response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Stability in Discrete Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3 Discrete Time Linear Quadratic Regulator . . . . . . . . . . . . . . . . . . . . . . . 49

6.3.1 Infinite horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3.2 Finite horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4 (*) Discrete Time Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.5 (*) Discrete Time Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Introduction to Model Predictive Control 53
7.1 Quadratic Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Linear-Quadratic Optimal Control Problem . . . . . . . . . . . . . . . . . . . . . . 54

7.2.1 LQOCP as QP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A Summary of Useful MATLAB Commands 56
A.1 Basic Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.2 ODE Simulation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.3 State Space Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2



Preface

These notes are based on the notes originally written by Michael Erhard and Moritz Diehl for
the control part of the course ”Energy Systems: Hardware and Control” (part of REM master),
academic year 2016-2017. The notes are expanded with new material covered in the control part
of the course ”Energy Systems: Hardware and Control” (part of REM master), academic year
2017-2018. The aim of the control part of the course is to make its attendants familiar with
concepts of state space control that include linear quadratic regulator (LQR), the Kalman filter
and Model Predictive Control (MPC).

About the notation used in these lecture notes, a matrix A is capitalized and denoted using
bold and roman style, a vector x is lower case and denoted using bold and roman style, a scalar
x is lower case and denoted using italic style.

Sections marked with (*) are not covered in the course, but are left as reference for the curious
reader.
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Chapter 1

Background on Dynamic Systems
in State Space

A dynamic system responds to an input signal u(t) with an output signal y(t) as depicted in the
following block diagram

u(t) y(t)F

This behavior could be regarded as a ’mapping in time domain’ of a function u : t 7→ u(t) to a
function y : t 7→ y(t),

u 7→ y = F{u} (1.1)

An example is a RC-lowpass circuit and its response to a step input signal

u(t)

R

C

u(t)

y(t)

U

t

y(t)=uC(t)

1.1 System dynamics given by Ordinary Differential Equa-
tions

If the system dynamics is given by ordinary differential equations (ODE), the system can be
represented as follows

Input

y(t) = g(x(t),u(t), t)

Output

u(t) ẋ(t) = f(x(t),u(t), t) y(t)

• x is the n-dimensional internal state of the system. It can be regarded as ’memory’ of the
system.
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• The dynamics is given by the equations of motion in form of an ODE

ẋ(t) = f(x(t),u(t), t) (1.2)

called ’state equation’ (or ’system equation’). It determines the time evolution of the state
x(t) by an ordinary differential equation.

• The second equation
y(t) = g(x(t),u(t), t) (1.3)

is called ’output equation’ and maps the state (and input) to the output vector y(t). Note
that the output, state and input vectors can have a different dimensions.

1.2 Linear Time-Invariant (LTI) System

A dynamical system F is called linear if the following conditions are fulfilled:

1. Superposition principle
F{u1 + u2} = F{u1}+ F{u2} (1.4)

which can be illustrated as follows

F{}

F{}

u1(t)

u2(t)

y(t)
F{}

u1(t)

u2(t)

y(t)

=̂

2. Principle of amplification
F{cu} = cF{u} (1.5)

depicted as follows

y(t)u(t)
F{}c F{}

y(t)u(t)
c

A dynamical system F is called time-invariant, if for any function u(t)

y
.
= F{u} (1.6)

the equation
y0 = F{u0} (1.7)

is valid for all t0, where the function definitions u0 : t 7→ u0(t)
.
= u(t − t0) and y0 : t 7→ y0(t)

.
=

y(t− t0) are introduced. This can be illustrated by

u(t)
u(t− t0)

t0

LTI

t0

y(t− t0)

y(t)
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Note: For time invariance, the initial (internal) states of the system have to be 0 (zero state).
The general LTI system in state space can be written as

ẋ(t) = Ax(t) + Bu(t) (1.8)

y(t) = Cx(t) + Du(t) (1.9)

This set of equations including dimensions of vectors and matrices can be drawn in the following
block diagram

B
ẋ(t)

D

A

C
x(t) y(t)u(t)

Matrix

Multiplication

Integrator

p

(q × p)

(n× n)

(q × n)
qn

(n× p)

SISO and MIMO systems In a LTI system, the state vector x ∈ Rn has dimension n, the
input vector u ∈ Rp has dimension p and the output vector y ∈ Rq had dimension q. Therefore,
the state space matrices have dimension: A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n and D ∈ Rq×p.

As a special case, we can consider a LTI system with only one input and one output, p = 1
and q = 1. This kind of system is called Single-Input Single-Output (SISO) and it is formulated
as

ẋ(t) = Ax(t) + bu(t) (1.10)

y(t) = c>x(t) + du(t) (1.11)

where A ∈ Rn×n, b ∈ Rn, c ∈ Rn and d ∈ R.
The generic case where p ≥ 1 and q ≥ 1 is denoted as Multiple-Input Multiple-Output (MIMO).

Linearization The idea is to consider the behavior of a system around a reference or steady-
state point by linearization of the ODE. As example we consider trajectory control of a satellite
on an orbit

reference trajectory

real trajectory

local coordinate system

on reference trajectory

In absence of disturbances and with zero steering input, the satellite would fly on the orbit, denoted
as solid trajectory. By introduction of a local (orthogonal) coordinate system, we only consider
deviations from this reference trajectory. x = 0 would then describe a satellite flying on the
reference trajectory. As deviations are expected to be small compared to the overall trajectory,
linearization of the spherical coordinate system is an adequate modelling approach.
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In the subsequent sections of this course, only linear systems will be considered. Although
almost all real world problems lead to nonlinear ODE, linearization is a powerful tool, which can
be applied in many cases. The following procedure is applied

1. Set up general ODE.

2. Linearize system around equilibrium point.

3. Design controller.

4. Validate control design with general (nonlinear) ODE in numerical simulations.

1.3 Setup of State Space Equations

In this section, we consider a SISO system. The dynamics is assumed to be given by a linear
differential equation

y〈n〉 + an−1y
〈n−1〉 + · · ·+ a1ẏ + a0y = bn−1u

〈n−1〉 + · · ·+ b1u̇+ b0u (1.12)

The superscript 〈n〉 denotes the nth time derivative, the ai, bi ∈ IR are constant real coefficients.
For sake of simplicity, we dropped the time dependencies of u and y. We also assumed bn = 0
(i.e., D = 0 in state space form) for simplicity.

Control Canonical Form In the following, this system shall be described as LTI system in
state space. The derivation is done in two steps.

Step 1 Solve for the u(t) term on the right hand side (RHS) of the ODE, i.e. consider

y〈n〉 + an−1y
〈n−1〉 + · · ·+ a1ẏ + a0y = u (1.13)

This system of nth order is transformed into a 1st order system by introduction of the state
x = [x1, . . . , xn]> and the definitions

x1
.
= y (1.14)

x2
.
= ẏ = ẋ1 (1.15)

x3
.
= ÿ = ẋ2 (1.16)

... (1.17)

xn
.
= y〈n−1〉 = ẋn−1 (1.18)

The ODE (1.13) can then be written as

ẋn =
d

dt
y〈n−1〉 = y〈n〉 = −an−1y〈n−1〉 − · · · − a1ẏ − a0y + u

= −an−1xn − · · · − a1x2 − a0x1 + u (1.19)

or in matrix representation

ẋ(t) =



0 1
0 1

. . .
. . .

. . .
. . .

0 1
−a0 −a1 · · · · · · · · · −an−1


x(t) +



0
0
...
...
0
1


u(t) (1.20)

7



Step 2 : As the system is linear, we can solve (1.13) for u̇(t), ü(t), . . . on the RHS separately
and then add the results to obtain the solution for the complete system. For the solution of (1.13)
for u̇(t) on the RHS, the possibility of swapping LTI systems is exploited as follows

d

dt

u(t) x1(t) ẋ1(t)u(t) u̇(t) d

dt(1.13) (1.13)

LTILTI

Hence, instead of solving for u̇(t), we solve for u(t) and take the solution ẋ1(t) = x2(t) instead of
x1(t). Applying this principle to higher orders and utilizing (1.14–1.18) yields

y(t) = [b0, b1, . . . , bn−1] x(t) (1.21)

The result can be summarized as

Control Canonical Form

ẋ(t) =



0 1
0 1

. . .
. . .

. . .
. . .

0 1
−a0 −a1 · · · · · · · · · −an−1


x(t) +



0
...
...
...
0
1


u(t) (1.22)

y(t) = [b0, b1, . . . , bn−1] x(t) (1.23)

Similar considerations lead to the following alternative form, which shall be given without deriva-
tion

Observer Canonical Form

ẋ(t) =



0 · · · · · · · · · 0 −a0

1
. . . −a1

1
. . .

...
. . .

. . .
...

. . . 0
...

1 −an−1


x(t) +



b0
b1
...
...
...

bn−1


u(t) (1.24)

y(t) = [0, . . . , 0, 1] x(t) (1.25)

It should be remarked that the state space representation for a given ODE (1.12) is not unique.
A transformation will be discussed later in Sect. 1.5.

1.4 Solution of the State Space ODE

In the following, the equation
ẋ(t) = Ax(t) + Bu(t) (1.26)

with x(t0) = x0 as initial condition will be solved.
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Homogeneous solution
x(t) = eA(t−t0)x0 (1.27)

is the solution for
ẋ(t) = Ax(t) (1.28)

which is the homogeneous part of (1.26). We used the matrix exponential function, which is defined
by

eA(t−t0) .=

∞∑
ν=0

Aν(t− t0)ν

ν!
(1.29)

The time derivative reads

d

dt
eA(t−t0) =

d

dt

∞∑
ν=0

Aν(t− t0)ν

ν!
=

∞∑
ν=1

Aνν(t− t0)ν−1

ν!

= A

∞∑
ν=1

Aν−1(t− t0)ν−1

(ν − 1)!
= AeA(t−t0) (1.30)

Computing the time derivative of the solution (1.27) yields

ẋ(t) = A eA(t−t0)x0︸ ︷︷ ︸
x(t)

= Ax(t) (1.31)

and proves that the solution fulfills (1.28).

General Solution The general solution reads

x(t) = Φ(t, t0)x0 +

t∫
t0

Φ(t, τ)Bu(τ)dτ (1.32)

with
Φ(t, t0)

.
= eA(t−t0) (1.33)

Note that the first term is the homogeneous solution due to the initial condition x0 and the second
term is a convolution integral of input u(t). In order to show that (1.32) is a solution, we compute
ẋ(t) by deriving (1.32) using the Leibniz integral rule

ẋ(t) = AΦ(t, t0)x0 + Φ(t, t)︸ ︷︷ ︸
=I

Bu(t) +

t∫
t0

d

dt
Φ(t, τ)︸ ︷︷ ︸

AΦ(t,τ)

Bu(τ) dτ

= A

Φ(t, t0)x0 +

t∫
t0

Φ(t, τ)Bu(τ) dτ


︸ ︷︷ ︸

= x(t), compare (1.32)

+Bu(t) = Ax(t) + Bu(t) (1.34)

�
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1.5 Diagonalization and Modal Canonical Form

Repetition Eigenvalues and Eigenvectors

• Eigenvalue λ and eigenvector v 6= 0 are defined by the following equation:

Av = λv (1.35)

• The characteristic polynomial of A is defined bya

p(λ)
.
= det(λI−A) (1.36)

• Eigenvalues λi are the roots of the characteristic polynomial, i.e., solution of the
characteristic equation p(λ) = 0.

aAn alternative definition would be p(λ)
.
= det(A− λI). We use the definition above to obtain p(λ) =

λn + an−1λn−1 + · · · .

In the following, we assume for simplicity that the eigenvalues of A are different, i.e. λi 6= λj for
i 6= j. As a consequence, there exists a matrix V such that

A = VΛV−1 ↔ Λ = V−1AV (1.37)

with

Λ =

 λ1
. . .

λn

 (1.38)

The matrix V is composed of the (right) eigenvectors v1, . . . ,vn by

V
.
= [v1, . . . ,vn] (1.39)

The left eigenvectors w>1 , . . . ,w
>
n are the rows of the inverse matrix as follows w>1

...
w>n

 .
= V−1 (1.40)

Considering V−1V = I element-wise yields the relation between the left and right eigenvectors

w>i vj = δi,j =

{
1 for i = j
0 otherwise

(1.41)

The matrix A can then be written

A = [v1, . . . ,vn]

 λ1
. . .

λn


 w>1

...
w>n

 (1.42)

Now, the matrix exponential reads (assume t0 = 0)

eAt = eVΛV−1t =

∞∑
ν=0

1

ν!
(VΛV−1)νtν

... with (VΛV−1)ν = VΛ V−1V︸ ︷︷ ︸
=I

ΛV−1 · · ·VΛV−1 = VΛνV−1

= V

( ∞∑
ν=0

1

ν!
Λνtν

)
V−1 = VeΛtV−1 (1.43)
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with

eΛt =

∞∑
ν=0

Λν

ν!
tν =

 eλ1t

. . .

eλnt

 (1.44)

For Φ(·) follows

Φ(t) = eAt =

n∑
i=1

eλitviw
>
i (1.45)

The expressions eλitvi can be regarded as dynamic modes of the system. The homogeneous
solution now reads

x(t) = Φ(t)x0 =

n∑
i=1

eλitvi(w
>
i x0) (1.46)

where the term (w>i x0) could be interpreted as ’excitation’ amplitude of mode i due to the initial
condition given by x0.

Regarding the state space system

ẋ(t) = Ax(t) + Bu(t) (1.47)

y(t) = Cx(t) + Du(t) (1.48)

and by definition of the new state variables z(t) by

z(t)
.
= V−1x(t) (1.49)

we get for (1.47) by multiplication with V−1 from the left

V−1ẋ(t) = V−1A VV−1︸ ︷︷ ︸
=I

x(t) + V−1Bu(t) = ΛV−1x(t) + V−1Bu(t) (1.50)

As a result the ODE reads

ż(t) =

 λ1
. . .

λn

 z(t) + V−1Bu(t) (1.51)

y(t) = CVz(t) + Du(t) (1.52)

This representation is denoted modal canonical form.
For a SISO system we can define the vectors b̃1

...

b̃n

 .
= V−1b [c̃1, . . . , c̃n]

.
= c>V (1.53)

and draw the following block diagram
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λ1

c̃1

b̃n

λn

c̃n

b̃1

y(t)u(t)

n “dynamic modes”

1.6 Dynamics and Stability

For consideration of stability, we examine the time evolution of the modes in equation (1.46)

Φ(t) =

n∑
i=1

eλitvi︸ ︷︷ ︸
mode

w>i (1.54)

As simple example, we consider a system with n = 2 states in the form

Φ(t) = eλ1tv1w
>
1 + eλ2tv2w

>
2 (1.55)

For an initial value problem (u(t) = 0) with x0 = cv2 (c is a constant), the solution reads

x(t) = Φ(t)x0 = eλ1tv1 w>1 cv2︸ ︷︷ ︸
0

+eλ2tv2 w>2 cv2︸ ︷︷ ︸
c

= ceλ2tv2 (1.56)

This corresponds to an excitation of mode λ2.
The λi in the exponential determines the time evolution of mode i as depicted in the following

figures
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Re(λ) = 0

Re(λ) > 0
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asymptotically
stable
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stable

unstable

There are two comments on eigenvalues with imaginary part Im(λ) 6= 0

• If the coefficients of the characteristic polynomial are real values, which is usually the case
for physical systems, and an eigenvalue λ has an imaginary part Im(λ) 6= 0, the complex
conjugated value λ? is also an eigenvalue. In other words: complex eigenvalues occur as
pairs. The same holds for the eigenvectors.

• The oscillating parts in the time evolution of the state variables are always composed of the
two modes λ and λ? resulting in real values, e.g.

eλt + eλ
?t = 2eRe(λ)t cos(Im(λ)t) (1.57)

BIBO Stability A system is said to have bounded input bounded output (BIBO) stability if
every bounded input results in a bounded output.

−umax

+umax

u(t) System
u(t) y(t)

=⇒‖u(t)‖ < umax

−ymax

+ymax

y(t)

‖y(t)‖ < ymax

Asymptotic stability ⇒ BIBO Stability

An LTI system is BIBO stable (and internally stable) if Re(λi) < 0 for all eigenvalues λi.

Proof (*) (sketch): assume x0 = 0 (LTI system, D = 0)

y(t) = C

t∫
0

Φ(t, τ)u(t)dτ (1.58)
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Hence, the following holds

‖y(t)‖ ≤ umax

∥∥∥∥∥∥C
t∫

0

Φ(t, τ)dτ

∥∥∥∥∥∥ (1.59)

It remains to show that ‖·‖ on the RHS is bounded. This is done by considering that Φ(·) involves
terms

t∫
0

τ leλτdτ =

[
τ l

λ
eλτ
]t
0

− l

λ

t∫
0

τ l−1eλτdτ (1.60)

The [·] term is bounded if Re(λ) < 0. The integral on the RHS is considered by induction l→ (l−1)
until l=0.

�

Note that for Re(λ) = 0, the system is neutrally or marginally stable, but not BIBO stable as a
bounded input function leading to an unbounded output can be found.

Methods to examine stability

• Compute eigenvalues explicitly and check whether Re(λi) < 0. Nowadays this is easy to do
on a computer.

• Utilize algebraic criteria on the characteristic polynomial, e.g. Hurwitz or Routh. This is
particularly useful if no computer is available.
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Chapter 2

Controllability

2.1 Controllability

We consider controllability, i.e., control of the state x = [x1, x2]> by input u for the following
introductory examples

u

x2C2

1.

u

R

x2C2

2.
R

x1C1

R

x1C1

1. Is not controllable as x2 is ‘disconnected’.

2. Here we have to distinguish two cases. For C1 =C2 the subsystems would behave equally,
hence the states can not be manipulated separately. System not controllable. For C1 6=C2

any state can be generated by appropriate choice of u(t), hence system controllable.

Controllability

A system is controllable, if in finite time tf any initial state x(0) can be driven to any given
final state x(tf) by appropriate choice of the control signal u(t) for 0 ≤ t ≤ tf .

This can be depicted as follows

tf0

Task: “find a u(t) for this transition

x(tf)

“any given”

x0

“any”

15



By consideration of the solution of the state space ODE

x(tf) = eAtf x(0) +

tf∫
0

eA(tf−τ)Bu(τ) dτ (2.1)

we get

x(tf)− eAtf x(0)︸ ︷︷ ︸
.
=−eAtf xi

=

tf∫
0

eA(tf−τ)Bu(τ) dτ (2.2)

The value xi is defined by setting the LHS equal to −eAtf xi. As the equation has to be valid for
any x(tf) and any x(0), the following equation has to hold for all xi ∈ IRn.

−eAtf xi =

tf∫
0

eA(tf−τ)Bu(τ) dτ (2.3)

The system is controllable, if for any xi ∈ IRn, a finite tf and a control input u(t) for 0 ≤ t ≤ tf
can be found, such that (2.3) holds. In other words: by appropriate choice of u(t), the system can
be driven from any initial state xi to the zero state in finite time tf .

Controllability for SISO Systems

Criterion by Kalman (1960). Define controllability matrix

C .
=
[
b,Ab,A2b, . . . ,An−1b

]
(2.4)

The system (A,b) is controllable, if C has full rank n. i.e. det(C) 6= 0.

Proof: consider

−eAtf xi =

tf∫
0

eA(tf−τ)bu(τ) dτ (2.5)

Hence

−xi =

tf∫
0

e−Aτbu(τ) dτ =

tf∫
0

( ∞∑
ν=0

(−A)ντν

ν!

)
bu(τ) dτ

=

∞∑
ν=0

Aνb

tf∫
0

(−1)ντν

ν!
u(τ) dτ

︸ ︷︷ ︸
uν
.
=

(2.6)

Thus we get for xi

xi = −
∞∑
ν=0

Aνbuν (2.7)

This equation has a solution for any xi, if Aνb span up the complete vector space, such that any
xi can be composed by appropriate choice of the uν coefficients.

It remains to show that Aνb with ν = 0, . . . ,∞ span up the complete vector space if b,Ab,A2b, . . . ,An−1b
are linearly independent, i.e. C is non-singular. The argument is based on the theorem of Cayley-
Hamilton for the characteristic polynomial p(A) = 0, which states that An can be written as linear
combination (LC) of A0, . . . ,An−1. Hence, An+1 = AAn can be written as LC of A0, . . . ,An and
recursively as LC of A0, . . . ,An−1. As a consequence, it is sufficient to consider A0, . . . ,An−1.

�
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Example We consider the introductory example on page 15. The system ODE read

ẋ(t) =

[
− 1
RC1

0

0 − 1
RC2

]
x(t) +

[ 1
RC1
1

RC2

]
u(t) (2.8)

The controllability matrix is then

C = [b,Ab] =

[
1

RC1
− 1

(RC1
)2

1
RC2

− 1
(RC2

)2

]
(2.9)

Hence the system is controllable if

det(C) =
1

(RC1)(RC2)

(
− 1

RC2
+

1

RC1

)
6= 0 (2.10)

which is equivalent to C1 6=C2.

Control Input for State Transition (*) The task is to control the state transition from
x0 → xf with a piece-wise constant control input given as follows

u(t)

tm t

u0
tm−1

0

u1

um−1
t1 t2

x0 xf

Using the solution of the ODE (2.1), we get

xf = eAtmx0 +

m−1∑
i=0

 ti+1∫
ti

eA(tm−τ)b dτ

ui (2.11)

By defining

pi
.
=

ti+1∫
ti

eA(tm−τ)b dτ (2.12)

(2.11) can be written as

[p0, . . . ,pm−1]

 u0
...

um−1

 = xf − eAtmx0 (2.13)

Hence the input amplitudes can be computed by u0
...

um−1

 = [p0, . . . ,pm−1]
−1 (

xf − eAtmx0

)
(2.14)

It should be remarked that due to the dimensions, (at least) n control steps are needed for an
n-dimensional state vector. In addition, the times ti have to be chosen such that the pi are linearly
independent.

17



2.2 Extension to MIMO Systems

Having introduced controllability for SISO systems, we now sketch the criteria for MIMO systems.

Controllability for MIMO systems

The controllability matrix can now be defined as

C .
=
[
B,AB,A2B, . . . ,An−1B

]
(2.15)

The system (A,B) is controllable if rank(C) = n. (Note that C is a matrix of size n×(np).)

Proof (sketch): repeat basically the same as above by replacing b by B and u(t) by u(t).

↪→ · · · ↪→ x0 = −
∞∑
ν=0

Aνbuν (2.16)

Hence the columns of
[
B,AB,A2B, . . . ,An−1B

]
have to span up the vector space IRn. This

condition is equal to rank(C) = n. Note that we can stop the sum at n due to the Cayley-Hamilton
theorem.

�

Repetition: Rank of a Matrix

rank(M) = number of linearly independent column vectors in M
(or alternatively)

= number of linearly independent row vectors in M.

2.3 Gilbert Criterion and Kalman Decomposition

The modal canonical form was introduced by the transformation (1.49)

z(t)
.
= V−1x(t) (2.17)

which could be regarded as transformation of the system (A,B,C,D) → (Λ, B̃, C̃,D) with the
matrices

B̃ = V−1B C̃ = CV Λ = V−1AV =

 λ1
. . .

λn

 (2.18)

Note that λi 6= λj for i 6= j to avoid a more theoretical discussion. For a SISO system in modal
canonical form, controllability (and observability, a notion that will be introduced later in the
course) can be understood by the following descriptive block diagram

18



λ1

c̃1

b̃n

λn

c̃n

b̃1

y(t)u(t)

mode
observablecontrollable

if b̃i 6= 0 if c̃i 6= 0

Gilbert Criterion (for SISO system)

The system (Λ, b̃, c̃>) (with λi 6=λj for i 6=j) is

• controllable if all elements b̃i of b̃ are non-zero.

• observable if all elements c̃i of c̃> are non-zero.

Proof (without).
Finally, it should be remarked that each mode can be attributed the two properties control-

lability and observability separately. Hence, the modes can be split up into four classes called
Kalman decomposition, depicted in the following figure

controllable

not observable

controllable

observable

not controllable

observable

not controllable

not observable

u(t) y(t)

system

In these notes, we consider only the part of the system that is both controllable and observable.

2.4 Stabilizability

Stabilizability is a weaker notion than controllability.
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Stabilizability

The system (A,B) is stabilizable if there exist a matrix K ∈ Rp×n such that the matrix
A−BK is stable.

Recall that in the considered (continuous time) framework, a matrix M is stable if Re(λi) < 0 for
all eigenvalues λi of M.

The idea of stabilizability is that all unstable modes of the system must be controllable, such
that all eigenmodes of the matrix A−BK can be made stable. That is formalized in the following
theorem

Controllability and Stabilizability

If the system (A,B) is controllable, then it is stabilizable.

Proof (without).
The converse is not true: as an example, a stable system with some uncontrollable modes is

stabilizable (by choosing e.g. K = 0) but not controllable.
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Chapter 3

State Feedback Control

Before diving into the details of state feedback control, we remind ourselves of the ’classical’ control
loop

plantcontroller
w(t)

−

z(t)

y(t)
reference output

disturbance

comparison

The distinguishing feature is the feedback of the output, which is compared to the reference value
and thereby enables the control loop to compensate for disturbances z(t) 6= 0. In this chapter,
the implementation of feedback controllers for state space systems will be discussed. Note that in
the subsequent sections, we will focus on state feedback, which is different to the output feedback
of the ’classical’ control loop above. Firstly, this is done as equations become easier as for output
feedback. Secondly and more importantly, state feedback can be implemented as there are methods
to reconstruct the state from output measurements by observers, which will be discussed in chapter
5 in detail.

3.1 State Feedback

For further considerations, we assume D = 0 to simplify notation. Now, a feedback is added to
our state space system as follows
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CB

A

−K

x0

x(t)ẋ(t)

State Feedback Controller

(q×n)

(n×n)

(n×p)

u(t)

initial condition

y(t)

Plant

(p×n)

The state feedback controller is defined by

u(t) = −Kx(t) (3.1)

Inserting this equation into the state space ODE ẋ(t) = Ax(t) + Bu(t) yields the following ODE
for the feedback system

ẋ(t) = (A−BK)x(t) (3.2)

We now demand two requirements:

• (REQ1) Choose K such that the state space control loop is stable.
m

For any initial value x0 6= 0, x(t)
t→∞−→ 0.

m
(A−BK) is a stable matrix, i.e., all its eigenvalues have a negative real part.

• (REQ2) Introduce a reference input w and demand that the output vector y(t) → w for
t→∞.

The second requirement can be achieved by adding a prefilter to the control feedback loop as
follows

CB

A

−K

N

x0

x(t)ẋ(t)

(q×n)

(n×n)

(n×p)

u(t) y(t)

Plant

w(t)

Prefilter

Reference

(p×q)

(p×n)

Before discussing implementation details, we would like to summarize some properties

1. A feedback feature was added to the plant.
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2. The control law reads
u(t) = −Kx(t) + Nw (3.3)

It should be remarked that no classical ’comparison’ of reference w and output values y is
carried out.

3. The complete state vector x(t) (or at least an estimate, see chapter 5) may be needed for
the controller implementation.

4. A disturbance is considered as initial condition x(t0) = x0 6= 0, which corresponds to an
’initial kick’ rather than to a persistent disturbance.

Control design task

1. Choose K, N such that REQ1 and REQ2 are fulfilled.

2. Consider performance measures for the closed loop. The following two possibilities will be
discussed further in detail

• select eigenvalues and thereby determine speed and overshooting of the control loop
(pole placement), see section 3.4.

• minimize a quadratic performance index (LQR), see chapter 4.

3.2 (*) Prefilter

In the following, the prefilter will be discussed in order to achieve a certain set-point w0. It should
be noted that most of the discussed control issues in the subsequent sections and chapters will be
simplified to a zero set-point x → 0 controller for clarity of concepts. The reader should keep in
mind that adding a prefilter as presented in this section will extend those to arbitrary set-points.

For determination of the prefilter we insert (3.3) into the ODE

ẋ(t) = Ax(t) + Bu(t) (3.4)

y(t) = Cx(t) (3.5)

and obtain for a constant (or at least step-wise constant) w(t) = w0

ẋ(t) = (A−BK)x(t)−BNw0 (3.6)

The system is assumed to be stable (ẋ(t)→ 0 for t→∞) and hence the state converges x(t)→ x∞.
Inserting these two relations into (3.6) yields

0 = (A−BK)x∞ + BNw0 (3.7)

and with (3.5)
y∞ = C(BK−A)−1BNw0 (3.8)

As we demand for y∞ = w0 (REQ2), we get

C(BK−A)−1BN = I (3.9)

and for the prefilter

N =
(
C(BK−A)−1B

)−1
(3.10)

Without going further into detail, a final remark on the number of control variables shall be given.
Regarding the dimensions of the matrices in (3.10)

N = ( C︸︷︷︸
(q×n)

(BK−A)︸ ︷︷ ︸
(n×n)

−1 B︸︷︷︸
(n×p)

)−1 (3.11)

we get (q×p) for N. Hence, it is invertible for p=q, i.e. for control of q output variables, q control
variables (or more) are necessary. Note that this is different to controllability (section 2.1), where
the value is given for a certain point in time. Here we demand that y(t) approaches w0 for t→∞.
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3.3 Prefilter as a Reference Generator

The prefilter matrix N can also be obtained in a different way that can be interpreted as a reference
generator. Though equivalent, the reference generator perspective is a bit more intuitive and also
more robust against implementation errors and therefore slightly preferable. It replaces the control
law in Eq. (3.3) by the control law

u(t) = uss −K(x(t)− xss) (3.12)

where the reference steady state values uss and xss are obtained from the desired reference value
w via the linear maps

uss = Nuw and xss = Nxw (3.13)

such that they satisfy the conditions that the reference is indeed in a steady state, i.e. that
0 = Axss + Buss, and that the output is at the desired reference value, i.e. that w = Cxss.
Together, this yields a linear system that the matrices Nx and Nu need to satisfy for all w,
namely [

A B
C 0

] [
Nx

Nu

]
w =

[
0
I

]
w (3.14)

Assuming invertibility of the matrix on the left hand side, this yields the explicit expression[
Nx

Nu

]
=

[
A B
C 0

]−1 [
0
I

]
(3.15)

Note that the matrices Nu and Nx do not depend on the feedback matrix K and can thus be
computed independently from it. A comparison between Eq. (3.3) on the one hand and Eqs. (3.12)
and (3.13) on the other hand shows that the prefilter matrix N in Eq. (3.3) could in principle also
be obtained from the relation

N = Nu + KNx (3.16)

but in the reference generator implementation one would directly generate the control using
Eq. (3.12), leading to the control diagram shown below, which is preferable in an actual imple-
mentation of the feedback controller, and which decouples the design of the prefilter in reference
generator form from the design of the feedback controller.

u(t)
K

A

B C

D

+

+ẋ(t) x(t)

x(t)

y(t)

Plant

x0

Nx

Nuw(t)

uss(t)

xss(t)

−
+

3.4 Pole Placement for SISO Systems

Pole placement in our case means putting the eigenvalues of the closed loop to given values. Before
explaining the method in detail, some brief hints how to choose the eigenvalues for the closed loop
shall be summarized (some more information can be found on the slides).

• In order to achieve stability, all eigenvalues must be shifted to the left half plane, i.e. Re(λi) <
0 for i = 1, . . . , n.

• The location of the eigenvalues determines speed and overshooting/oscillations of the closed
loop.
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• For many systems, system dynamics is mainly determined by a dominant eigenvalue (or
eigenvalue pair). In this situation, the focus should be put on this eigenvalue (pair).

For the pole placement, we assume that the system is given in control canonical form

ẋ(t) =


0 1

. . .
. . .

0 1
−a0 · · · · · · −an−1

x(t) +


0
...
0
1

u(t) (3.17)

y(t) = [b0, . . . , bn−1] x(t) (3.18)

The feedback controller is given by

u(t) = −k>x(t) with k> = [k0, . . . , kn−1] (3.19)

Then, the ODE for the feedback system read

ẋ(t) = Ax(t) + bu(t) = (A− bk>)x(t)

=


0 1

. . .
. . .

0 1
(−a0 − k0) · · · · · · (−an−1 − kn−1)


︸ ︷︷ ︸

Acl
.
=

x(t) (3.20)

with the thereby defined matrix for the closed loop Acl. The idea is now to give the eigenvalues
λi for i = 1, . . . , n in order to obtain a certain dynamical behavior of the system. Hence, the
characteristic polynomial reads

pcl(λ) =

n∏
i=1

(λ− λi) = λn + pn−1λ
n−1 + · · ·+ p1λ+ p0 (3.21)

and defines the coefficients p0, . . . , pn. As the system is given in control canonical form, the
coefficients of pcl(λ) determine the last row of Acl, hence

Acl =


0 1

. . .
. . .

0 1
−p0 · · · · · · −pn−1

 (3.22)

Comparison with (3.20) yields −ai − ki = −pi and hence for the coefficients of the controller
ki = pi − ai. In summary, we get the first rule for pole placement

Pole Placement

Assume a system in control canonical form with characteristic polynomial (CP)

λn + an−1λ
n−1 + · · ·+ a1λ+ a0 (3.23)

A given CP (calculated from given eigenvalues) for the closed loop

λn + pn−1λ
n−1 + · · ·+ p1λ+ p0 (3.24)

is implemented by the state feedback controller with vector

k> = [(p0 − a0), . . . , (pn−1 − an−1)] (3.25)
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For systems not given in control canonical form, the control feedback might be determined by
calculating the characteristic polynomial of the closed loop

pcl(λ)
.
= det(λI−A + bk>) (3.26)

and comparing the coefficients. This will be demonstrated by the following simple example.
Assume a system given by

A =

[
1 3
0 −1

]
b =

[
1
1

]
(3.27)

The eigenvalues (poles) shall be placed at λ1 =−1 and λ2 =−2. Hence the given characteristic
polynomial for the closed loop is

pcl(λ) = (λ− λ1)(λ− λ2) = λ2 + (−λ1 − λ2)λ+ (λ1λ2) (3.28)

This must be same as computed by using (3.26)

pcl(λ) = det(λI−A + bk>) = det(

[
λ− 1 + k1 −3 + k2

k1 λ+ 1 + k2

]
)

= λ2 + (k1 + k2)︸ ︷︷ ︸
=−λ1−λ2=3

+ 4k1 − k2 − 1︸ ︷︷ ︸
=λ1λ2=2

(3.29)

Comparing the coefficients as indicated results in

k> = [k1, k2] = [1.2, 1.8] (3.30)

3.5 (*) Transformation to Control Canonical Form and Ack-
ermann’s Formula for LTI-SISO Systems

In the following, we will apply the pole placement method to systems given in another than control
canonical form. The procedure is to consider the transformation to control canonical form first
and then derive a general formula for k>.

Transformation to Control Canonical Form

The transformation T, defining the new state vector z(t) = Tx(t) and applied to

ẋ(t) = Ax(t) + bu(t) (3.31)

results in the control canonical form

ż(t) =


0 1

. . .
. . .

0 1
−a0 · · · · · · −an−1

 z(t) +


0
...
0
1

u(t) (3.32)

for

T =


t>1

t>1 A
...

t>1 An−1

 (3.33)

where t>1 is the last row of the inverse controllability matrix

C−1 =
[
B,AB, . . . ,An−1B

]−1
(3.34)

Note that the system must be controllable for calculation of the inverse C−1.
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Proof (sketch): Applying the transformation z(t) = Tx(t) to (3.31) yields

Tẋ(t) = TA T−1T︸ ︷︷ ︸
=I

x(t) + Tbu(t)

↪→ ż(t) = TAT−1z(t) + Tbu(t) (3.35)

The following two steps show that Tb and TAT−1 are the respective matrices of the control
canonical form (3.32).

1. Using the definitions of C, t>1 and the relation C−1C = I we get
?
?
...

t>1

 [B,AB, . . . ,An−1B
]

= I (3.36)

Consideration of the last row yields

t>1 Aνb = 0 ν = 1, . . . , (n−2) (3.37)

t>1 An−1b = 1 (3.38)

and hence

Tb =


0
...
0
1

 (3.39)

2. It remains to show that

TAT−1 =


0 1

. . .
. . .

0 1
−a0 · · · · · · −an−1

 (3.40)

which can be written as

TA =


0 1

. . .
. . .

0 1
−a0 · · · · · · −an−1

T (3.41)

Inserting the definition of t>1 (3.33) yields
t>1

t>1 A
...

t>1 An−2

t>1 An−1

A =


t>1 A
t>1 A2

...
t>1 An−1

(−a0t>1 − a1t>1 A− · · · − an−1t>1 An−1)

 (3.42)

The equality of the rows can be easily recognized except for the last row which reads

t>1 An = −a0t>1 − a1t>1 A− · · · − an−1t>1 An−1 (3.43)

This relation can be shown using the theorem of Cayley-Hamilton

t>1 (a0 + a1A + · · ·+ an−1A
n−1 + An) = t>1 p(A) = 0 (3.44)
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We now consider the pole placement

u(t) = −k̃>z(t) = − k̃>T︸ ︷︷ ︸
k>

x(t) (3.45)

The state feedback can be calculated as

k> = k̃>T (3.46)

= [(p0 − a0), . . . , (pn−1 − an−1)]


t>1

t>1 A
...

t>1 An−1

 (3.47)

= (p0 − a0)t>1 + (p1 − a1)t>1 A + · · ·+ (pn−1 − an−1)t>1 An−1 (3.48)

= t>1 (p0 + p1A + · · ·+ pn−1A
n−1−a0 − a1A− · · · − an−1An−1︸ ︷︷ ︸

=An as pA(A)=0

(3.49)

= t>1 (p0 + p1A + · · ·+ pn−1A
n−1 + An) (3.50)

= t>1 p(A) (3.51)

This controller realization is called Ackermann’s formula, which shall be summarized

Pole Placement (Ackermann’s Formula)

Given the characteristic polynomial p(λ) for the closed loop, the control feedback has to
be chosen as k> = t>1 p(A) where t>1 is the last row of the inverse controllability matrix

C−1 =
[
B,AB, . . . ,An−1B

]−1
.

3.6 (*) Modal Control for MIMO Systems

Consider the state feedback for a MIMO system given as follows

System

(A,B)

−K

x(t)u(t)

(p)

(p×n)

(n)

For SISO systems the feedback matrix K has the dimensions (1×n) and is determined uniquely by
given n eigenvalues. For MIMO system there is an ambiguity and an infinite number of possible
feedback realizations for n given eigenvalues. Hence, different controller design principles have to
be applied.

The idea of modal control is the following: for p control variables the eigenvalues for p observ-
able modes are given in order to define the feedback controller. In other words, the eigenvalues
of p modes are “shifted” towards desired design values. This approach is denoted modal control.
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Considering the problem in modal canonical form (assume λi 6= λj for i 6= j), we would like to get

ż(t) =



λ1
. . .

λp
λp+1

. . .

λn


z(t)−



(λ1−λcl,1) 0 · · · 0
. . .

...
...

(λp−λcl,p) 0 · · · 0
? · · · ? 0 · · · 0
...

...
...

...
? · · · ? 0 · · · 0


z(t)

(3.52)
where λcl,i, i = 1, . . . , p are the new eigenvalues of the closed loop. Note that we ordered the state
variables in z such that the first p eigenvalues are to be shifted. From (3.52) we get

żi(t) = λcl,iz(t) i = 1, . . . , p
żi(t) = λizi(t) + coupling (?) i = (p+1), . . . , n

(3.53)

Thus, the first p eigenvalues are shifted while the remaining eigenvalues are unchanged.

Modal Control Feedback

For given eigenvalues λcl,1, . . . , λcl,p for the closed loop, the control feedback is given by

u(t) = −

K
.
=︷ ︸︸ ︷ w>1 B

...
w>p B


−1  (λ1 − λcl,1)

. . .

(λp − λcl,p)


 w>1

...
w>p

x(t) (3.54)

where λ1, . . . , λp are the eigenvalues and w>1 , . . . ,w
>
p are the left eigenvectors of A.

Proof: consider transformation z(t) = V−1x(t) for

ẋ(t) = Ax(t) +Bu(t) (3.55)

V−1x(t) = V−1AVV−1︸ ︷︷ ︸
I

x(t) + V−1Bu(t) (3.56)

↪→ z(t) = Λz(t) + V−1Bu(t)

= Λz(t)−V−1BKV︸ ︷︷ ︸
K̃

z(t) (3.57)

We now derive K̃ using (3.54)

K̃ = V−1B

 w>1 B
...

w>p B


−1  (λ1 − λcl,1)

. . .

(λp − λcl,p)


 w>1

...
w>p

 (3.58)

=



w>1 B
...

w>p B
w>p+1B

...
w>nB


 w>1 B

...
w>p B


−1

︸ ︷︷ ︸
M1

 (λ1 − λcl,1)
. . .

(λp − λcl,p)


 w>1

...
w>p

 [v1, . . . ,vn]

︸ ︷︷ ︸
M2

29



where M1 and M2 can be computed using the definitions of w>i and vi

M1 =



1
. . .

1
? · · · ?
...

...
? · · · ?


︸ ︷︷ ︸

(n×p)

M2 =

 1 0 · · · 0
. . .

...
...

1 0 · · · 0


︸ ︷︷ ︸

(p×n)

(3.59)

We finally get

K̃ =



(λ1−λcl,1) 0 · · · 0
. . .

...
...

(λp−λcl,p) 0 · · · 0
? · · · ? 0 · · · 0
...

...
...

...
? · · · ? 0 · · · 0


(3.60)

which is equivalent to the feedback matrix in (3.52).

�

The modal control feedback can be depicted as follows

V

V−1

mode λ1

(λ1−λcl,1)

mode λi
λi λcl,i

mode λi

(λi−λcl,i)

V−1B C

Controller

mode λp

mode λp+1

mode λn

(λp−λcl,p)

u(t)

x(t)

y(t)

−


w>1 B

.

.

.

w>p B


−1

(p)

(n)

z1

zp

zp+1

zn

(n×p)

(p×p)

z1

zp

(n×n)

(n×n)

Plant

=̂
for i = 1, . . . , p

1

pp

1

11

p p
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The controller ’picks out’ the first p eigenmodes and ’shifts them towards’ the desired values
λcl,1, . . . , λcl,p. Note that a coupling to the remaining modes is introduced as indicated by the red
dashed arrows. However, the coupling does not modify the other eigenvalues λp+1, . . . , λn.

It should be finally noted that there are even more general ways to set up the feedback. In
the case of p = n, all n eigenvalues and n eigenvectors of the closed loop could be ’designed’
independently.
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Chapter 4

Linear Quadratic Regulator
(LQR)

The idea is to introduce and optimize a performance index as depicted in the following

t0

’minimize’ area

ref. input w0

x(t)
x0

’minimize’ area

Initial value problemStep response

t

t

For a good controller performance, one would demand for a fast response and little overshooting,
hence for minimizing the shaded areas. The performance index for the LQR controller is introduced
as

J{x,u} =
1

2

∞∫
0

(
x>(t)Qx(t) + u>(t)Ru(t)

)
dt (4.1)

where Q is a positive definite (n× n) matrix and R a positive definite (p× p) matrix. The vector
x(t) is the solution of the ODE of the system with initial condition x0 and u(t) the according
steering input. The matrices Q and R can be regarded as tuning parameters in order to meet
design requirements. While Q penalizes slow responses and overshoots, R adds a penalization
to steering actuation. Although this interpretation is relevant for some applications e.g. saving
steering gas in satellites, it could be generally regarded as a general knob in order to achieve the
desired controller behavior. Note, that both terms in the integral are quadratic measures (instead
of a norm measure indicated by the colored areas in the figure above).

Now, the control task is to find a feedback matrix K

u(t) = −Kx(t) (4.2)

such that J is minimized. This could be formally written as

K = arg min
K′

∣∣∣
u=−K′x

J{x,u} (4.3)
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4.1 Lyapunov Equation

Before tackling the problem with the whole performance index (4.1), the problem shall be solved
for quadratic functionals, thus considering

J =
1

2

∞∫
0

x>(t)Qx(t) dt (4.4)

With the homogeneous solution for the system ODE ẋ(t) = Ax(t)

x(t) = eAtx0 (4.5)

we get

J =
1

2

∞∫
0

x>0 e
A>tQeAtx0 dt =

1

2
x>0

 ∞∫
0

eA
>tQeAt dt

x0 (4.6)

By defining

P
.
=

∞∫
0

eA
>tQeAt dt (4.7)

we get the performance index as function of the initial condition x0

J =
1

2
x>0 Px0 (4.8)

In the following, we derive an equation for P by partial integration of the definition (4.7)

P =

∞∫
0

eA
>tQeAt dt =

[
eA
>tQeAtA−1

]∞
0︸ ︷︷ ︸

−QA−1

−
∞∫
0

A>eA
>tQeAtA−1 dt

︸ ︷︷ ︸
A>PA−1

(4.9)

The two terms on the RHS result in −QA−1 as eAt
t→∞→ 0 for a stable system and in A>PA−1

by using the definition (4.7). The resulting equation

P = −QA−1 −A>PA−1 (4.10)

is multiplied with A from the right hand side to obtain the

Lyapunov Equation: PA + A>P = −Q (4.11)

This equation allows for calculation of P from the system matrix A and the weighting matrix Q.

4.2 Optimal Controller

We now come back to controller design and consider

u(t) = −Kx(t) ↪→ u>(t) = −x>(t)K> (4.12)

For any symmetric matrix P, let us consider the function

V(t) =
1

2
x>(t)Px(t) (4.13)
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In the first part of the derivation, we will derive an expression true for any value of P. The total
derivative of V w.r.t. t is

V̇(x(t)) =
1

2
ẋ(t)Px(t) +

1

2
x(t)Pẋ(t)

=
1

2
(Ax(t) + Bu(t))Px(t) +

1

2
x(t)P(Ax(t) + Bu(t))

=
1

2

[
x>(t) u>(t)

] [A>P + PA PB
B>P 0

] [
x(t)
u(t)

]
By integrating this expression from 0 to ∞ (assuming that x → 0 as t → ∞) and using the
fundamental theorem of calculus we have∫ ∞

0

V̇(t)dt = V(∞)−V(0) = 0− 1

2
x>0 Px0 =

=
1

2

∫ ∞
0

[
x>(t) u>(t)

] [A>P + PA PB
B>P 0

] [
x(t)
u(t)

]
dt

that gives

0 =
1

2

∫ ∞
0

[
x>(t) u>(t)

] [A>P + PA PB
B>P 0

] [
x(t)
u(t)

]
dt+

1

2
x>0 Px0

and therefore, since this expression is always equal to 0 for any value of the matrix P, it can be
added to any other expression without changing its value.

In particular, we can add it to the expression of the performance index J rewritten in matrix
form,

J =
1

2

∫ ∞
0

[
x>(t) u>(t)

] [Q 0
0 R

] [
x(t)
u(t)

]
dt =

=
1

2

∫ ∞
0

[
x>(t) u>(t)

] [A>P + PA + Q PB
B>P R

] [
x(t)
u(t)

]
dt+

1

2
x>0 Px0

Again, the above expression holds for any value of P. Now we make a choice for P, that we take
as the solution of the matrix Riccati equation:

Matrix-Riccati-Equation: A>P + PA−PBR−1B>P + Q = 0 (4.14)

By using the expression A>P + PA + Q = PBR−1B>P it is possible to ’complete the square’,
and the performance index J becomes

J =
1

2

∫ ∞
0

[
x>(t) u>(t)

] [PBR−1B>P
B>P R

] [
x(t)
u(t)

]
dt+

1

2
x>0 Px0 =

=
1

2

∫ ∞
0

[
x>(t) u>(t)

] [PBR−1

I

]
R
[
R−1B>P I

] [x(t)
u(t)

]
dt+

1

2
x>0 Px0

=
1

2

∫ ∞
0

w>(t)Rw(t)dt+
1

2
x>0 Px0

Since the matrix R is positive definite, the integrand is always positive or zero, and the minimum
(optimal) value zero is attained only for

0 = w(t) = R−1B>Px(t) + u(t)

that gives the optimal input as the state feedback

u(t) = −R−1B>Px(t)

= −Kx(t)

with feedback matrix K

Optimal LQR Controller: K = R−1B>P (4.15)
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4.3 (*) Optimal Controller - alternative derivation

We now come back to controller design and consider

u(t) = −Kx(t) ↪→ u>(t) = −x>(t)K> (4.16)

For the ODE of the closed loop we get

ẋ(t) = Ax(t)−BKx(t) = (A−BK︸ ︷︷ ︸
Acl

.
=

)x(t) (4.17)

Hence with the definition
Acl

.
= A−BK (4.18)

we have the ODE
ẋ(t) = Aclx(t) (4.19)

The performance index (4.1) now reads

J =
1

2

∞∫
0

(
x>(t)Qx(t) + u>(t)Ru(t)

)
dt =

1

2

∞∫
0

(
x>(t)Qx(t) + x>(t)K>RKx(t)

)
dt

=
1

2

∞∫
0

x>(t)Qclx(t) dt (4.20)

with
Qcl

.
= Q + K>RK (4.21)

For P, defined by

J =
1

2
x>0 Px0 (4.22)

the Lyapunov equation for the closed loop reads

PAcl + A>clP = −Qcl (4.23)

In order to compute the matrix K leading to an optimum (minimum) of J , we demand

∂J

∂kij
=

∂

∂kij

1

2
x>0 Px0 = 0 (4.24)

for i = 1, . . . , p and j = 1, . . . , n. The kij denote the elements of K. In the following, we consider
the optimality condition for all x0 ∈ IRn (which is reasonable for state feedback systems) and thus
are allowed to reduce the condition to

∂

∂kij
P = 0 (4.25)

The element-wise partial derivative ∂
∂kij

of (4.23) yields

∂P

∂kij︸︷︷︸
=0

Acl + P
∂Acl

∂kij
+
∂A>cl
∂kij

P + A>cl
∂P

∂kij︸︷︷︸
=0

= −∂Qcl

∂kij
(4.26)

With
Acl = A−BK and Qcl = Q + K>RK (4.27)

we get

−PB
∂K

∂kij
− ∂K>

∂kij
B>P = −∂K>

∂kij
RK−K>R

∂K

∂kij
(4.28)
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and
∂K>

∂kij
(RK−B>P) = (PB−K>R)

∂K

∂kij
(4.29)

The above equation has to be satisfied for all indices i, j. This yields

RK−B>P = 0 (4.30)

As result, we get the

Optimal LQR Controller: K = R−1B>P (4.31)

Note, that it depends on matrix P, which will be computed in the following. Inserting (4.31) into
(4.18) and (4.21) results in

Acl = A−BK = A−BR−1B>P (4.32)

and

Qcl = Q + K>RK = Q + P>B(R−1)>RR−1B>P = Q + P>B(R−1)>B>P (4.33)

Insertion of these relations into (4.23) yields

PA−PBR−1B>P + A>P−P>B(R−1)>B>P︸ ︷︷ ︸
(?1)

= −Q−P>B(R−1)>B>P︸ ︷︷ ︸
(?1)

(4.34)

As result we get the

Matrix-Riccati-Equation: A>P + PA−PBR−1B>P + Q = 0 (4.35)

We recall, that (A,B) is the state space description of the plant and Q, R are the given parameter
matrices. The basic steps are to use (4.35) for computation of P and then determining K via (4.31).
Two final notes for the given LQR design shall be noted for sake of completeness without further
discussion of details: the system (A,B) has to be controllable and the system (A, Q̄) has to be
observable, where Q̄ is given by Q = Q̄>Q̄.

4.4 Choice of Q and R Matrices

In this section, some rough ideas on the choices of the Q and R matrices shall be given.

• As the choice of the Q and R matrices is crucial for the result, the LQR concept should be
regarded more as a mathematical recipe for carrying out the controller design rather than
as a self-contained procedure, which comes up with the ’optimal’ controller. In practice one
would choose certain matrices Q and R, then compute the controller based on these matrices
and compare simulations to given specifications. Eventually, the whole design process has
to be repeated with different Q and R matrices to end up at the desired controller behavior
after some iterations.

• As a thumb rule, one could start with diagonal matrices and choose

qi,i =
1

Maximum acceptable value for x2i
i = 1, . . . , n (4.36)

rj,j =
1

Maximum acceptable value for u2j
j = 1, . . . , p (4.37)
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Chapter 5

Observability, State Estimation
and Kalman Filter

The task of an observer (also known as state estimator) is to reconstruct the (hidden) state vector
of an system, especially in order to implement a state feedback controller, which is based on the
knowledge of the state vector. This can be depicted as follows

y(t)Plant

internal state
x(t) (hidden)

u(t)
Control

Observer

−K

State Feedback

state x̂(t)
Estimated

5.1 Observability for SISO Systems

Introductory examples: can the state x(t0) be determined from y(t) ?

λ1

λ2

λ1

λ2

y(t)u(t)

1.

y(t)u(t)

2.

x2 x2

x1x1

1. is not observable, as state variable x2 is not connected to the output.

2. is observable if λ1 6= λ2. Note that the output has to be observed for an interval of finite
duration in order to discriminate the values x1 and x2.
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Observability

A system is observable, if the initial state x0 = x(0) can be determined from the knowledge
of the control input u(t) and the output y(t) over a finite time interval [0, tf ].

Illustration:

state “hidden”

0

tf
0

tf

y(t)
u(t)

reconstruction

x(t)

x0

“known” “observed”

The time evolution of y(t) can be computed as

y(t) = CeAtx0︸ ︷︷ ︸
yfree(t)

.
=

+

t∫
0

CeA(t−τ)bu(τ) dτ (5.1)

The homogeneous solution is defined as yfree(t). The second summand is the inhomogeneous part
and represents the driven time evolution, which can be computed as function of the known input
u(t) as

yfree(t) = y(t)−
t∫

0

CeA(t−τ)bu(τ) dτ (5.2)

Therefore, if the undriven system

ẋ(t) = Ax(t) (5.3)

y(t) = Cx(t) (5.4)

is observable, the same holds for the driven system. In other words: the system is observable, if
state x0 can be reconstructed from yfree(t) by “inversion” of

yfree(t) = CeAtx0 (5.5)

Kalman Observability Criterion

Define

O =


C

CA
CA2

...
CAn−1

 (5.6)

The system (A,C) is observable, if O has full rank n.

Proof (sketch): Reconstruction of x0 from yfree(t1), . . . , yfree(tn) for t1, . . . , tn ∈ [0; tf ]. yfree(t1)
...

yfree(tn)

 =

 CeAt1

...
CeAtn


︸ ︷︷ ︸

M
.
=

x0 (5.7)
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The state x0 can be computed as

x0 = M−1

 yfree(t1)
...

yfree(tn)

 (5.8)

if t1, . . . , tn can be chosen such that M is invertible. A row of M reads

CeAti = C + CAti + C
A2

2
t2i + C

A3

3!
t3i + · · ·

= C + αi,1CA + αi,2CA2 + · · ·+ αi,nCAn−1 (5.9)

The last line represents a linear combination of the vectors C,CA, . . . ,CAn−1 with the coefficients
αi,j . The sum can be stopped at (n−1) due to the theorem of Cayley-Hamilton. Now, M is
invertible, if its rows are linearly independent. In order to get n linearly independent rows, the
vectors C,CA, . . . ,CAn−1 have to be linearly independent (or O non-singular).

�

Example We consider observability of the introductory examples on page 37

A =

[
λ1 0
0 λ2

]
(5.10)

1.

C = [1, 0] ↪→ O =

[
1 0
−λ1 0

]
(5.11)

For the determinant follows det(O) = 0, hence system is not observable.

2.

C = [1, 1] ↪→ O =

[
1 1
λ1 λ2

]
(5.12)

Here, det(O) = λ2 − λ1, hence det(O) 6= 0 and system is observable for λ1 6= λ2.

Reconstruction of States Based on the proof, we can summarize a recipe for reconstruction
of the state for given y(ti) and u(t), 0 ≤ t ≤ max(ti) for i = 1, . . . , n.

1. Compute yfree(ti), compare (5.2)

yfree(ti) = y(ti)−
ti∫
0

CeA(t−τ)bu(τ) dτ (5.13)

for i = 1, . . . , n

2. Reconstruct state x0, compare (5.7) and (5.8)

x0 =

 CeAt1

...
CeAtn


−1  yfree(t1)

...
yfree(tn)

 (5.14)
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5.2 Extension to MIMO Systems

Having introduced observability for SISO system, we now sketch the criteria for MIMO systems.

Observability for MIMO systems

The observability matrix O is defined as

O .
=


C

CA
CA2

...
CAn−1

 (5.15)

The system (A,C) is observable if rank(O) = n. (Note that O is a matrix of size (nr)×n.)

5.3 Luenberger Observer

In principle state estimation could be accomplished by the following scheme

Real Plant

Model

ẋ = Ax + Bu

˙̂x = Ax̂ + Bu

u(t) State

x(t)

x̂(t)

Estimate

There are some prerequisites that x̂(t) becomes a ’good’ estimate for the state vector x(t).

• The system has to be stable.

• Absence of significant disturbances.

• Model should be accurate.

In order to obtain a better estimate or make the estimation feasible for unstable plants, a feedback
is introduced. This leads to the Luenberger Observer depicted in the following
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ẋ = Ax + Bu

x̂(t)
u

r

u(t) x(t)
C

y(t)

Plant

C −

L

Observer

˙̂x = Ax̂ + Bu + r
ŷ(t)

where L is the feedback matrix.
The ODE for the observer reads

˙̂x(t) = Ax̂(t) + Bu(t) + r(t) (5.16)

Insertion of
r(t) = L(y(t)− ŷ(t)) = Ly(t)− LCx̂(t) (5.17)

yields
˙̂x(t) = (A− LC)x̂(t) + Bu(t) + Ly(t) (5.18)

Considering the ODE for the estimation error, defined by

e(t)
.
= x(t)− x̂(t) (5.19)

gives with y(t) = Cx(t)

ė(t) = ẋ(t)− ˙̂x(t) = Ax(t) + Bu(t)− (A− LC)x̂(t)−Bu(t)− Ly(t)

= (A− LC) (x(t)− x̂(t)) (5.20)

Hence the dynamics is described by the state equation

ė(t) = (A− LC)e(t) (5.21)

In order to obtain a reasonable estimate, we demand for the following

• The observer must be stable, i.e. e(t)→ 0 for t→∞.

• As a consequence, the real parts of the eigenvalues of (A−LC) must be negative Re(λi) < 0
for i = 1, . . . , n.

• The speed of the observer is determined by the position of the eigenvalues.
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5.4 Detectability

Detectability stands to observability similarly to how stabilizability stands to controllability.
Namely, detectability is a weaker notion than observability.

Detectability

The system (A,C) is detectable if there exist a matrix L ∈ Rn×q such that the matrix
A− LC is stable.

The idea of detectability is that all unstable modes of the system must be observable, such that
all modes of the system (A − LC,C) can be made stable. That is formalized in the following
theorem

Observability and Detectability

If the system (A,C) is observable, then it is detectable.

Proof (without).
The converse is not true: as an example, a stable system with some unobservable modes is

detectable (by choosing e.g. K = 0) but not observable.

5.5 Observer Design

The problem could be recognized as similar to controller design

Controller Observer

A−BK A− LC

In order to apply the design principles of state feedback control of chapter 3, we apply a trick. As
eigenvalues are the same for a matrix and its transpose, the transposed system could be considered,
i.e. the following

A> −C>L> (5.22)

Hence, we obtain the following mapping

Controller Observer

A A>

B C>

K L>

(*) Pole placement for Observer Applying the pole placement of chapter 3.4 to the intro-
duced substitutions results in
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Pole Placement for Observer Canonical Form (SISO)

For a system given in observer canonical form

ẋ(t) =



0 · · · · · · · · · 0 −a0

1
. . . −a1

1
. . .

...
. . .

. . .
...

. . . 0
...

1 −an−1


x(t) +



b0
b1
...
...
...

bn−1


u(t) (5.23)

y(t) = [0, . . . , 0, 1] x(t) (5.24)

The characteristic polynomial

p(λ) = λn + ln−1λ
n−1 + · · ·+ l1λ+ l0 (5.25)

is implemented by the feedback

l =

 (l0 − a0)
...

(ln−1 − an−1)

 (5.26)

(*) Ackermann’s Formula for Observer Recalling section 3.5 the controller reads

k> = t>1 p(A) (5.27)

where t>1 is the last row of the inverse controllability matrix C−1 =
[
B,AB, . . . ,An−1B

]−1
As

introduced in the previous section, we use A> for A and (C)> = C> for b. The feedback gain is
given by

l = (k>)> = (t>1 p(A))> = p(A>)t1 (5.28)

where t>1 is the last row of
[
C>,A>C>, . . . , (A>)n−1C>

]−1
. Therefore t1 is the last column of

([
C>,A>C>, . . . , (A>)n−1C>

]>)−1
=


C

CA
...

CAn−1


−1

= O−1 (5.29)

In summary we get

Ackermann’s Formula for Observer

Given the characteristic polynomial p(λ) for the observer, the feedback has to be chosen as
l = p(A>)t1 where t1 is the last column of the inverse observability matrix

O−1 =


C

CA
...

CAn−1


−1

Note that the system has to be observable in order to compute the inverse of O.
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5.6 Control Loop with Observer

In this section, a state feedback of the estimated state vector will be considered as follows

u(t) y(t)

−K

x̂(t)
Observer

Plant

State Feedback
Controller

Hence the feedback is given by
u(t) = −Kx̂(t) (5.30)

Combining the plant system

ẋ(t) = Ax(t) + Bu(t) (5.31)

y(t) = Cx(t) (5.32)

and the observer state equation (5.18)

˙̂x(t) = (A− LC)x̂(t) + Bu(t) + Ly(t) (5.33)

into a set of ODE for the combined system yields[
ẋ(t)
˙̂x(t)

]
=

[
A −BK

LC (A− LC−BK)

] [
x(t)
x̂(t)

]
(5.34)

The eigenvalues of the combined system are calculated as follows

0 = p(λ) = det

([
(λI−A) BK
−LC (λI−A + LC + BK)

])
= det

([
(λI−A + BK) BK
(λI−A + BK) (λI−A + LC + BK)

])
= det

([
(λI−A + BK) BK

0 (λI−A + LC)

])
= det(λI− (A−BK))︸ ︷︷ ︸

closed loop

det(λI− (A− LC))︸ ︷︷ ︸
observer

(5.35)

For the manipulations above we made use of the linear algebra lemma that the determinant does
not change when adding columns n + 1, . . . , 2n to columns 1, . . . , n from first to second line and
when subtracting rows 1, . . . , n from rows n+1, . . . , 2n from second to third line. The last equality
utilized the lemma for computing the determinant of a block matrix. As result we could state
that the eigenvalues of the state feedback control loop are not changed by the observer design,
this is called separation theorem. Based on this, the state feedback design can be carried out
independently from the observer.

On the choice of eigenvalues for the observer, the following could be stated

• The eigenvalues should be placed to the left of the closed loop eigenvalues, otherwise the
reaction of the system to disturbances, which cause differences between the state of the plant
and the estimate, would be too slow.

• Theoretically, the observer could be made arbitrarily fast. As the algorithm involves differ-
entiation, this is critical w.r.t. noise in measurements. Hence, the observer should be made
faster than the state feedback, but not significantly faster.
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5.7 Relation to Kalman Filter

The stationary Kalman filter gives the state observer that is optimal with respect to the perfor-
mance index

J =
1

2

∫ 0

−∞
v>(t)R−1v(t) + w>(t)Q−1w(t) dt

where w(t) is the process noise and v(t) is the measurement noise, that affects the system as

ẋ(t) = Ax(t) + Bu + w(t)

y(t) = Cx(t) + v(t)

In a statistical setting, w and v are assumed to be uncorrelated white Gaussian noises with zero
mean. The matrices Q and R can be interpreted as a form of pointwise covariance matrices of
the process and measurement noises, respectively.

The expression for the Kalman filter derived using statistical approaches can be formally de-
rived from the expression for the LQR controller by means of the substitutions A → A> and
B → C>. Using these substitutions, the gain for the Kalman estimator is computed as L = K>

with (4.31)
L = PC>R−1

where the matrix P is the solution of the algebraic Riccati equation (ARE)

AP + PA> −PC>R−1CP + Q = 0

that is obtained from (4.35) with the above substitutions.
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Chapter 6

Discrete Time Systems

This chapter deals with linear time invariant systems in discrete time.
The continuous time system is discretized at equidistant sampling instants, with sampling time

Ts (that is, the time between two consecutive sampling instants). The value of the system matrices
and vectors at the sampling instant k are denoted using the index k, where the sampling starts at
time 0. As an example, the value of the vector x(t) at the k-th sampling instant is the value of
the vector at time t = kTs,

xk = x(kTs) (6.1)

The input vector is constant in between sampling instants, i.e. a piecewise constant parametriza-
tion u is employed. Note that other parametrizations are possible (e.g. piecewise linear or more
generally polynomial).

6.1 Discrete Time LTI Systems

In this chapter, the general LTI system in state space and in continuous time is represented as

ẋ(t) = Acx(t) + Bcu(t) (6.2)

y(t) = Ccx(t) + Dcu(t) (6.3)

where the index c denotes continuous time.
Generally speaking, the state space representation in discrete time can be derived from the

state space representation in continuous time by means of simulation (that is, integration over
time). In case of LTI systems, it is possible to derive an analytic expression for the state space
system in discrete time, without using any numerical integration.

In discrete time, the general LTI system in state space (A,B,C,D) can be written as

xk+1 = Axk + Buk (6.4)

yk = Cxk + Duk (6.5)

Thanks to the time-invariance property, the system representation is the same at all times. In
particular, we can consider the time t0 = 0 and t = Ts in equation (1.32), obtaining

x1 = x(Ts) = eAc(Ts−0)x(0) +

∫ Ts

0

eAc(Ts−τ)Bcu(τ)dτ

= eAcTsx(0) +

∫ Ts

0

eActdtBcu(0) = Ax0 + Bu0

(6.6)

where the fact that u(t) is piecewise constant in between sampling instants has been exploited to
move u outside the integral, and the change of variable t = Ts− τ is performed in the integration.
The equation (6.5) is simply obtained evaluating equation (6.3) at the time t = kTs.
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In summary, the expression of the matrices in the state space representation in discrete time
(A,B,C,D) is

A = eAcTs (6.7)

B =

∫ Ts

0

eActdtBc (6.8)

C = Cc (6.9)

D = Dc (6.10)

6.1.1 Homogeneous Response

The homogeneous response with zero input and initial state x0 can be found by successive substi-
tutions

x1 = Ax0

x2 = Ax1 = A2x0

· · · = · · ·
xk = Axk−1 = Akx0

Note that it is computed using only the matrix A.

6.1.2 Forced Response

The forced response with generic non-zero input is computed by induction. The expression for
two consecutive substitutions

xk+1 = Axk+1 + Buk+1

= A(Axk + Buk) + Buk+1

= A2xk + ABuk + Buk+1

can be generalized as

xk = Akx0 +

k−1∑
m=0

Ak−m−1Bum (6.11)

for k ≥ 0.

6.1.3 System output response

The output response is computed by substitution of (6.11) into the equation yk = Cxk + Duk,
obtaining

yk = CAkx0 +

k−1∑
m=0

CAk−m−1Bum + Duk

6.2 Stability in Discrete Time

The eigenvalues of the matrix A are defined as

λivi = Avi for vi 6= 0 (6.12)

The corresponding vectors vi are the eigenvectors. Equation (6.12) can be rewritten as

(λiI−A)vi = 0
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and together with the condition vi 6= 0 implies

det(λiI−A) = 0

which defines the characteristic polynomial of the matrix A.
If A has size n× n, the characteristic polynomial

λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0

can be factorized as
(λ− λ1)(λ− λ2) · · · (λ− λn−1) = 0

with λi ∈ C. Defined
V =

[
v1v1 . . .vn

]
and

Λ =


λ1 0 . . . 0

0 λ2
...

...
. . .

0 . . . λn−1


then

Λk =


λk1 0 . . . 0

0 λk2
...

...
. . .

0 . . . λkn


and

Ak = (VΛV−1)k = VΛkV−1 (6.13)

The asymptotic stability of the system is defined in terms of homogeneous response. Given
any initial state x0, the system is said to be asymptotically stable if the homogeneous response
xk converges to 0 as time k →∞,

lim
k→∞

xk = lim
k→∞

Akx0 = lim
k→∞

VΛkV−1x0 = 0

for any x0. Equation (6.13) shows that all elements of Ak are a linear combination of the system
modes λki , and therefore stability depends on all components decaying to zero with time.

Asymptotic stability

A linear discrete time system is asymptotically stable if and only if all eigenvalues have
magnitude smaller than one, i.e. if they are strictly inside the unit circle in the complex
plane.

The system is not asymptotically stable in the following cases:

• If |λi| > 1 for one real eigenvalue or a couple of complex-conjugate eigenvalues, the mode
grows exponentially. The system is said to be unstable.

• If |λi| = 1 for one single real eigenvalue or a couple of complex-conjugate eigenvalues, while
all other eigenvalues have module smaller than one, the system response neither decays or
grows. The system is said to be marginally stable.

BIBO stability

If a linear discrete time system is asymptotically stable, then it is BIBO stable, i.e., a
bounded input gives a bounded output for every initial value.
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6.3 Discrete Time Linear Quadratic Regulator

In this section, we derive the LQR regulator for LTI systems in discrete time, considering both
infinite and finite control horizons. In the infinite horizon case, the optimal input is a state
feedback with constant gain matrix K, while in the finite horizon case it is a state feedback with
time-varying gain matrix Kk

6.3.1 Infinite horizon

In discrete time, the performance index for the infinite horizon LQR controller reads

J∞0 {x,u} =

∞∑
k=0

Jk =

∞∑
k=0

1

2
x>k Qxk + u>k Sxk +

1

2
u>k Ruk

where u = [u0,u1, . . . ], x = [x0,x1, . . . ], Q is a symmetric positive semi-definite n× n matrix, S
is a p × n matrix and R is a symmetric positive definite p × p matrix. If the system (A,B) is
controllable, then there exist an input sequence {u} such that the index has finite value. In fact, if
the system is controllable, it can be steered to zero in a finite number of steps T , and by choosing
uk = 0 for k ≥ T all cost terms are zero for all stages k ≥ T .

The aim is to compute the optimal input sequence u that minimizes the performance index
J∞0 . At this stage, no assumptions are made on the structure of u.

Showing the components at the first stage k = 0 and at the generic stage k = n of the
performance index, we get

J∞0 {x,u} =
1

2
x>0 Qx0 + u>0 Sx0 +

1

2
u>0 Ru0 + · · ·+ 1

2
x>nQxn + u>nSxn +

1

2
u>nRun + . . .

The value of the index does not change by adding

0 =
1

2
x>0 Px0 −

1

2
x>0 Px0 +

1

2
x>1 Px1 −

1

2
x>1 Px1 + · · ·+

· · ·+ 1

2
x>nPxn −

1

2
x>nPxn + x>n+1Pxn+1 − x>n+1Pxn+1 + . . .

where P is any positive semidefinite matrix, obtaining

J∞0 {x,u} =
1

2
x>0 Px0 +

(
−1

2
x>0 Px0 +

1

2
x>0 Qx0 + u>0 Sx0 +

1

2
u>0 Ru0 +

1

2
x>1 Px1

)
+ . . .

· · ·+
(
−1

2
x>nPxn +

1

2
x>nQxn + u>nSxn +

1

2
u>nRun +

1

2
x>n+1Pxn+1

)
+ . . . (6.14)

By using the dynamic equation xk+1 = Axk + Buk, the expression at the generic stage k = n is

Jn =
1

2
x>nPxn +

1

2
x>nQxn + u>nSxn +

1

2
u>nRun +

1

2
(Axn + Bun)>P(Axn + Bun)

=
1

2
u>n (R + B>PB)un + u>n (S + B>PB)xn +

1

2
x>n (−P + Q + A>PA)xn

that is a quadratic function of un with positive definite Hessian matrix (R+B>PB). Furthermore,
note that the quadratic function has the same expression at all stages.

The unique minimizer u∗n of the convex quadratic function Jn can be obtained by setting the
gradient w.r.t. un to zero

∇Jn = (R + B>PB)un + (S + B>PA)xn = 0

obtaining
un = −(R + B>PB)−1(S + B>PA)xn = −Kxn
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that computes the optimal input as a state feedback with constant gain matrix K.
Using this expression for uk, the performance index at stage k = n is

Jn =
1

2
x>n
(
−P + Q + A>PA− (S> + A>PB)(R + B>PB)−1(S + B>PA)

)
xn

that by choosing the positive definite matrix P as

P = Q + A>PA− (S> + A>PB)(R + B>PB)−1(S + B>PA) (6.15)

sets to zero the performance index at stage k = n

Jn =
1

2
x>n (0) xn = 0

Equation (6.15) is the discrete time algebraic Riccati equation (DARE).
Therefore, the performance index expression in (6.14) reduces to

V∞0 {x0} = min
x,u

J∞0 {x,u} =
1

2
x>0 Px0

that gives the optimal value of the performance index as a function of the initial state x0.

An important property of the infinite horizon LQR is that if (A,Q
1
2 ) is observable then A−BK

is stable, i.e. the optimal state feedback is a stabilizing control.

6.3.2 Finite horizon

In discrete time, the performance index for the finite horizon LQR controller reads

JN0 {x,u} =

N∑
k=0

1

2
x>k Qxk + u>k Sxk +

1

2
u>k Ruk +

1

2
x>NQNxN

where Q and QN are symmetric positive semi-definite n× n matrices, S is a p× n matrix and R
is a symmetric positive definite p× p matrix.

The aim is to compute the optimal input sequence u that minimizes the performance index
JN0 . At this stage, no assumptions are made on the structure of u.

Showing the components at the first stage k = 0 and at the generic stage k = n of the
performance index, we get

JN0 {x,u} =
1

2
x>0 Qx0 + u>0 Sx0 +

1

2
u>0 Ru0 + · · ·+ 1

2
x>nQxn + u>nSxn +

1

2
u>nRun +

1

2
x>NQNxN

The value of the index does not change by adding

0 =
1

2
x>0 P1x0 −

1

2
x>0 P1x0 +

1

2
x>1 P2x1 −

1

2
x>1 P2x1 + · · ·+

· · ·+ 1

2
x>nPn+1xn −

1

2
x>nPn+1xn + x>n+1Pxn+1 − x>n+1Pxn+1 + · · ·+ x>NPNxN − x>NPNxN

where Pk is any sequence of positive semidefinite matrices, obtaining

JN0 {x,u} =
1

2
x>0 P0x0 +

(
−1

2
x>0 P0x0 +

1

2
x>0 Qx0 + u>0 Sx0 +

1

2
u>0 Ru0 +

1

2
x>1 P1x1

)
+ . . .

· · ·+
(
−1

2
x>nPnxn +

1

2
x>nQxn + u>nSxn +

1

2
u>nRun +

1

2
x>n+1Pn+1xn+1

)
+ . . .

· · ·+
(
−1

2
x>NPNxN +

1

2
x>NQNxN

)
(6.16)
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The performance index at the last stage jN is equal to zero by choosing PN = QN . By using the
dynamic equation xk+1 = Axk + Bu + k, the expression at the generic stage k = n is

Jn =
1

2
x>nPnxn +

1

2
x>nQxn + u>nSxn +

1

2
u>nRun +

1

2
(Axn + Bun)>Pn+1(Axn + Bun)

=
1

2
u>n (R + B>Pn+1B)un + u>n (S + B>Pn+1B)xn +

1

2
x>n (−Pn + Q + A>Pn+1A)xn

that is a quadratic function of un with positive definite Hessian matrix (R + B>Pn+1B).
By choosing the matrix Pn as

Pn = Qn + A>Pn+1A− (S> + A>Pn+1B)(R + B>PB)−1(S + B>Pn+1B) (6.17)

that is called Riccati recursion, the performance index at stage k = n can be written as

Jn =
1

2

[
u>n x>n

] [R + B>Pn+1B
S> + A>Pn+1B

] (
R + B>Pn+1B

)−1 [
R + B>Pn+1B S + B>Pn+1A

] [un
xn

]
showing that jn is a convex quadratic function (since the matrix (R + B>Pn+1B)−1 is positive
definite, being the inverse of a positive definite matrix), and its minimum jn = 0 is obtained for

[
R + B>Pn+1B S + B>Pn+1A

] [un
xn

]
= 0

giving
un = −(R + B>Pn+1B)−1(S + B>Pn+1A)xn = −Knxn

that computes the optimal input as state feedback with time-varying gain matrix Kn.
Therefore, the performance index expression in (6.16) reduces to

V N0 {x0} = min
x,u

JN0 {x,u} =
1

2
x>0 P0x0

that gives the optimal value of the performance index as a function of the initial state x0.
Note that by choosing QN = P, where P is the solution of the DARE, then the Riccati

recursion (6.17) becomes the DARE (6.15).

6.4 (*) Discrete Time Observer

In discrete time, we define the state estimate at time k computed using output measurements up
to time k as x̂k|k, and the one-step-ahead state predictor at time k + 1 computed using output
measurements up to time k as x̂k+1|k.

The one-step-ahead state predictor is simply computed by forward simulation of the estimator,
as

x̂k+1|k = Ax̂k|k + Buk (6.18)

If we define the output error ek at time k as

ek = yk − (Cx̂k|k−1 + Duk)

the state estimator can be computed by correcting the one-step-ahead state predictor using the
information in the new output error

x̂k+1|k+1 = x̂k+1|k + Leek+1 = x̂k+1|k + Le(yk+1 − (Cx̂k+1|k + Duk+1)) (6.19)

where Le is the gain for the state estimator.
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Insertion of equation (6.19) into equation (6.18) gives an expression to compute the one-step-
ahead state predictor at time k + 1 as a function of the one-step-ahead state predictor at time k
and the new output measurement at time k + 1

x̂k+1|k = A(x̂k|k−1 + Leek) + Buk

= A(x̂k|k−1 + Le(yk − (Cx̂k|k−1 + Duk)) + Buk

= Ax̂k|k−1 + Buk + ALe(yk − (Cx̂k|k−1 + Duk)

= Ax̂k|k−1 + Buk + L(yk − (Cx̂k|k−1 + Duk)

where we defined the gain for the one-step-ahead state predictor L as

L = ALe

The error in the one-step-ahead state prediction has the dynamic

∆xk+1|k = x̂k+1|k − xk+1

= Ax̂k|k−1 + Buk + L(Cxk + Duk − (Cx̂k|k−1Duk))− (Axk + Buk)

= (A− LC)∆xk|k−1

and therefore it converges to zero if the matrix A− LC is stable.

6.5 (*) Discrete Time Kalman Filter

The stationary Kalman filter gives the state observer that is optimal with respect to the perfor-
mance index

J =

∞∑
k=0

1

2
v>k R−1vk +

1

2
w>k Q−1wk

where wk is the process noise and vk is the measurement noise, that affect the system as

xk+1 = Axk + wk

yk = Cxk + vk

In a statistical setting, w and v are assumed to be uncorrelated Gaussian noises. The matrices Q
and R are interpreted as the covariance of the process and measurement noises, respectively.

The expression for the Kalman filter derived using statistical approaches can be formally de-
rived from the expression for the LQR controller by means of the substitutions A → A> and
B→ C>. Using these substitutions, the gain for the Kalman estimator is

Le = PC>(R + CPC>)−1

where the matrix P is the solution of the DARE

P = Q + APA> −APC>(R + CPC>)−1CPA>

Note that simply plugging the above substitutions in the expression of the LQR gain does not
give the expression for the gain of the Kalman estimator, but instead the expression for the gain
of the Kalman one-step-ahead predictor

L = ALe = APC>(R + CPC>)−1

that is used to compute the dynamic A− LC of the one-step-ahead prediction error.
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Chapter 7

Introduction to Model Predictive
Control

This chapter contains a brief introduction to Model Predictive Control (MPC) for linear discrete-
time systems. MPC is an advanced control technique with wide industrial use. It formulates the
control problem as an optimization problem, which typically is repeatedly solved on-line, at each
sampling time, as soon as a new state estimate is available. The state estimation is generally
obtained either using Kalman filter, or using Moving Horizon Estimation (that stands to MPC in
the same way as Kalman filter stands to LQR).

MPC employs a model of the system to predict its future evolution (over a finite window of
future steps) and to compute an input sequence optimal with respect to some performance index.
As a difference with respect to LRQ, MPC can naturally and optimally handle constraints and
changes in set point. Furthermore, it allows all matrices and vectors in the state space system,
cost function and constraints to vary stage-wise. The main drawback of MPC is that it requires
significantly longer time to compute the optimal control trajectory, and that this has to be repeated
at each sampling time, since the optimal input sequence is a function of the current state estimate
x̂0.

7.1 Quadratic Program

In optimization, a Quadratic Program (QP) is an optimization problem with quadratic cost func-
tion and linear constraints

min
v

1

2
v>H̃v + g̃>v (7.1a)

s.t. Ãv = b̃ (7.1b)

d̃ ≤ C̃v ≤ d̃ (7.1c)

ṽ ≤ v ≤ ṽ (7.1d)

where (7.1a) is the cost function, (7.1b) are the equality constraints, (7.1c) are the inequality
constraints, and (7.1d) are bounds on variable (that are a special case of general constraints, but
that are much cheaper to handle from a computational point of view, and therefore often treated
explicitly in numerical solvers).
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7.2 Linear-Quadratic Optimal Control Problem

The MPC formulation that we will consider in this chapter is the discrete time Linear-Quadratic
Optimal Control Problem (LQOCP) with box constraints

min
u,x

N−1∑
k=0

(
1

2
x>k Qkxk + u>k Skxk +

1

2
x>k Rkxk + q>k xk + r>k uk

)
+

1

2
x>NQNxN + q>NxN

s.t. xk+1 = Akxk + Bkuk + bk, k = 0, . . . , N − 1

xk ≤ xk ≤ xk, k = 0, . . . , N

uk ≤ uk ≤ uk, k = 0, . . . , N − 1

The value N is called control horizon.
All matrices and vectors can generally vary at each stage of the control problem. Note that

general affine constraints can be defined as well, but that we will not consider them to keep the
exposition easier.

7.2.1 LQOCP as QP

When considered from an optimization point of view, the LQOCP is a QP. Therefore, it can be
solved with any software for QPs (as e.g. quadprog in Matlab). However, the LQOCP has a
special structure that can be exploited to solve it efficiently.

When the LQOCP is represented as a QP, its matrices look like (for the case N = 2)

H̃ =


Q0 S>0 0 0 0
R0 S0 0 0 0
0 0 Q1 S>1 0
0 0 S1 R1 0
0 0 0 0 Q2

 , g̃ =


q0

r0
q1

r1
q2

 ,

Ã =

 I 0 0 0 0
−A0 −B0 I 0 0

0 0 −A1 −B1 I

 , b̃ =

x̂0

b0

b1

 ,

ṽk =


x0

u0

x1

u1

x2

 , ṽk =


x0

u0

x1

u1

x2

 ,

where it is clear that the matrices have a special structure, and as the horizon length N increases,
they get increasingly sparse (that is, most of their elements are zero). This special structure can
be efficiently exploited by specialized solvers, that work only with the dense sub-matrices.
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Appendix A

Summary of Useful MATLAB
Commands

In this chapter, useful MATLAB commands for this course will be given without claim to be
complete. Alternatively, you can use the free software package octave.

A.1 Basic Commands

For demonstration, commands and the program output are printed below. In order to suppress
the output, append ’;’ to the end of the line. The explanations are given as comments, which have
to be preceded by ’%’. Note, that for some of the following commands, the control package has
to be installed. In Octave it has to be loaded in the beginning

octave:1> pkg load control

For demonstration of the first commands, the following matrices and vectors are used

A =

 −0.25 0.25 0
0 −0.2 0.4
−1 0 0

 b =

 0
0
2

 c> = [1, 0, 0] (A.1)

Setting up vectors and matrix

octave:1> B = [0;0;2] % assign column vector

B =

0

0

2

octave:2> C = [1 0 0] % assign row vector

C =

1 0 0

octave:3> C = [1,0,0]; % assign row vector (alternatively)

octave:4> A = [[-0.25 0.25 0];[0 -0.2 0.4];[1 0 0]] % matrix

A =

-0.25000 0.25000 0.00000

0.00000 -0.20000 0.40000
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1.00000 0.00000 0.00000

octave:5> A = [-0.25 0.25 0 ; 0 -0.2 0.4 ; 1 0 0]; % matrix (alternatively)

octave:6> A_1 = [B, B, [0;0;1]]; % combine vectors into matrix

octave:7> A_2 = [A;C] % combine matrix and vector

A_2 =

-0.25000 0.25000 0.00000

0.00000 -0.20000 0.40000

1.00000 0.00000 0.00000

1.00000 0.00000 0.00000

octave:8> eye(3); % 3x3 identity matrix

Matrix manipulations:

octave:9> A*B; % multiplication of matrix and vector

octave:10> C*B; % multiplication of vector and vector

octave:11> B*C; % multiplication of vector and vector

octave:12> A*2; % multiplication of matrix and scalar

Matrix computations

octave:13> det(A) ; % determinant

octave:14> inv(A) ; % inverse matrix

octave:15> A’ ; % transpose

octave:16> transpose(A) ; % transpose (alternatively)

octave:17> eig(A) % eigenvalues

ans =

0.32785 + 0.00000i

-0.38892 + 0.39212i

-0.38892 - 0.39212i

octave:18> [V,D] = eig(A) % eigenvectors and diagonal form with eigenvalues

V =

0.25281 + 0.00000i 0.26527 - 0.26745i 0.26527 + 0.26745i

0.58435 + 0.00000i 0.27207 + 0.56469i 0.27207 - 0.56469i

0.77112 + 0.00000i -0.68206 + 0.00000i -0.68206 - 0.00000i

D =

Diagonal Matrix

0.32785 + 0.00000i 0 0

0 -0.38892 + 0.39212i 0

0 0 -0.38892 - 0.39212i

octave:19> poly(A) % characteristic polynomial

ans =

1.000000 0.450000 0.050000 -0.100000

octave:20> rank(A) ; % rank of a matrix
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Useful stuff

octave:21> f = @(x) x*x % define a function

f =

@(x) x * x

octave:22> f(2) % call the function

ans = 4

A.2 ODE Simulation Example

Numerical simulation of the following system

d

dt
x = f(x) =⇒

[
ẋ1
ẋ2

]
=

[
x2
−x1

]
(A.2)

First, a an Octave function is defined

>> function dx = f_ode(x,t)

dx = [x(2),-x(1)];

endfunction

Then, the time vector is set up

>> t = (0:0.1:10)

corresponding to a simulation for t = 0..10 s with a timestep of 0.1 s. Further, the initial condition
is defined

>> x0 = [1 0];

Finally, the simulation is carried out by

>> x_sol = lsode("f_ode", x0, t);

For plotting, use e.g.

>> plot(t,x_sol(:,1));

note, that the index (:,1) picks the first column from the vector.

A.3 State Space Example

In this section, some commands for treating state space systems are demonstrated.

octave:1> A_2 = [[-0.25 0.25 0];[0 -0.2 0.4];[0 0 -0.1]];

octave:2> B = [0;0;2];

octave:3> C = [1 0 0];

octave:4> D = 0;

octave:5> sys = ss(A_2,B,C,D); % setup system

octave:6> step(sys) % plot step response

octave:7> impulse(sys) % plot impulse response

octave:8> rlocus(sys) % plot root locus
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The introduction of a proportional feedback control loop to the system (compare exercises) with

u(t) = −ky(t) (A.3)

yields a closed loop Acl-matrix
Acl = A− kbc> (A.4)

We thus could define the control loop as system

octave:18> A = [[-0.25 0.25 0];[0 -0.2 0.4];[0 0 0]];

octave:19> B = [0;0;2];

octave:20> C = [1 0 0];

octave:21> roots_cl = @(k) roots(poly(A-k*B*C)); % function for EVals

octave:22> roots_cl(0.008) % eigenvalues of CL for k=0.008

ans =

-0.301965

-0.087432

-0.060603

octave:23> roots_cl(0.2) % eigenvalues of CL for k=0.2

ans =

-0.50700 + 0.00000i

0.02850 + 0.27944i

0.02850 - 0.27944i

octave:24> sys_cl = @(k) ss(A-k*B*C,B,C,0); % setup function for CL system

octave:25> step(sys_cl(0.008)) % plot step response (k=0.008)

octave:26> step(sys_cl(0.1)) % plot step response (k=0.1)
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