Modelling and System Identification - Microexam 1

Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg
November 17, 2015, 8:15-9:15, Freiburg

Surname:
Name:
Matriculation number:

Study:

Studiengang: Bachelor \square Master \square

Please fill in your name above and tick exactly one box for the right answer of each question below.

1. What is the probability density function (PDF) $p_{X}(x)$ for a normally distributed random variable X with mean -3 and standard deviation 3? The answer is $p_{X}(x)=\frac{1}{\sqrt{2 \pi 9}} \cdots$
(a) $\square e^{-\frac{(x+3)^{2}}{6}}$
(b) $\square \quad e^{-\frac{(x+3)^{2}}{18}}$
(c) $\square e^{\frac{(x-3)^{2}}{18}}$
(d) $\square e^{\frac{(x-3)^{2}}{6}}$
2. What does the term $\frac{1}{\sqrt{2 \pi 9}}$ in $p_{X}(x)$ ensure?
(a) $\square \quad \int_{-\infty}^{\infty} p(x)=1$
(b) $\square \quad p(x)>0$
(c) $\square \quad p(x) \geq 0$
(d) \square Nothing
3. What is the PDF of a variable y with uniform distribution on the interval $[5,7]$? For $z \in[5,7]$ it has the value:
(a) $\square \quad p_{z}(y)=\frac{1}{2^{2}}$
(b) $\square \quad p_{z}(y)=\frac{1}{2}$
(c) $\square \quad p_{y}(z)=\frac{1}{\sqrt{2}}$
(d) $\square \quad p_{y}(z)=\frac{1}{2}$
4. What is the PDF of an n-dimensional normally distributed variable Z with zero mean and covariance matrix $\Sigma \succ 0$? The answer is $p_{Z}(x)=\ldots$
(a) $\square \frac{1}{\sqrt{(2 \pi)^{n} \operatorname{trace}(\Sigma)}} e^{-\frac{1}{2} x^{T} \Sigma x}$
(b) $\square \frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\Sigma)}} e^{-\frac{1}{2} x^{T} \Sigma^{-1} x}$
(c) $\square \frac{1}{\sqrt{2 \pi \operatorname{det}(\Sigma)}} e^{-\frac{1}{2} x^{T} \Sigma^{-1} x}$
(d) $\square \frac{1}{\sqrt{2 \pi \operatorname{trace}(\Sigma)}} e^{\frac{1}{2} x^{T} \Sigma^{-1} x}$
5. Regard a random variable $X \in \mathbb{R}^{n}$ with mean $\mu \in \mathbb{R}^{n}$ and covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$. For a fixed $b \in \mathbb{R}^{m}$ and $D, A \in \mathbb{R}^{m \times n}$, regard another random variable Y defined by $Y=A b+D X$. What is the covariance matrix of Y ?
(a) $\square D \Sigma D^{T}$
(b) $\square \quad A^{T} \Sigma^{-1} A$
(c) \square
$D^{-1} \Sigma\left(D^{T}\right)^{-1}$
(d) $\square \quad D \Sigma^{-1} D^{T}$
6. Above in Question 5, what is the mean of the matrix valued random variable $Z=Y Y^{T}$?
(a) $\square(A b+D \mu)(A b+D \mu)^{T}+D \Sigma D^{T}$
(b) $\square(A b+D \mu)(A b+D \mu)^{T}$
(c) $\square \quad A b b^{T} A^{T}+2 A b \mu^{T} D^{T}+D \Sigma D^{T}$
(d) $\square \quad b^{T} A^{T} A b+2 \mu^{T} D^{T} A b+b^{T} \Sigma D^{T}$
7. A scalar random variable has the variance w. What is its standard deviation?
(a) $\square \quad w$
(b) $\square \quad w^{-1}$
(c) $\square \quad w^{2}$
(d) $\square \sqrt{w}$
8. Regard a random variable $\lambda \in \mathbb{R}$ with zero mean and standard deviation d. What is the mean of the random variable $y=\lambda^{2}$?
(a) $\square 0$
(b) $\square d$
(c) $\square d^{2}$
(d) $\square \quad \lambda+d$
9. Regard a random variable $X \in \mathbb{R}^{n}$ with zero mean and covariance matrix Σ. Given a vector $c \in \mathbb{R}^{n}$, what is the mean of $Z=c^{T} X X^{T} c$?
(a) $\square \operatorname{det}(\Sigma)$
(b)
\square
$c^{T} \operatorname{trace}(\Sigma) c$
(c) $\square \quad c^{T} \Sigma c$
(d) $\square \quad c^{T} c \operatorname{trace}(\Sigma)$
10. What is the minimizer x^{*} of the convex function $f: \mathbb{R}_{++} \rightarrow \mathbb{R}, f(x)=-\log (x)+5 x$?
(a) $\square \quad x^{*}=-5$
(b)
$x^{*}=1 / 5$
(c) $\square \quad x^{*}=e^{5}-1$
(d) $\square \quad x^{*}=5$
11. What is the minimizer x^{*} of the convex function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\alpha+\alpha y^{2}-\frac{1}{2} \beta y$ with $\beta>0$?
(a) $\square \quad x^{*}=\frac{\beta}{\alpha}$
(b) \square
$x^{*}=\frac{\beta}{4 \alpha}$
(c) $\square \quad x^{*}=\frac{\alpha}{\beta}$
(d) $\square \quad x^{*}=\frac{2 \beta}{\alpha}$
12. What is the minimizer of the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(x)=\left\|-b+D^{T} x\right\|_{2}^{2}$ (with D^{T} of rank n)? The answer is $x^{*}=\ldots$
(a)
$\square-\left(D^{T} D\right)^{-1} D^{T} b$
(b) \square
$\left(D D^{T}\right)^{-1} D b$
(c) \square
$\square-\left(D D^{T}\right)^{-1} D b$
(d) $\square \quad\left(D^{T} D\right)^{-1} D^{T} b$
13. For a matrix $\Phi \in \mathbb{R}^{N \times d}$ with rank d, what is its pseudo-inverse Φ^{+}?
(a) $\square \quad\left(\Phi \Phi^{T}\right)^{-1} \Phi^{T}$
(b) $\square \quad\left(\Phi \Phi^{T}\right)^{-1} \Phi$
(c)
(c) \square
$\left(\Phi^{T} \Phi\right)^{-1} \Phi^{T}$
(d) $\square \quad\left(\Phi^{T} \Phi\right)^{-1} \Phi$
14. Given a sequence of numbers $y(1), \ldots, y(N)$, what is the minimizer θ^{*} of the function $f(\theta)=\sum_{k=1}^{N}(y(k)-3 \theta)^{2}$?
(a) $\square \frac{1}{3 N} \sum_{k=1}^{N} y(k)^{2}$
(b)
$\square \frac{\sum_{k=1}^{N} y(k)}{3 N}$
(c) $\square \frac{1}{9 N} \sum_{k=1}^{N} y(k)^{2}$
(d) $\square \frac{\sum_{k=1}^{N} y(k)}{9 N}$
15. Given a prediction model $y(k)=\theta_{2} x(k)+2 \theta_{1}+\theta_{3} x(k)^{3}+\epsilon(k)$ with unknown parameter vector $\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)^{T}$, and assuming i.i.d. noise $\epsilon(k)$ with zero mean, and given a sequence of N scalar input and output measurements $x(1), \ldots, x(N)$ and $y(1), \ldots, y(N)$, we want to compute the linear least squares (LLS) estimate $\hat{\theta}_{N}$ by minimizing the function $f(\theta)=$ $\left\|y_{N}-\Phi_{N} \theta\right\|_{2}^{2}$. If $y_{N}=(y(1), \ldots, y(N))^{T}$, how do we need to choose the matrix $\Phi_{N} \in \mathbb{R}^{N \times 2}$?

16. Which of the following is NOT a name of a probability distribution?
(a) \square Uniform
(b) \square Gaussian
(c)
Newton
(d) \square Laplace
17. Given a random variable X, where $X \sim \mathcal{U}[-1,1]$, regard the following X-dependent random variables Y. For one of them X and Y are uncorrelated, which one?
(a) $\square \quad y=\sin (x)$
(b) $\square \quad y=\cos (x)$
(c) $\square \quad y=x^{3}$
(d) $\square \quad y=\mathrm{e}^{x}$
18. Given a set of measurements y_{N} following the model $y_{N}=\Phi_{N} \theta_{0}+\epsilon$, where Φ_{N} is a regression matrix, θ_{0} a vector with true parameter values and $\epsilon(k) \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\right)$ the noise contribution for $k=1, \ldots, N$, we can compute the LLS estimator of the parameters θ as $\hat{\theta}_{\mathrm{LS}}$. Defining the covariance of $\hat{\theta}_{\mathrm{LS}}$ as $\Sigma_{\hat{\theta}}$, which of the following is NOT true?

(a) $\square \quad \hat{\theta}_{\mathrm{LS}}$ is a random variable	(b) $\square \quad \hat{\theta}_{\mathrm{LS}} \sim \mathcal{N}\left(\theta_{0}, \Sigma_{\hat{\theta}}\right)$
(c) $\square \Sigma_{\hat{\theta}}=\sigma_{\epsilon}^{2}\left(\Phi_{N}^{+^{\mathrm{T}}} \Phi_{N}^{+}\right)$	(d) $\square \quad \hat{\theta}_{\mathrm{LS}}=\Phi_{N}^{+} y_{N}$

19. In the case given in the previous question, if the measurements y_{N} come from a single experiment, which condition does the noise require in order to be able to compute an estimate of σ_{ϵ}^{2} ?
20. Imagine that the condition asked in the previous exercise is not met. We know that the noise has zero mean and covariance $\Sigma_{\epsilon_{N}}$. What would be the covariance matrix $\Sigma_{\hat{\theta}}$ of the unweighted LLS estimate?

(a) $\square \Sigma_{\epsilon_{N}} \Phi_{N}^{+\mathrm{T}} \Phi_{N}^{+}$	(b) $\square \Sigma_{\epsilon_{N}}^{-1} \Phi_{N}^{\mathrm{T}} \Phi_{N}$	
(c) \square	$\Phi_{N}^{\mathrm{T}} \Sigma_{\epsilon_{N}}^{-1} \Phi_{N}$	(d) $\square \Phi_{N}^{+} \Sigma_{\epsilon_{N}} \Phi_{N}^{+{ }^{\mathrm{T}}}$

