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Exercises for Lecture Course on Modeling and System Identification (MSI)
Albert-Ludwigs-Universität Freiburg – Winter Term 2016

Exercise 9: Parameter Estimation for Dynamic Systems
(to be returned on Jan 23rd, 2017, 8:15 in SR 00-010/014,

or before in building 102, 1st floor, ’Anbau’)

Prof. Dr. Moritz Diehl, Robin Verschueren, Rachel Leuthold, Tobias Schöls, Mara Vaihinger

In this exercise you will consider different dynamic system models, find the parameters of the 2D robot
from measurements, and predict the future wind at the Feldberg windfarm. For the the MATLAB exercises,
create a MATLAB script called main.m with your code, possibly calling other functions/scripts. From
running this script, all the necessary results and plots should be clearly visible. Compress all the files/-
functions/scripts necessary to run your code in a .zip file and send it to msi.syscop@gmail.com.
Please state your name and the names of your team members in the e-mail.

Exercise Tasks

1. Discrete Dynamic System Models In this task, please match some simple system descriptions with
appropriate model types and equation-forms. (Hint: if necessary, use a forward Euler scheme to
discretize in time.) (2 pts)

Describe

(a) the average velocity of a model train over one minute. The train’s axles are driven at a constant
angular velocity on a slippery, straight track, such that the contact between the wheels and the
track is not constant. (1

2
pt)

(b) the temperature of a homogeneous liquid with constant specific heat, as measured by an impre-
cise thermometer. The liquid is in a well insulated container with a controllable heat source.
(1
2

pt)

(c) the velocity of a uniform ball, falling vertically down an evacuated tube, after being released
from rest. (1

2
pt)

(d) the volumetric flow-rate of water (with constant temperature) through the cross-section of a
long, straight, uniformly-circular pipe. The pressure difference between the ends of the pipe
can be controlled instantaneously. (1

2
pt)

Model Types

(a) Autoregressive (AR)

(b) Finite Impulse Response (FIR)

(c) Autoregressive, Exogenous Inputs (ARX)

(d) Autoregressive, Moving Average (ARMA)

Model Equations, where q ∈ R is a scalar constant; y, the output; u, the controls; and e, the error.

(a) yt +
∑N

n=0 bnut−n + et = 0

(b)
∑M

m=0 amyt−m + q = 0

(c)
∑M

m=0 amyt−m +
∑L

l=0 clet−l + q = 0

(d)
∑M

m=0 amyt−m+
∑N

n=0 bnut−n+et+q = 0

2. Parameter estimation for output error minimization You operate a two-wheeled robot with un-
known dimensions (left wheel radius RL, right wheel radius RR, and axle length L), as simulated in
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Exercise 8. After observing the movement of the robot, you would like to estimate these dimensions
θ = (RL, RR, L)>, with lsqnonlin1. Assuming that the robot system has only output errors, and
that these errors are Gaussian with zero mean and variances σ2

x = 1.6 · 10−3 m2 and σ2
y = 4 · 10−4

m2, then the Maximum Likelihood Estimation problem to estimate θ is:

θ∗ = arg min
θ∈R3

∣∣∣∣x> −M(t,u,x0,θ)
∣∣∣∣2
Σ−1

x
,

where x ∈ RN×2 is the measured position of the robot, containing x and y positions; M is the
modelled position; t is the time, measured at increments of 0.01s; u ∈ RN−1×2 is the control,
containing the left angular velocity ωL and the right angular velocity ωR; and x0 is the initial location
(x0, y0, β0) = (0, 0, 0). (4 pts and 2 bonus)

(a) Implement a function [r] = residual(param, x0, u, t, xData, sigmaData)
which computes the residual vector between the given measured locations x and the modelled
locations M(t,u,x0,θ) obtained with forwards-Euler integration. Use the u and x from the
dataset ex9 robotData.mat. (1 pt)

(b) Adapt your function residual in order to incorporate the measurement variances correctly,
i.e. weight the cost function in the right way. (1 pt)

(c) Use lsqnonlin to estimate θ∗. (1 pt)

(d) Plot the simulated model with θ∗ versus the measurements. (1 pt)

(e) Extra: Can you find a estimate for the covariance of your estimator θ∗? (Hint: linearize your
residual function and use it to give an approximation of the covariance.) (2 bonus pts)

3. Prediction error minimization for forecasting You, the operator of the planned Feldberg windfarm
from Exercise 6, need to predict what the mean wind speed will be during the next hour. Please use
the 1000 datapoint subset of the full historical data ex9 windData.mat, to model the wind speed
time series as an autoregressive (AR), discrete-time dynamic system. (5 pts)

(a) Formulate the prediction error minimization problem (PEM) with which you can find theM+1
factors of the AR shifting polynomial (a0, ..., aM) and the constant q. (Hint: see Task 1.) (1 pt)

(b) Use the backslash operator to solve the normal equations for the parameters θM ∈ RM , where
θM = (q, a0, ..., aM). Do this for M = 1, 2, ..., 20. (1 pt)

(c) Estimate the covariance of the parameters, ΣθM , for each M . (Hint: consider which error you
need to use.) (1 pt)

(d) Now, we need to decide which of these possible AR models to use. To do this, let’s determine
the partial autocorrelation function of the wind-speed AR model. Plot the value of aM for each
of the M AR models, vs. the AR model order M . Add onto this plot, the 95% confidence
interval that aM is non-zero, according to the standard normal tables. This 95% confidence
interval lies at ±1.96/

√
(1000− 1), with 1000 data points. Based on this plot of the partial

autocorrelation, what order AR model (M ) should be used to represent the wind speed? (1 pt)

(e) Make a plot that compares the predictions made by the model selected in (3d) to the reported
data values. Use a prediction horizon of one; ie. predict only one data-point ahead into the
future. Then, predict the mean wind speed during the next hour outside of the data-file. (1 pt)

This sheet gives in total 11 points and 2 bonus points.

1lsqnonlin takes as input a vector function f(θ) = [f1(θ), . . . , fN (θ)], and minimizes ‖f(θ)‖22 with respect to θ.
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