Exercises for Lecture Course on Numerical Optimization (NUMOPT)
Albert-Ludwigs-Universitit Freiburg — Winter Term 2015-2016

Exercise 7: Calculation of Derivatives
(to be completed during exercise session on Dec 9, 2015 or sent by email to
dimitris.kouzoupis @imtek.uni-freiburg.de before Dec 11, 2015)

Prof. Dr. Moritz Diehl, Dimitris Kouzoupis and Andrea Zanelli

Aim of this exercise is to gain experience with all derivative computations discussed in the class.

Exercise Tasks

1. Control of a dynamic system: Our goal is to drive the state of a one-dimensional discrete time
system to the origin using scalar, piecewise constant controls u in /N time intervals. More precisely,
we are interested in solving the optimization problem:
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where 7 is the initial condition of the system, 7" the terminal time and vectors U = (uo, ..., un_1),
X = (wo,...,xy) denote the state and control trajectories respectively. The objective (la)) expresses

our aim to bring the terminal state x to zero, using the least amount of effort in terms of control
actions u. The equality constraints and (1c) uniquely determine the state trajectory xg, ... Xy
given controls vy, . .., uy_1. Therefore we can write (1)) in the equivalent unconstrained form:
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using the nonlinear function ®(-) : RY — R. This function is implemented for you in MATLAB,
using elementary operations. You can call itas £ = Phi (U, param) where U € R" is a certain
control trajectory and param a structure with the problem parameters, similarly to the previous
exercise. For the purposes of this task, you will need to construct the following structure:

1 param.N = 50; % number of discretization steps
2 param.x0 = 2; % initial condition on state

3 param.T = 5; % terminal time

4 param.q = 50; % weight on terminal state

(a) Use your code from last week to differentiate ®(U') with finite differences. Add the derivative
of the quadratic term ZkN;Ol u? to your result to get the Jacobian of your objective function.

(1 point)

(b) Using the same syntax, write a function [F,J] = i_trick (fun, x,param) that calcu-
lates the Jacobian of ®(U) using the imaginary trick.

(1 point)



(c) Now let’s implement both forward and backward modes of Automatic Differentiation. Before
you start coding, which of the two you think it would perform faster in our example and why?
(1point)
(d) Write a MATLAB function [F,J] = Phi_FAD (U, param) that returns the function eva-
luation and the Jacobian of ®(U) using the forward mode of AD. Start by copying the code
from the given function Phi.
(2 points)
(e) Write a MATLAB function [F,J] = Phi BAD (U, param) that implements the backward
mode of AD. Once you have everything implemented, run the script test _derivatives.m
to check (and demonstrate) that your results are correct.
(2 points)
(f) Now solve the optimization problem in (I)) using the BFGS method with globalization similarly
to the previous exercise (you can simply adapt your code from last week). Plot the state and
controls as a function of time to confirm that the systems behaves as expected.
(2 points)
(g) Measure the total time spent in the derivative calculations for the different functions you have
implemented. Set N = 200 and ¢ = 200 to make the difference in performance more clear.
Which method performs the best for this problem? Does this comply with your answer in (Ic))?
(1 point)
(h) Extra: A powerful tool for AD (among many other features) that we may want to use in future
exercises is CasADi. Installation intstructions can be found here:

http://install.casadi.org/

Using casadi we can build the Jacobian of our nonlinear function as a symbolic expression
within a few lines only. Complete the template casadi . m (compatible with version 3.1.1) to
calculate the Jacobian of ®(U). You can also check how much faster casadi is than all your
previous implementations.

(2 bonus points)

2. Optimal perturbation for finite differences: Assume we have a twice continuously differentiable
function f : R — R and we want to evaluate its derivative f’(z,) at xy with finite differences.
Further assume that in a neighborhood N () it holds:
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with N (zo) := {z]ro — 0 < x < zo+ 0}, d > t and ¢ the perturbation in the finite difference
approximation. The function f(x) can be represented on a computing system with an accuracy
€machs 1-€., it is perturbed by noise €(z):

f(@) = f(@)(1+ () [e(@)] < emacn-

(a) Compute a bound v on the error of the finite difference approximation of f’(z)
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(2 points)
(b) Which value ¢* minimizes this bound and which value has the bound at ¢*?
(1 point)


http://install.casadi.org/
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2t '

Hint: you can assume that also the third derivative is bounded in [xo — t, zo + t|.

(c) Extra: Do a similar analysis for the central differences where f "(x0) =

(2 bonus points)

This sheet gives in total 13 points and 4 bonus points.



