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Exercises for Lecture Course on Numerical Optimization (NUMOPT)
Albert-Ludwigs-Universität Freiburg – Winter Term 2015-2016

Exercise 5: Unconstrained Newton-type Optimization
(to be completed during exercise session on Nov 25, 2015 or sent by email to

dimitris.kouzoupis@imtek.uni-freiburg.de before Nov 27, 2015)

Prof. Dr. Moritz Diehl, Dimitris Kouzoupis and Andrea Zanelli

Aim of this exercise is to become familiar with different Newton-type methods and learn their charac-
teristics in practice.

Exercise Tasks

1. Regularization: Prove that a regularized Newton-type step xk+1 = xk − (Bk + αI)−1∇f(xk) with
Bk a Hessian approximation, α a positive scalar and I the identity matrix of suitable dimensions,
converges to a small gradient step xk+1 = xk − 1

α
∇f(xk) as α→∞.

(2 points)

2. Unconstrained minimization: In this task we will implement different Newton-type methods that
minimize the nonlinear function

f(x, y) =
1

2
(x− 1)2 +

1

2
(10(y − x2))2 + 1

2
y2. (1)

(a) Derive, first on paper, the gradient and Hessian matrix of the function in (1). Then, re-write it
in the form f(x, y) = 1

2
||R(x, y)||22 where R : R2 → R3 is the residual function. Derive the

Gauss-Newton Hessian approximation and compare it with the exact one. When do the two
matrices coincide?

(2 points)

(b) Implement your own Newton method with exact Hessian information and full steps. Start from
the initial point (x0, y0) = (−1,−1) and use as termination condition ||∇f(xk, yk)||2 ≤ 10−3.
Keep track of the iterates (xk, yk) and use the provided function to plot the results.

(2 points)

(c) Update your code to use the Gauss-Newton Hessian approximation instead. Compare the per-
formance of the two algorithms and plot the difference between exact and approximate Hessian
as a function of the iterations (use the MATLAB function norm to measure this difference).

(2 points)

(d) Check how the steepest descent method performs on this example. Your Hessian now becomes
simply αI where α is a positive scalar and I the identity matrix. Try α = 100, 200 and 500.
For which values does your algorithm converge? How does its performance compare with the
previous methods?

(1 point)

(e) Imagine you remove the term 1
2
y2 from f(x, y) and compare the exact Newton’s method with

the Gauss-Newton. What do you expect?
(1 point)
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3. Lifted Newton method: Consider the scalar nonlinear function F (w) = w16 − 2.

(a) Implement in MATLAB the Newton method in order to numerically find a root of F (w). Plot
how the residuals evolve. Test the algorithm for different initial guesses and analyze the beha-
viour of the algorithm.

(1 point)

(b) Implement now a Newton-type algorithm that exploits a fixed approximation of the gradient

wk+1 = wk −M−1F (wk),

where M = ∇F (w0) is the gradient of F at the initial guess w0. For which range of values
a ≤ w0 ≤ b does the algorithm converge?

(1 point)

(c) An equivalent problem to (a) can be obtained by lifting the original one to a higher dimensional
space

F̃ (w) =


w2 − w2

1

w3 − w2
2

w4 − w2
3

−2 − w2
4

 .
Implement the Newton method for this lifted problem and compare the convergence of the two
algorithms.

(1 point)

(d) Show that the Newton method is guaranteed to converge to a root of any monotonocally incre-
asing convex differentiable function F : R→ R.

(1 point)

This sheet gives in total 14 points.
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