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AWESCO Winter School on Numerical Optimal Control with DAE - University of Freiburg

Exercise 6: Interior Point Methods

Andrea Zanelli, Gianluca Frison, Elena Malz,
Joel Andersson, Joris Gillis, Sebastien Gros, Moritz Diehl

While in the previous exercise we implemented an SQP solver, in the following we will con-
sider interior point (IP) methods, a second possible approach for the solutions of NLPs. The
main idea behind such a scheme is to solve the system of equations describing the first order
optimality conditions with a quasi-Newton method.

For this exercise, we will use a different formulation of the NLP, where equality and inequality
constraints are kept separate:

min
x

f(x)

s.t. g(x) = 0

h(x) ≤ 0,

(1)

This is necessary in order to simplify the notation when describing how inequalities are treated
by IP methods. In particular, consider the following system of nonlinear equations:

∇xf(x) +∇xg(x)λ+∇xh(x)ν = 0 (2a)
g(x) = 0 (2b)

h(x) + s = 0 (2c)
νisi(x) = τ, i = 1, · · · , p (2d)

where λ and ν are the multipliers associated with the equality and inequality respectively, p
is the number of inequalities and slack variables s ≥ 0 have been introduced. For τ = 0 the
above system corresponds to the first order optimality conditions of (3). However, due to the
nonsmoothness of equations (2d), the Newton method cannot be applied directly.

To circumvent this problem, it is then possible to relax the complementarity condition by setting
τ to some positive value. So called primal-dual interior point methods iteratively solve this
relaxed set of equations while shrinking τ . For τ that tends to zero, a point satisfying the initial
optimality conditions is then recovered.

In the following, we will implement a simple interior point methods using CasADi to generate
the quantities needed to compute the Newton steps to solve equations (2b)-(2d). To this end,
consider the following optimization problem:

min
x

f(x) := (x1 − 4)2 + (x2 − 4)2

s.t. g(x) := sin(x1)− x22 = 0

h(x) := x21 + x22 − 4 ≤ 0,

(3)
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Tasks:

6.1 Using the MATLAB template, implement three CasADi functions F, G and H that return
evaluations of f , g and h respectively. For the test point x1 = 2, x2 = 3, check that you
obtain the same values as the ones given in the template.

6.2 Implement CasADi functions for the Jacobians and Hessians of f , g and h. Check again
the correctness of your code with the numerical values provided for the test point.

6.3 Derive the form of the linear system associated with every Newton iteration. Hint: in
order to do so, you have to compute a linearization of equations (2b)-(2d) with respect to
(x, λ, ν, s). The Newton step q := (∆x,∆µ,∆λ,∆s) at iteration k is the solution to the
system:

M(xk, λk, νk, sk)q = r(xk, λk, νk, sk) (4)

6.4 Implement the Newton algorithm in your code by completing the M and r in the templa-
te.

6.5 In order for the dual solution to be meaningful we have to enforce positivity of the mul-
tipliers associated with inequality constraints ν and slack variables s. In order to do so,
it is possible to rely on a line-search scheme that, at every iteration computes a trial step
for ν and s. If the resulting dual solution is infeasible, a backtracking line-search is used
to scale the Newton step until feasibility is recovered. Fill in the template in order to
implement the line-search.

6.6 Run your implementation of the primal-dual interior point starting from the initial guess
x0 = [−2, 4]T , λ = 10, µ = 10 and s = 10 and observe the plots. What is the value of
the inequality multiplier ν? Is the inequality constraint active? Does the solution change
if you set the initial guess for the primal solution to x0 = [−2, −4]T ? Is the inequality
constraint active in this case?
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