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AWESCO Winter School on Numerical Optimal Control with DAE - University of Freiburg

Exercise 5: Sequential Quadratic Programming

Andrea Zanelli, Gianluca Frison, Elena Malz,
Joel Andersson, Joris Gillis, Sebastien Gros, Moritz Diehl

In the exercises so far, we solved the NLPs with IPOPT which is a popular open-source primal-
dual interior point solver. Other NLP solvers can be used from CasADi including SNOPT,
WORHP and KNITRO. In the following, we will write our own simple NLP solver implemen-
ting sequential quadratic programming (SQP).

Starting from a given initial guess for the primal and dual variables (x0, λ0), SQP solves the
NLP by iteratively computing local convex quadratic approximations of the NLP at the current
iterate

(
xk, λk

)
and solving them by using a convex quadratic programming (QP) solver. For

an NLP of the form:
min
x

f(x)

s.t. x ≤ x ≤ x,

g ≤ g(x) ≤ g,

(1)

these approximations take the form:

min
∆x

1

2
∆xT∇2

xL(xk, λk)∆x+∇xf(xk)T∆x

s.t. x ≤ xk + ∆x ≤ x,

g ≤ g(xk) +∇g(xk)T∆x ≤ g,

(2)

where (xk, λk) is the current approximation of the primal-dual solution to the NLP in (4) and
L(x, λ) := f(x) + λTg g(x) + µT (x − x) + νT (x − x) is the Lagrangian. The solution of this
QP gives the step ∆x and new approximation of the multipliers (λ, µ, ν).

For nonlinear least square objectives of the form f(x) = 1
2
‖R(x)‖2

2, a popular variant is to use
the so called Gauss-Newton approximation of the Hessian of the Lagrangian:

∇2
xL(xk, λk) ≈ ∇R(xk)∇R(xk)T . (3)

In this exercise we will consider the optimization problem

min
x

f(x) :=
1

2
(x1 − 1)2 +

1

2
(10(x2 − x2

1))2 +
1

2
x2

2

s.t. g(x) := x1 + (1− x2)2 = 0

h(x) := 0.2 + x2
1 − x2 ≤ 0

(4)
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Tasks:

5.1 Re-write on paper the objective function in nonlinear least-square form F (x) = 1
2
‖R(x)‖2

2

and derive the Gauss-Newton approximation of the Hessian of the Lagrangian.

5.2 We will start by implementing an SQP solver for the unconstrained problem obtained
by removing both g and h from (4). Using the template provided with this exercise,
implement the CasADi functions f and Jf that return evaluations of f and its Jacobian.
Use the numerical values given in the template to check that your implementation is
correct. Do the same for the residual function R and its Jacobian.

5.3 Using the Jacobian of f and R build the Gauss-Newton objective function

fgn =
1

2
∆xT∇R(xk)∇R(xk)T∆x+∇xf(xk)T∆x.

Then, allocate an instance of the QP solver qpOASES using CasADi and use it to sol-
ve the local quadratic approximations in the SQP iterations. Plot the results using the
template. Where do the iterates converge to?

5.4 Include now the equality constraints. Define two CasADi functions G and Jg that return
evaluations of g and its Jacobian and use them to define the linearized equality constraint

gl = g(xk) +∇gx(xk)T∆x.

Include this constraint in the QP formulation and run the simulation again. Does the
solution change?

5.5 Finally, include the inequality constraints. As in Task 5.4, define H and Jh and use them
to define the linearized inequality constraints. Include them in the QP formulation and
run the finalized version of the SQP solver.
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