
i
i

“ex2” — 2016/2/15 — 15:18 — page 1 — #1 i
i

i
i

i
i

AWESCO Winter School on Numerical Optimal Control with DAE - University of Freiburg

Exercise 2: Nonlinear Programming and Root-finding Problems

Andrea Zanelli, Joel Andersson, Joris Gillis, Sebastien Gros, Moritz Diehl

Let us return to the constrained optimization problems from Exercise 1, Tasks 1.4 and 1.5:

minimize
x

f(x)

subject to x ≤ x ≤ x

g ≤ g(x) ≤ g,

(1)

where x ∈ Rnx is the decision variable as before, but with f : Rnx → R and g : Rnx → Rng

being general twice continuously differentiable functions. This nonlinear program (NLP) can
be solved with CasADi using a syntax very similar to the QP in Exercise 1, just calling the
function nlpsol instead of qpsol and leaving the rest identical:

1 solver = nlpsol('solver','ipopt',prob);

Depending on the solver plugin used – here the open-source NLP solver IPOPT – CasADi will
then automatically generate the required derivative information and pass it to the solver.

Tasks:

2.1 Modify the solution code from Exercise 1 to use IPOPT instead of qpOASES and solve
Task 1.4. Since the problem is convex, the choice of initial guess should not matter.

2.2 Formulate and solve the following version of the famous Rosenbrock problem:

minimize
x

x2
1 + 100x2

3

subject to x3 + (1− x1)
2 − x2 = 0

Using x = [2.5, 3.0, 0.75] as a starting point, how many iterations does the solver need to
converge to the solution? Does it change if we instruct IPOPT to use a limited-memory
BFGS approximation? This can be done by passing the following options dictionary as
the forth argument to nlpsol:

1 opts = struct;
2 opts.ipopt.hessian_approximation = 'limited-memory';

2.3 Manually eliminate x3 from the problem formulation using the constraint equation and
resolve the now unconstrained problem with only two variables. How does the number
of iterations change?

1



i
i

“ex2” — 2016/2/15 — 15:18 — page 2 — #2 i
i

i
i

i
i

Nonlinear root-finding problems in CasADi

A special case of an NLP is a root-finding problem. We will write them in the form:

g0(z, x1, x2, . . . , xn) = 0

g1(z, x1, x2, . . . , xn) = y1

g2(z, x1, x2, . . . , xn) = y2
...

gm(z, x1, x2, . . . , xn) = ym,

(2)

where the first equation uniquely defines z as a function of x1, . . . , xn by the implicit function
theorem and the remaining equations define the auxiliary outputs y1, . . . , ym. Given a function
g for evaluating g0, . . . , gm, we can use CasADi to automatically formulate a (differentiable)
function G : {zguess, x1, x2, . . . , xn} → {z, y1, y2, . . . , ym}. This function includes a guess for z
to handle the case when the solution is non-unique. The syntax for this, assuming n = m = 1,
is:

1 z = SX.sym('x',nz);
2 x = SX.sym('x',nx);
3 g0 = (some expression of x and z)
4 g1 = (some expression of x and z)
5 g = Function('g', {z, x}, {g0, g1});
6 G = rootfinder('G', 'newton', g);

where the rootfinder function, similar to nlpsol and qpsol, expects a display name, the
name of a solver plugin (here a simple full-step Newton method) and the problem formulation,
here expressed as a residual function.

Tasks:

2.4 Starting with the unconstrained version of the Rosenbrock problem from Task 2.3, use
CasADi’s gradient function to get a new expression for the gradient of the objective
function. According to the first order necessary conditions for optimality, this gradient
must be zero. Formulate and solve this as a root-finding problem in CasADi. Use the
same initial condition as before.

2


