AWESCO Winter School on Numerical Optimal Control with DAE - University of Freiburg Exercise 13: Periodic Optimal Control with DAEs

Joris Gillis, Rien Quirynen, Joel Andersson, Sebastien Gros, Moritz Diehl

Monodromy matrix

Modeling

The model we will work with in this excercise and the previous represents a quadcopter with a 3D pendulum attached at the centre of mass. In the template you will find a direct collocation method for this system. We will analyze a periodic optimal control problem here instead.

- 1.1 Adapt the template such that the problem becomes periodic, and you end up with n_x less decision variables. For the null-space basis Z from the slides, use invariants.jacobian() and the CasADi nullspace command. The solution should be trivial: static hovering at (0, 0, 0).
- 1.2 There is a parameter r0 in the file that sets the distance between two waypoints that the quadcopter should move to. It was set to 0 previously. Increase it to 0.1 m. Does the problem converge? Set it to 0.0001 m. Does the problem converge now?
- 1.3 Use a homotopy strategy to solve the $r_0 = 0.1$ m problem: build a loop over the NLP construction and solution code where r_0 takes the values $[0.001 \ 0.01 \ 0.05 \ 0.1]$ and where the solution of one iteration serves as a starting value for the next iteration's NLP.
- 1.4 Set up a collocation based integrator to plot the solution trajectory with 10 times more samples:

```
i options = struct;
2 options.tf = T/N/10;
3 options.implicit_solver = 'newton';
4 options.number_of_finite_elements = 1;
5 options.interpolation_order = 4;
6 options.collocation_scheme='radau';
7 options.implicit_solver_options = struct('abstol',1e-9);
8
9 intg = integrator('intg', 'collocation', dae, options);
```

Use $x = full(res_X\{1\})$; as a starting point, and integrate all the way to the end time. Plot the top-side view of the end effector and quadcopter position trajectory and make sure it looks like a closed orbit.

1.5 Extra. For periodic systems, the monodromy matrix $\frac{\partial x(t_f)}{\partial x(0)}$ provides information about the stability of the system. Compute the monodromy matrix using symbolic calls to the integrator function with T/N interval, and using jacobian. Is the system stable?