AWESCO Winter School on Numerical Optimal Control with DAE - University of Freiburg Exercise 11: High Index DAEs and Index Reduction

Rien Quirynen, Joel Andersson, Joris Gillis, Sebastien Gros, Moritz Diehl

A first toy example: Solutions

Let us consider the following system of Differential Algebraic Equations (DAE):

$$\dot{x}_1(t) - x_3(t) = 0$$

$$x_2(t)(1 - x_2(t)) = 0$$

$$x_1(t)x_2(t) + x_3(t)(1 - x_2(t)) = t$$
(1)

The following tasks should be carried out on pen and paper, so without using CasADi:

1.1 What is the differential index of the DAE system above?

The index is at least > 0, since it is not an ODE system. The exact index will however depend on the value of $x_2(t)$ as discussed further. We could apply the definition of the differential index and start differentiating the equations with respect to time t until we obtain a pure ODE system.

1.2 Does the index depend on the initial condition $[x_1(0), x_2(0), x_3(0)]$? If yes, how does the behavior of the system change exactly with respect to that initial condition?

The second equation reads:

$$x_2(t)(1 - x_2(t)) = 0,$$

such that x_2 is either equal to 0 or 1. When $x_2(t) = 0$, the DAE can be rewritten as:

$$\dot{x}_1(t) - x_3(t) = 0$$
$$x_3(t) = t,$$

which is of index 1. When $x_2(t) = 1$, the system reads as:

$$\dot{x}_1(t) - x_3(t) = 0$$
$$x_1(t) = t,$$

which is of index 2.

1.3 Derive the equivalent index-1 DAE system from the above set of equations, by differentiating with respect to time.

In case $x_2(t) = 0$, the above DAE is already of index 1 so nothing needs to be done. However, we need to apply index reduction to the system in case $x_2(t) = 1$. Since the system is semi-explicit, we can only differentiate the algebraic equation $x_1(t) = t$ with respect to time and obtain:

$$\dot{x}_1(t) = x_3(t)$$
$$x_3(t) = 1,$$

after substituting the expression $\dot{x}_1(t) = x_3(t)$.

1.4 Additionally, write down the corresponding consistency conditions (if there are any) which are necessary to keep your DAE model equivalent to the original system.

For the latter case where $x_2(t) = 1$, the equivalent DAE system reads as:

$$\dot{x}_1(t) = x_3(t)$$

 $x_2(t) = 1$
 $x_3(t) = 1$,

where additionally the consistency condition $x_1(t) = t$ is needed. This means that there is no additional degree of freedom to choose an initial condition for this system and the solution reads $[x_1(t), x_2(t), x_3(t)] = [t, 1, 1]$. When $x_2(t) = 0$, the initial condition $x_1(0)$ for the index-1 DAE can still be chosen freely.