
i
i

“ex7” — 2016/2/18 — 10:34 — page 1 — #1 i
i

i
i

i
i

AWESCO Winter School on Numerical Optimal Control with DAE - University of Freiburg

Exercise 7: Direct Single Shooting and Direct Multiple Shooting

Joel Andersson, Andrea Zanelli, Gianluca Frison,
Elena Malz, Joris Gillis, Sebastien Gros, Moritz Diehl

Consider the following simple OCP for controlling a Van-der-Pol oscillator:

minimize
x,u

∫ T

0

x1(t)
2 + x2(t)

2 + u(t)2 dt

subject to ẋ1 = (1− x2
2)x1 − x2 + u, x1(0) = 0

ẋ2 = x1, x2(0) = 1
−1 ≤ u(t) ≤ 1,

(1)

where T = 10.

Tasks:

7.1 Implement a CasADi Function f : R2×R→ R2×R that takes the states x and input
u and returns the ODE right-hand-side ẋ and the Lagrange objective term L. Anticipating
the upcoming simplified calling syntax in CasADi, define the following helper function:

1 def easycall(fcn, *args):
2 return fcn(args)[0] if len(args)==1 else fcn(args)

7.2 Divide the time horizon into N = 20 equidistant intervals, [tk, tk+1], k = 0, . . . , N − 1
and assume a constant control uk on each interval. Then take M = 4 steps with a RK4
scheme to define the discrete-time dynamics as a Function F : R2 × R→ R2 × R.

F should take x(tk) and uk and return x(tk+1) and Jk =
∫ tk+1

tk
L(x, uk), the contribution

to the objective from interval k. The key rows of the integrator could look like:

1 for j in range(M):
2 k1, k1_q = easycall(f, X, U)
3 k2, k2_q = easycall(f, X + DT/2 * k1, U)
4 k3, k3_q = easycall(f, X + DT/2 * k2, U)
5 k4, k4_q = easycall(f, X + DT * k3, U)
6 X = X + DT/6*(k1 + 2*k2 + 2*k3 + k4)
7 Q = Q + DT/6*(k1_q + 2*k2_q + 2*k3_q + k4_q)

Evaluate the integrator with x(tk) = [0.2, 0.3] and uk = 0.4.

1



i
i

“ex7” — 2016/2/18 — 10:34 — page 2 — #2 i
i

i
i

i
i

7.3 Formulate the direct single shooting NLP and solve it with IPOPT. Construct the NLP
variables step-by-step starting with empty list:

1 w = []
2 lbw = []
3 ubw = []

The key rows of the NLP formulation should look something along the lines of:

1 for k in range(N):
2 # New NLP variable for the control
3 Uk = MX.sym('U_' + str(k))
4 w += [Uk];
5 lbw += ...
6 ubw += ...
7

8 # Integrate till the end of the interval
9 Xk, Jk = easycall(F, Xk, Uk)

10 J += Jk
11 end

To plot the results, you can use

1 tgrid = [T/N*k for k in range(N+1)]
2 import matplotlib.pyplot as plt
3 plt.figure(1)
4 plt.clf()
5 plt.plot(tgrid, x1_opt, '--')
6 plt.plot(tgrid, x2_opt, '-')
7 plt.step(tgrid, vertcat((DM.nan(1), u_opt)), '-.')
8 plt.xlabel('t')
9 plt.legend(['x1','x2','u'])

10 plt.grid()
11 plt.show()

7.4 Modify the script to so that it implements the direct multiple shooting method. The con-
trol parametrization and the definition of the integrator should remain the same. Introduce
NLP variables corresponding to the state for all discrete time points, including k = 0.

7.5 Compare the IPOPT output for both scripts. How did the change from direct single shoo-
ting to direct multiple shooting influence:

• The number of iterations
• The number of nonzeros in the Jacobian of the constraints
• The number of nonzeros in the Hessian of the Lagrangian

7.6 Extra: Introduce the additional constraint x1(t) ≥ −0.25. You only need to enforce
this path constraint at the end of each control interval. Modify your scripts to solve the
modified problem with direct multiple shooting (easy) and direct single shooting (more
tricky).

2


