Exercises for Lecture Course on Modelling and System Identification (MSI) Albert-Ludwigs-Universität Freiburg – Winter Term 2015

Exercise 7: Nonlinear Least Squares for Output Error Minimization (OEM) (to be returned on Jan 19, 2016, 8:15 in HS 26, or before in building 102, 1st floor, 'Anbau')

Prof. Dr. Moritz Diehl, Robin Verschueren, Jesus Lago and Fabian Girrbach

Your MATLAB solution has to run from a main script called main.m, which can call other functions/scripts, but when running this script all the necessary results and plots should be clearly visible.Compress the folder in a .zip file and send it to jesuslagogarcia@gmail.com. Please state also your name and the names of your team members in the e-mail.

Exercise Task

Consider a car-pendulum system as the one depicted below:

This system is controlled by an external force F applied to the car, and its dynamics are defined by three parameters: m[kg] (mass of the pendulum), l[m] (length of the pendulum) and M[kg] (mass of the car).

The position of the car is denoted by p and the pendulum configuration is described by the angle θ , using that $\theta = \pi$ rad corresponds to the pendulum hanging down. The system dynamics are described by the following implicit ODE system

$$(M+m)\ddot{p} - ml(\ddot{\theta}\cos(\theta) - \sin(\theta)\dot{\theta}^2) - F = 0,$$

$$l\ddot{\theta} - \ddot{p}\cos(\theta) - g\sin(\theta) = 0.$$
 (1)

where g is the gravitational acceleration and assumed to be constant and equal to 9.81 m/s^2 . By solving for the differential state derivatives \ddot{p} and $\ddot{\theta}$, one can obtain the following explicit ODE formulation which is mathematically equivalent

$$\ddot{p} = \frac{-ml\sin(\theta)\theta^2 + mg\cos(\theta)\sin(\theta) + F}{M + m - m(\cos(\theta))^2},$$

$$\ddot{\theta} = \frac{-ml\cos(\theta)\sin(\theta)\dot{\theta}^2 + F\cos(\theta) + (M + m)g\sin(\theta)}{l(M + m - m(\cos(\theta))^2)}.$$
(2)

1. **System simulation** In the first part of the exercise we will implement a simulation routine to calculate the response of the system.

- (a) Given the system state $x = [p, \theta, \dot{p}, \dot{\theta}]^{\top}$, implement a function $[xdot] = carpole_ode(t, x, F, eta)$ which evaluates the right-hand side of the ODE $\dot{x} = f(x, F, \eta)$, with $\eta = [M, m, l]^{\top}$. Use the following parameters: M = 1 kg, m = 0.1 kg and l = 0.8 m. Validate your function by comparing it with the given black-box function rhs(t, x, F, eta), with the same function definition as carpole_ode. (2 point)
- (b) Implement one step of an Euler integration method $[x_next] = euler_step(x0, u, deltaT, eta, @ode)$, which performs one integration step for a general ODE $\dot{x} = f_{ode}(x, u, \eta)$ starting at x_0 , with input u, parameters η and a integration interval ΔT . (2 points)
- (c) Load the dataset from the website. On it you will find 4 vectors: $F_{\rm m}, p_{\rm m}, \theta_{\rm m}$ and $t_{\rm m}$, where $p_{\rm m}$ and $\theta_{\rm m}$ represent the measurements of the car and pendulum positions obtained when the system is excited with a set of inputs $F_{\rm m} = [F_{\rm m}(1), \ldots, F_{\rm m}(N)]$ on the timegrid $t_{\rm m} = [0, \ldots, (N-1)\Delta T]$. Use the implemented function $[x_{\rm next}] = {\rm euler_step}(x0, u, {\rm deltaT}, {\rm eta}, {\rm @ode})$ to build a function $[x_{\rm sim}] = {\rm carpole_sim}(x0, {\rm F}, {\rm t}, {\rm eta})$ which simulates the system response to a set of inputs F. Starting at $x_0 = [0, \pi, 0, 0]$, and using $F_{\rm m}$ and $\eta = [1, 0.1, 0.8]$, simulate the system and plot the simulated $p_{\rm s}$ and $\theta_{\rm s}$ together with $p_{\rm m}$ and $\theta_{\rm m}$ as a function of time. Does the pendulum swing up? Use the visualize function. (2 points)
- (d) Extra: Repeat the last two tasks but using a Runge-Kutta integrator of order 4 instead of Euler. *Hint: check last section on page 50 on the script on numerical integration methods.* (2 bonus points)
- 2. Parameter estimation for output error minimization In the second part of the exercise we will use the function lsqnonlin of MATLAB to perform an estimation of the system parameters η .

lsqnonlin takes as input a vector function $f(\eta) = [f_1(\eta), \ldots, f_N(\eta)]$ with parameter η , and minimizes $||f(\eta)||_2^2$ with respect to η . You can find more information on: www.mathworks.com/help/optim/ug/lsqnonlin.html

Assuming that the car-pole system has only output errors, and that these errors are Gaussian with noise variances $\sigma_p = 0.1 \text{ m}$ and $\sigma_{\theta} = 0.2 \text{ rad}$, then the Maximum Likelihood Estimation problem to estimate η is:

$$\eta^* = \arg\min_{\eta} \| [p_{\rm m}^{\top}, \theta_{\rm m}^{\top}]^{\top} - M(x_0, F_{\rm m}, t_{\rm m}, \eta) \|_{\Sigma^{-1}}^2$$
(3)

Here, $M(x_0, F, t, \eta) = [p_s^{\top}, \theta_s^{\top}]^{\top}$ represents the simulated values of p and θ in a vector shape, $[p_m^{\top}, \theta_m^{\top}]^{\top} - M(x_0, F_m, t_m, \eta)$ are the residuals between measurements and simulation and Σ the covariance matrix of $[p_m^{\top}, \theta_m^{\top}]^{\top}$.

- (a) Implement a function res = residuals (eta) which computes the residual vector between the given measurements p_m and θ_m and the simulated values p_s and θ_s obtained from $[x_sim] = carpole_sim(x0, F, t, eta)$, again with $x_0 = [0, \pi, 0, 0]$ and using F_m2 as input, given in the dataset. (2 point)
- (b) Adapt your function residuals in order to incorporate the measurement variances correctly, i.e. weight the cost function in the right way. (1 point)
- (c) Use lsqnonlin to estimate η^* . (2 points)
- (d) Plot the simulated model with η^* versus the measurements. (1 point)
- (e) Extra: Can you find a estimate for the covariance of your estimator η^* ? *Hint: linearize your residual function and use it to give an approximation of the covariance.* (2 bonus points)

This sheet gives in total 12 points and 4 bonus points