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Exercises for Lecture Course on Modelling and System Identification (MSI)
Albert-Ludwigs-Universität Freiburg – Winter Term 2015

Exercise 7: Nonlinear Least Squares for Output Error Minimization (OEM)
(to be returned on Jan 19, 2016, 8:15 in HS 26, or before in building 102, 1st floor, ’Anbau’)

Prof. Dr. Moritz Diehl, Robin Verschueren, Jesus Lago and Fabian Girrbach

Your MATLAB solution has to run from a main script called main.m, which can call other func-
tions/scripts, but when running this script all the necessary results and plots should be clearly visible.Compress
the folder in a .zip file and send it to jesuslagogarcia@gmail.com. Please state also your name
and the names of your team members in the e-mail.

Exercise Task

Consider a car-pendulum system as the one depicted below:
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This system is controlled by an external force F applied to the car, and its dynamics are defined by
three parameters: m[kg] (mass of the pendulum), l[m] (length of the pendulum) and M [kg] (mass of the
car).

The position of the car is denoted by p and the pendulum configuration is described by the angle θ,
using that θ = π rad corresponds to the pendulum hanging down. The system dynamics are described by
the following implicit ODE system

(M +m)p̈−ml(θ̈ cos(θ)− sin(θ)θ̇2)− F = 0,

lθ̈ − p̈ cos(θ)− g sin(θ) = 0.
(1)

where g is the gravitational acceleration and assumed to be constant and equal to 9.81 m/s2. By solving
for the differential state derivatives p̈ and θ̈, one can obtain the following explicit ODE formulation which
is mathematically equivalent

p̈ =
−ml sin(θ)θ̇2 +mg cos(θ) sin(θ) + F

M +m−m(cos(θ))2
,

θ̈ =
−ml cos(θ) sin(θ)θ̇2 + F cos(θ) + (M +m)g sin(θ)

l(M +m−m(cos(θ))2)
.

(2)

1. System simulation In the first part of the exercise we will implement a simulation routine to calcu-
late the response of the system.
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(a) Given the system state x = [p, θ, ṗ, θ̇]>, implement a function [xdot] = carpole ode(t,x,
F, eta)which evaluates the right-hand side of the ODE ẋ = f(x, F, η), with η = [M,m, l]>.
Use the following parameters: M = 1 kg, m = 0.1 kg and l = 0.8 m. Validate your function
by comparing it with the given black-box function rhs(t,x,F,eta), with the same func-
tion definition as carpole ode. (2
point)

(b) Implement one step of an Euler integration method [x next] = euler step(x0,u,deltaT,
eta,@ode), which performs one integration step for a general ODE ẋ = fode(x, u, η) start-
ing at x0, with input u, parameters η and a integration interval ∆T . (2
points)

(c) Load the dataset from the website. On it you will find 4 vectors: Fm, pm, θm and tm, where
pm and θm represent the measurements of the car and pendulum positions obtained when
the system is excited with a set of inputs Fm = [Fm(1), . . . , Fm(N)] on the timegrid tm =
[0, . . . , (N − 1)∆T ]. Use the implemented function [x next] = euler step(x0, u,
deltaT, eta, @ode) to build a function [x sim] = carpole sim(x0, F, t,
eta)which simulates the system response to a set of inputs F . Starting at x0 = [0, π, 0, 0], and
using Fm and η = [1, 0.1, 0.8], simulate the system and plot the simulated ps and θs together
with pm and θm as a function of time. Does the pendulum swing up? Use the visualize
function. (2 points)

(d) Extra: Repeat the last two tasks but using a Runge-Kutta integrator of order 4 instead of Euler.
Hint: check last section on page 50 on the script on numerical integration methods. (2 bonus
points)

2. Parameter estimation for output error minimization In the second part of the exercise we will
use the function lsqnonlin of MATLAB to perform an estimation of the system parameters η.

lsqnonlin takes as input a vector function f(η) = [f1(η), . . . , fN(η)] with parameter η, and
minimizes ‖f(η)‖2

2 with respect to η. You can find more information on:
www.mathworks.com/help/optim/ug/lsqnonlin.html

Assuming that the car-pole system has only output errors, and that these errors are Gaussian with
noise variances σp = 0.1 m and σθ = 0.2 rad , then the Maximum Likelihood Estimation problem
to estimate η is:

η∗ = arg min
η
‖[p>m, θ>m]> −M(x0, Fm, tm, η)‖2

Σ−1 (3)

Here, M(x0, F, t, η) = [p>s , θ
>
s ]> represents the simulated values of p and θ in a vector shape,

[p>m, θ
>
m]> − M(x0, Fm, tm, η) are the residuals between measurements and simulation and Σ the

covariance matrix of [p>m, θ
>
m]> .

(a) Implement a function res = residuals(eta) which computes the residual vector be-
tween the given measurements pm and θm and the simulated values ps and θs obtained from
[x sim] = carpole sim(x0, F, t, eta), again with x0 = [0, π, 0, 0] and using
F m2 as input, given in the dataset. (2 point)

(b) Adapt your function residuals in order to incorporate the measurement variances correctly,
i.e. weight the cost function in the right way. (1 point)

(c) Use lsqnonlin to estimate η∗. (2 points)

(d) Plot the simulated model with η∗ versus the measurements. (1 point)

(e) Extra: Can you find a estimate for the covariance of your estimator η∗? Hint: linearize your
residual function and use it to give an approximation of the covariance. (2 bonus points)
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This sheet gives in total 12 points and 4 bonus points
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