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Introduction and objectives

Conventional feedback control vs. advanced control
Conventional decentralized control is usually based on PID algorithms:

▶ Control action depends only on tracking error: e(k) = ys(k) − y(k)
▶ No system model is used by the controller

Advanced multivariable control is designed on a system model:
▶ To obtain an LTI controller (e.g., LQR, IMC, H∞)
▶ To solve (repeatedly) optimal control problems (e.g., MPC)

Objectives of this lecture
Motivate the use of advanced control techniques (MPC)
Explain the basics of multivariable systems identification
Discuss the practical issues faced and explain how to deal with them
Introduce advanced multivariable identification techniques
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An example of industrial process: evaporation
Basic concepts

Evaporation processes aim at concentrating
a solution (e.g., sugar) by removing the
solvent via evaporation
Heat needs to be supplied
Usually operate at constant pressure
(hence constant temperature)
To minimize operating costs, they are often
arranged in integrated multiple stages.

Mass and energy balances
Overall mass balance: dM

dt
= F− L− V

Solute mass balance: Mdx
dt

= FxF + (V − F) x

Energy balance: Mcp
dT
dt

= Fcp (TF − T) − Vλ+Q
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Process flow diagram of multistage evaporation
Forward feed triple effect arrangement

Conditions for heat integration
For heat transfer to be possible: T1 > T2 > T3

This is achieved by operating at decreasing pressures: p1 > p2 > p3
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Mass and energy balances of multi-stage evaporation

First evaporator
Overall mass balance: dM1

dt
= F− L1 − V1

Solute mass balance: M1
dx1
dt

= FxF + (V1 − F) x

Energy balance: M1cp
dT1
dt

= Fcp (TF − T1) − Vλ+Q

i−th evaporator (i = 2, 3)
Overall mass balance: dMi

dt
= Li−1 − Li − Vi

Solute mass balance: Mi
dxi

dt
= Li−1xi−1 + (Vi − Li−1) xi

Energy balance: Micp
dTi

dt
= Li−1cp (Ti−1 − Ti) − Viλi + Vi−1λi−1
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Conventional control architecture

CC

LCLC LC

TC TC TC

Decentralized control structure
Each controlled variable is paired with a manipulated variable
A SISO PID controller is used for each pairing
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Control issues and objectives

Multivariable system features
Interactions: each manipulated variable affects more than one controlled
variable
Directionality: it is easier to ``move'' the system in certain ``directions''
than in others
Both manipulated and controlled variable should satisfy certain (safety,
quality, operation) constraints

Opportunities
These needs coupled with economic reasons call(ed) for the adoption of
advanced optimization based control techniques, able to:

Control all variables adjusting all manipulated variables simultaneously
Minimize energy and cost
Respect constraints
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Advanced control architecture

CI

LILI LI

TI TI TI

Advanced Control 
System
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Model predictive control: an introduction

Timet
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Model predictive control: basic formulation
The optimal control problem

Given the current state of the system, x(k), solve:

min
u,x

∞∑
i=0

ℓ(xi,ui) subject to:

x0 = x(k) (Initial condition)
xi+1 = model(xi,ui) (System dynamics)

(xi,ui) ∈ Z (Constraints)

Inject the first element of the optimal control sequence: u∗ = (u∗
0,u1, . . .)

Linear MPC: role and origin of the model
In many industrial process model is chosen linear
The identification of a suitable model is the crucial step for MPC success
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The system identification loop

Input 
design

Data 
collection

Prior knowledge

Model set

Fit criterion

Parameters identification

Model
Validation

Good model

Bad model
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Preliminary tests: objectives and practice

Objectives
Identification data is(generally) collected during specific campaigns
Test duration should be minimized, but data should be informative

Functional design
The following list of variables are compiled:

▶ MV: manipulated variables
▶ CV: controlled variables (measurable)
▶ DV: disturbance variables (measurable)

Instrumentation (sensors and actuators) may undergo into maintenance
before testing
Prior knowledge and/or preliminary tests are used to decide:

▶ Amplitude of each MV variation
▶ Duration of each MV variation (settling time)
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Traditional open-loop step tests
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Limitations of step tests
Some useful quantities

Autocorrelation function of a stationary stochastic variable {u(k)}:
Ru(τ) = E (u(k)u(k− τ))

Power spectrum or spectral density

Φu(ω) =

∞∑
τ=−∞Ru(τ)e

−iτω

Signals requirements
Identification signals must have a sufficiently high power spectrum mid
and low frequency range
A related property of signals is called persistent excitation
Step signals have limited frequency content and do not excite the plant
significantly
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Beyond the step tests
GBN and PRBS

Generalized Binary Noise (GBN) signals are very effective (Zhu, 2001)
It has two possible values {+a,−a}

Let psw ∈ (0, 1) be the switching probability. The signal obeys:{
P [u(k) = −uk−1] = psw

P [u(k) = uk−1] = 1 − psw

PRBS are similar but periodic
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Closed-loop tests: basic idea

Process

Controller

Basic relations
Feedback is used: v(k) = −F(y(k))

Independent ``setpoints'' are added to v(k):
u(k) = v(k) + r(k) = −F(y(k)) + r(k)

Setpoints are used to improve excitations at higher frequencies
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Closed-loop vs open-loop tests

Advantageous features of open-loop signals
There is no need to have a working controller
Identification algorithms are always applicable to open-loop data
Input variations (amplitude and duration) defined by the user
Dynamic responses more easily understood

Advantageous features of closed-loop signals
Variations of outputs can be controlled
Variations of inputs are simultaneous
Many studies report that ``closed-loop data are better suited for
controller design''
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Multivariable data collection

Motivations
Multivariable signals are more informative and excite the system in
several directions
The nonlinearity is better understood by multivariable signals

Recommended practice
Open-loop data collection: use independent GBN inputs
Closed-loop data collection: use independent GBN setpoints
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Testing the multi-stage evaporator: inputs
Input design parameters

Three days of testing using MIMO, independent GBN signals
Switch probability psw = 0.02, minimum switch time of 4 min
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Testing the multi-stage evaporator: outputs
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FIR model for SISO systems
Ideal and practical Finite Impulse Response model

The ideal convolution model in discrete time is:

yk =

∞∑
j=1

hjuk−j

with {hj} coefficients of the finite impulse response.
For open-loop stable systems, it follows that: limj→∞ hj = 0
The practical FIR model is (M > 0 is the model horizon):

yk =

M∑
j=1

hjuk−j
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FIR model identification via least-squares
Linear predictor construction

Assume input and output data are available: [ u0,...,uN ], [ y0,...,yN ],
For each k ⩾ M, write:

yk = g1uk−1 + g2uk−2 + · · ·+ gMuk−M + ek = φkθ+ ek

where: φk = [ uk−1 uk−2 ··· uk−M ], and θ = [ g1 g2 ··· gM ]⊤

Stack all terms for k = M, . . . ,N: yM
yM+1

...
yN

 =

 φM
φM+1

...
φN

 θ+

 eM
eM+1

...
eN

 ⇒ y = Φθ+ e

Least-squares problem and solution
Mean Square Error (MSE) loss function:

VLS(θ) =
1
N

N∑
k=M

e2
k =

1
N
(y−Φθ)⊤(y−Φθ)

Well known solution: θ = (Φ⊤Φ)−1Φ⊤y = Φ+y
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Multivariable FIR model
Extension to Multiple Input Multiple Output (MIMO) systems

Consider a system with m inputs (u(1),u(2), . . . ,u(m)) and p outputs
(y(1),y(2), . . . ,u(p))

For each output, a Multiple Input Single Output (MISO) approach is used

y
(i)
k =

M∑
j=1

g
(i1)
j u

(1)
k−j +

M∑
j=1

g
(i2)
j u

(2)
k−j + · · ·+

M∑
j=1

g
(im)
j u

(m)
k−j + e

(i)
k

= φ
(1)
k θ(i1) +φ

(2)
k θ(i2) + · · ·+φ

(m)
k θ(im) + e

(i)
k

Stacking all terms for k = M, . . . ,N and θ(i) = [ θ(i1) ··· θ(im) ]⊤

y(i) = Φθ(i) + e(i) ⇒ θ(i) = Φ+y(i)

Input and output relations
The user defines which inputs affect the response of each output i
This input/output relations are decided using preliminary tests
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Comments of the FIR model

Good features of FIR models
Very little prior knowledge is required, except which input/output
coefficients need to be determined
It is statistically unbiased and consistent

Bad features of FIR models
It is over-parameterized, and can be noise sensitive because the
regressor matrix Φ is often ill-conditioned
It is a (very) high-order model: order reduction may be necessary

Extension to measurable disturbances
Measurable disturbances are treated as additional inputs of the MISO
structure
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State-space systems: basic definitions
LTI system: innovation and predictor forms
Innovation form:

xk+1 = Axk + Buk + Kek

yk = Cxk + ek

Predictor form (AK = A− KC):
xk+1 = AKxk + Buk + Kyk

yk = Cxk + ek

with dimensions: x ∈ Rn, u ∈ Rm, y ∈ Rp

Main assumptions
(A,B) controllable, (A,C) observable, and AK = A− KC strictly Hurwitz
The innovation {ek} is a stationary, zero mean, white noise process:

E(eje
⊤
j ) = Re, E(eie

⊤
j ) = 0 for i ̸= j

Input {uk} and output {yk} data sequences are available for k = 0, . . . ,N.

Indirect routes to get this LTI model
They can be obtained via realization of input-output models
Often the obtained order is quite high, with no perceivable advantages
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Subspace identification algorithms: introduction
Motivations

Multivariable input/output systems identification requires prior
knowledge or trial-and-error to determine the system orders
Input/output systems identification is always MISO, whereas in some
cases it would desirable to directly identify MIMO models
Identification of advanced multivariable models (e.g., ARMAX, OE, etc.)
require solution of large nonconvex nonlinear programming problems

Features
Direct identification of an LTI state-space model
Applicable to both MIMO and MISO approaches
Compact multivariable state-space representation
Very little prior knowledge required (an upper bound to the order)
Based on reliable linear algebra decompositions
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Basic SID algorithm: derivation
An r-step prediction model

For each k, define an r-step prediction model:
yk

yk+1
yk+2

...
yk+r−1


︸ ︷︷ ︸

yk

=


C
CA
CA2

...
CAr−1


︸ ︷︷ ︸

Γr

xk +


0 ··· ··· 0

CB 0 ··· 0
CAB CB ··· 0

...
... ... ...

CAr−2B CAr−3B ··· 0


︸ ︷︷ ︸

Hu
r


uk

uk+1
uk+2

...
uk+r−1


︸ ︷︷ ︸

uk

+


I ··· ··· 0

CK I ··· 0
CAK CK ··· 0

...
... ... ...

CAr−2K CAr−3K ··· I


︸ ︷︷ ︸

He
r


ek

ek+1
ek+2

...
ek+r−1


︸ ︷︷ ︸

ek

Repeat for k ∈ {r, . . . ,M = N− r+ 1} and concatenate horizontally:
[yr ··· yM ]︸ ︷︷ ︸

Y

= Γr [ xr ··· xM ]︸ ︷︷ ︸
x

+Hu
r [ur ··· uM ]︸ ︷︷ ︸

U

+He
r [ er ··· eM ]︸ ︷︷ ︸

E
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Basic SID algorithm: extended observability matrix
The basic relation

The previous relation is written compactly as:
Y = Γrx+Hu

r U+He
rE

Γr is called extended observability matrix
Hu

r and He
r are block lower triangular matrices

Computing the extended observability matrix
Many different methods exist. For instance express:

x = [ xr ··· xM ] = Ar
K [ x0 ··· xM−r ] + [Ar−1

K B ···B ]Up + [Ar−1
K K ···K ]Yp

≊ [Ar−1
K B ···B Ar−1

K K ···K ]︸ ︷︷ ︸
Lz

[
Up

Yp

]
︸ ︷︷ ︸
Zp

Solve the basic relation: Y = ΓrLzZp +Hu
r U+He

rE to obtain (ΓrLz)

Compute Γr from a truncated SVD of (ΓrLz)
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Basic SID algorithm: obtaining (A,B,C)
Computing (A,C)

From the extended observability matrix observe:

Γr =


C
CA
CA2

...
CAr−1

 ⇒

 CA
CA2

...
CAr

 =

 C
CA

...
CAr−1

A

Therefore (using Matlab notation):
▶ Define C C = Γr(1 : p, :)
▶ Compute A as least squares solution of the following overdetermined linear

system: Γr(p+ 1 : pr, :) = Γr(1 : p(r− 1), :)A

Computing B and the rest...
Having computed (A,C), solving for B can be done again as a least
squares problem
Usually also x0 and K can be computed by LS operations
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Model validation: prediction error analysis
Output predictions

Given an input sequence, the model output sequence is evaluated
xk+1 = Axk + Buk

ymodel
k = Cxk

Comparative plots of yk vs ymodel
k are useful to assess the model quality

Prediction error analysis
Compute the prediction error sequence:

ϵk = yk − ymodel
k

Analyze its statistical properties:
▶ Autocorrelation function (ideally, it should be white noise)
▶ Input correlation: if the prediction error is correlated with the input, then we

have modeling errors
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Multistage evaporator process: input/output relations

From prior knowledge or preliminary tests

Thoughtfully identify which
inputs affects each outputs
Initial independent step tests
can be used
If an input/output relation is very
mild, it is often better to neglect it

L1 Q1 V1 L2 V2 L3 V3

M1 ✓ - ✓ - - - -
T1 - ✓ ✓ - - - -
x1 - - ✓ - - - -
M2 ✓ - - ✓ ✓ - -
T2 ✓ ✓ ✓ - ✓ - -
x2 ✓ - ✓ - ✓ - -
M3 - - - ✓ - ✓ ✓
T3 ✓ ✓ ✓ ✓ ✓ - ✓
x3 ✓ - ✓ ✓ ✓ - ✓
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Multistage evaporator process: identified model
Identification algorithm and parameters

MISO approach
N4SID algorithm from System Identification Toolbox of Matlab
Automatic order selection, based on singular value threshold

L1 Q1 V1 L2 V2 L3 V3

M1 − 0.04797
z−2.717 - − 0.0339

z−2.717 - - - -

T1 - 0.564
z−2.509 − 0.1745

z−2.509 - - - -

x1 - - 0.009394
z−2.549 - - - -

M2
0.05726
z−2.716 - - − 0.07207

z−2.716 − 0.09465
z−2.716 - -

T2
0.008029z−0.01856
z2−4.913z+6.029

0.089z−0.02579
z2−4.913z+6.029

0.2431z−0.6396
z2−4.913z+6.029 - −0.6057z+1.451

z2−4.913z+6.029 - -

x2 − 0.01418
z−2.604 - 0.01038

z−2.604 - 0.02976
z−2.604 - -

M3 - - - 0.07503
z−2.712 - 0.08504

z−2.712 − 0.1255
z−2.712

T3
0.001138z+0.03875
z2−4.898z+5.986

−0.02526z+0.3423
z2−4.898z+5.986

0.06671z−0.127
z2−4.898z+5.986

0.09903z−0.2557
z2−4.898z+5.986

2.472z−6.521
z2−4.898z+5.986 - −2.895z+7.385

z2−4.898z+5.986

χ3
−0.01013z+0.01865
z2−5.241z+6.864 - 0.004064z−0.005355

z2−5.241z+6.864
−0.2224z+0.6029
z2−5.241z+6.864

0.01244z−0.02893
z2−5.241z+6.864 - 0.464z−1.249

z2−5.241z+6.864
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Multistage evaporator process: model validation
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Conclusions

Systems identification is of paramount importance for the success of
advanced control, especially Model Predictive Control
Systems identification has grown significantly since its origins
Input design is at least as important as identification algorithms
Multivariable identification techniques (for input design and
identification) are becoming ubiquitous in process control
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