Multivariable system identification for Model Predictive Control: fundamentals and practice

Prof. Dr.-Ing. Gabriele Pannocchia

University of Pisa, Italy Department of Civil and Industrial Engineering

Invited lecture for the course on "Modelling and System Identification" November 25, 2015

Outline

Introduction

2 Input design and data collection

3 Identification algorithms

Introduction and objectives

Conventional feedback control vs. advanced control

- Conventional decentralized control is usually based on PID algorithms:
 - Control action depends only on tracking error: $e(k) = y_s(k) y(k)$
 - No system model is used by the controller
- Advanced multivariable control is designed on a system model:
 - To obtain an LTI controller (e.g., LQR, IMC, H_{∞})
 - To solve (repeatedly) optimal control problems (e.g., MPC)

Objectives of this lecture

- Motivate the use of advanced control techniques (MPC)
- Explain the basics of multivariable systems identification
- Discuss the practical issues faced and explain how to deal with them
- Introduce advanced multivariable identification techniques

An example of industrial process: evaporation Basic concepts

- Evaporation processes aim at concentrating a solution (e.g., sugar) by removing the solvent via evaporation
- Heat needs to be supplied
- Usually operate at constant pressure (hence constant temperature)
- To minimize operating costs, they are often arranged in integrated multiple stages.

Mass and energy balances

Overall mass balance: Solute mass balance: Energy balance:

$$\begin{split} \frac{dM}{dt} &= F - L - V \\ M \frac{dx}{dt} &= F x_F + (V - F) x \\ M c_p \frac{dT}{dt} &= F c_p (T_F - T) - V \lambda + Q \end{split}$$

G. Pannocchia (University of Pisa, Italy)

Multivariable identification for MPC design

Process flow diagram of multistage evaporation

Forward feed triple effect arrangement

Conditions for heat integration

- For heat transfer to be possible: T₁ > T₂ > T₃
- This is achieved by operating at decreasing pressures: p₁ > p₂ > p₃

Mass and energy balances of multi-stage evaporation

First evaporator

Overall mass balance: Solute mass balance: Energy balance:

$$\frac{dM_1}{dt} = F - L_1 - V_1$$

$$M_1 \frac{dx_1}{dt} = Fx_F + (V_1 - F) x$$

$$M_1 c_p \frac{dT_1}{dt} = Fc_p (T_F - T_1) - V\lambda + \zeta$$

i-th evaporator (i = 2, 3)

Overall mass balance: Solute mass balance: Energy balance:

$$\begin{split} & \frac{dM_{i}}{dt} = L_{i-1} - L_{i} - V_{i} \\ & M_{i} \frac{dx_{i}}{dt} = L_{i-1} x_{i-1} + (V_{i} - L_{i-1}) x_{i} \\ & M_{i} c_{p} \frac{dT_{i}}{dt} = L_{i-1} c_{p} (T_{i-1} - T_{i}) - V_{i} \lambda_{i} + V_{i-1} \lambda_{i-1} \end{split}$$

G. Pannocchia (University of Pisa, Italy)

Multivariable identification for MPC design

Conventional control architecture

Decentralized control structure

- Each controlled variable is paired with a manipulated variable
- A SISO PID controller is used for each pairing

G. Pannocchia (University of Pisa, Italy)

Multivariable identification for MPC design

Control issues and objectives

Multivariable system features

- Interactions: each manipulated variable affects more than one controlled variable
- Directionality: it is easier to ``move" the system in certain ``directions" than in others
- Both manipulated and controlled variable should satisfy certain (safety, quality, operation) constraints

Opportunities

These needs coupled with economic reasons call(ed) for the adoption of advanced optimization based control techniques, able to:

- Control all variables adjusting all manipulated variables simultaneously
- Minimize energy and cost
- Respect constraints

Advanced control architecture

Model predictive control: an introduction

Time

G. Pannocchia (University of Pisa, Italy)

Multivariable identification for MPC design

Model predictive control: basic formulation

The optimal control problem

• Given the current state of the system, x(k), solve:

$$\begin{split} \min_{u,x} \sum_{i=0}^\infty \ell(x_i,u_i) \\ x_0 &= x(k) \\ x_{i+1} &= \text{model}(x_i,u_i) \\ x_i,u_i) \in \mathbb{Z} \end{split}$$

subject to:

(Initial condition) (System dynamics) (Constraints)

• Inject the first element of the optimal control sequence: $u^* = (u_0^*, u_1, ...)$

Linear MPC: role and origin of the model

- In many industrial process model is chosen linear
- The identification of a suitable model is the crucial step for MPC success

The system identification loop

G. Pannocchia (University of Pisa, Italy)

Preliminary tests: objectives and practice

Objectives

- Identification data is(generally) collected during specific campaigns
- Test duration should be minimized, but data should be informative

Functional design

- The following list of variables are compiled:
 - MV: manipulated variables
 - CV: controlled variables (measurable)
 - DV: disturbance variables (measurable)
- Instrumentation (sensors and actuators) may undergo into maintenance before testing
- Prior knowledge and/or preliminary tests are used to decide:
 - Amplitude of each MV variation
 - Duration of each MV variation (settling time)

Traditional open-loop step tests

G. Pannocchia (University of Pisa, Italy)

Limitations of step tests

Some useful quantities

• Autocorrelation function of a stationary stochastic variable {u(k)}:

$$R_{\mathfrak{u}}(\tau) = \mathcal{E}\left(\mathfrak{u}(k)\mathfrak{u}(k-\tau)\right)$$

Power spectrum or spectral density

$$\Phi_{\rm u}(\omega) = \sum_{\tau=-\infty}^{\infty} {\sf R}_{\rm u}(\tau) e^{-i\tau\omega}$$

Signals requirements

- Identification signals must have a sufficiently high power spectrum mid and low frequency range
- A related property of signals is called persistent excitation
- Step signals have **limited** frequency content and do not excite the plant significantly

Beyond the step tests

GBN and PRBS

- Generalized Binary Noise (GBN) signals are very effective (Zhu, 2001)
- It has two possible values {+a, -a}
- Let $p_{sw} \in (0, 1)$ be the switching probability. The signal obeys:

$$\left(\begin{array}{c} P\left[u(k) = -u_{k-1}\right] = p_{sw} \\ P\left[u(k) = u_{k-1}\right] = 1 - p_{sw} \end{array} \right)$$

• PRBS are similar but periodic

Closed-loop tests: basic idea

Basic relations

• Feedback is used:

 $\nu(k) = -F(y(k))$

Independent ``setpoints" are added to v(k):

$$u(k) = v(k) + r(k) = -F(y(k)) + r(k)$$

Setpoints are used to improve excitations at higher frequencies

Closed-loop vs open-loop tests

Advantageous features of open-loop signals

- There is no need to have a working controller
- Identification algorithms are always applicable to open-loop data
- Input variations (amplitude and duration) defined by the user
- Dynamic responses more easily understood

Advantageous features of closed-loop signals

- Variations of outputs can be controlled
- Variations of inputs are simultaneous
- Many studies report that ``closed-loop data are better suited for controller design"

Multivariable data collection

Motivations

- Multivariable signals are more informative and excite the system in several directions
- The nonlinearity is better understood by multivariable signals

Recommended practice

- Open-loop data collection: use independent GBN inputs
- Closed-loop data collection: use independent GBN setpoints

Testing the multi-stage evaporator: inputs

Input design parameters

- Three days of testing using MIMO, independent GBN signals
- Switch probability p_{sw} = 0.02, minimum switch time of 4 min

G. Pannocchia (University of Pisa, Italy)

Testing the multi-stage evaporator: outputs

FIR model for SISO systems

Ideal and practical Finite Impulse Response model

• The ideal convolution model in discrete time is:

$$y_k = \sum_{j=1}^{\infty} h_j u_{k-j}$$

with $\{h_j\}$ coefficients of the finite impulse response.

- For open-loop stable systems, it follows that: $\lim_{j\to\infty} h_j = 0$
- The practical FIR model is (M > 0 is the model horizon):

$$y_k = \sum_{j=1}^M h_j u_{k-j}$$

FIR model identification via least-squares

Linear predictor construction

- Assume input and output data are available: $[u_0,...,u_N]$, $[y_0,...,y_N]$,
- For each $k \ge M$, write:

$$\begin{split} y_k &= g_1 u_{k-1} + g_2 u_{k-2} + \dots + g_M u_{k-M} + e_k = \phi_k \theta + e_k \\ \text{where: } \phi_k &= \left[\begin{smallmatrix} u_{k-1} & u_{k-2} & \dots & u_{k-M} \end{smallmatrix}\right], \text{ and } \theta = \left[\begin{smallmatrix} g_1 & g_2 & \dots & g_M \end{smallmatrix}\right]^\top \end{split}$$

• Stack all terms for
$$k = M, ..., N$$
:

$$\begin{bmatrix} y_{M} \\ y_{M+1} \\ \vdots \\ y_{N} \end{bmatrix} = \begin{bmatrix} \varphi_{M} \\ \varphi_{M+1} \\ \vdots \\ \varphi_{N} \end{bmatrix} \theta + \begin{bmatrix} e_{M} \\ e_{M+1} \\ \vdots \\ e_{N} \end{bmatrix} \Rightarrow y = \Phi \theta + e$$

Least-squares problem and solution

• Mean Square Error (MSE) loss function:

$$V_{LS}(\theta) = \frac{1}{N} \sum_{k=M}^{N} e_k^2 = \frac{1}{N} (\mathbf{y} - \boldsymbol{\Phi} \theta)^\top (\mathbf{y} - \boldsymbol{\Phi} \theta)$$

• Well known solution: $\boldsymbol{\theta} = (\boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^\top \boldsymbol{y} = \boldsymbol{\Phi}^+ \boldsymbol{y}$

Multivariable FIR model

Extension to Multiple Input Multiple Output (MIMO) systems

• Consider a system with m inputs $(\mathfrak{u}^{(1)},\mathfrak{u}^{(2)},\ldots,\mathfrak{u}^{(m)})$ and p outputs $(y^{(1)},y^{(2)},\ldots,\mathfrak{u}^{(p)})$

• For each output, a Multiple Input Single Output (MISO) approach is used

$$\begin{split} y_{k}^{(i)} &= \sum_{j=1}^{M} g_{j}^{(i1)} u_{k-j}^{(1)} + \sum_{j=1}^{M} g_{j}^{(i2)} u_{k-j}^{(2)} + \dots + \sum_{j=1}^{M} g_{j}^{(im)} u_{k-j}^{(m)} + e_{k}^{(i)} \\ &= \phi_{k}^{(1)} \theta^{(i1)} + \phi_{k}^{(2)} \theta^{(i2)} + \dots + \phi_{k}^{(m)} \theta^{(im)} + e_{k}^{(i)} \end{split}$$

• Stacking all terms for k = M, ..., N and $\theta^{(i)} = \begin{bmatrix} \theta^{(i1)} & \dots & \theta^{(im)} \end{bmatrix}^\top$ $\mathbf{y}^{(i)} = \mathbf{\Phi} \theta^{(i)} + \mathbf{e}^{(i)} \Rightarrow \theta^{(i)} = \mathbf{\Phi}^+ \mathbf{y}^{(i)}$

Input and output relations

- The user defines which inputs affect the response of each output i
- This input/output relations are decided using preliminary tests

G. Pannocchia (University of Pisa, Italy)

Multivariable identification for MPC design

Comments of the FIR model

Good features of FIR models

- Very little prior knowledge is required, except which input/output coefficients need to be determined
- It is statistically unbiased and consistent

Bad features of FIR models

- It is over-parameterized, and can be noise sensitive because the regressor matrix Φ is often ill-conditioned
- It is a (very) high-order model: order reduction may be necessary

Extension to measurable disturbances

Measurable disturbances are treated as additional inputs of the MISO structure

State-space systems: basic definitionsLTI system: innovation and predictor formsInnovation form:Predictor form $(A_K = A - KC)$: $x_{k+1} = Ax_k + Bu_k + Ke_k$ $x_{k+1} = A_Kx_k + Bu_k + Ky_k$ $y_k = Cx_k + e_k$ $y_k = Cx_k + e_k$

with dimensions: $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$

Main assumptions

- (A, B) controllable, (A, C) observable, and $A_K = A KC$ strictly Hurwitz
- The innovation $\{e_k\}$ is a stationary, zero mean, white noise process:

$$\mathcal{E}(e_j e_j^{\top}) = R_e, \qquad \mathcal{E}(e_i e_j^{\top}) = 0 \quad \text{for } i \neq j$$

• Input $\{u_k\}$ and output $\{y_k\}$ data sequences are available for $k=0,\ldots,N.$

Indirect routes to get this LTI model

- They can be obtained via realization of input-output models
- Often the obtained order is quite high, with no perceivable advantages

Subspace identification algorithms: introduction

Motivations

- Multivariable input/output systems identification requires prior knowledge or trial-and-error to determine the system orders
- Input/output systems identification is always MISO, whereas in some cases it would desirable to directly identify MIMO models
- Identification of advanced multivariable models (e.g., ARMAX, OE, etc.) require solution of large nonconvex nonlinear programming problems

Features

- Direct identification of an LTI state-space model
- Applicable to both **MIMO** and MISO approaches
- Compact multivariable state-space representation
- Very little prior knowledge required (an upper bound to the order)
- Based on reliable linear algebra decompositions

Basic SID algorithm: derivation

An r-step prediction model

• For each k, define an r-step prediction model:

• Repeat for $k \in \{r, ..., M = N - r + 1\}$ and concatenate horizontally: $\underbrace{[\mathfrak{y}_r \cdots \mathfrak{y}_M]}_{Y} = \Gamma_r \underbrace{[\mathfrak{x}_r \cdots \mathfrak{x}_M]}_{x} + H_r^u \underbrace{[\mathfrak{u}_r \cdots \mathfrak{u}_M]}_{U} + H_r^e \underbrace{[\mathfrak{e}_r \cdots \mathfrak{e}_M]}_{E}$

Basic SID algorithm: extended observability matrix

The basic relation

• The previous relation is written compactly as:

 $\mathbf{Y} = \Gamma_r \mathbf{x} + \mathbf{H}_r^{\mathbf{u}} \mathbf{U} + \mathbf{H}_r^{e} \mathbf{E}$

- Γ_r is called extended observability matrix
- H^{u}_{r} and H^{e}_{r} are block lower triangular matrices

Computing the extended observability matrix

• Many different methods exist. For instance express:

$$\mathbf{x} = \begin{bmatrix} x_r \cdots x_M \end{bmatrix} = A_K^r \begin{bmatrix} x_0 \cdots x_{M-r} \end{bmatrix} + \begin{bmatrix} A_K^{r-1}B \cdots B \end{bmatrix} \mathbf{U}_p + \begin{bmatrix} A_K^{r-1}K \cdots K \end{bmatrix} \mathbf{Y}_p$$
$$\underbrace{\cong \begin{bmatrix} A_K^{r-1}B \cdots B & A_K^{r-1}K \cdots K \end{bmatrix}}_{L_z} \underbrace{\begin{bmatrix} \mathbf{U}_p \\ \mathbf{Y}_p \end{bmatrix}}_{\mathbf{Z}_p}$$

- Solve the basic relation: $Y = \Gamma_r L_z Z_p + H_r^u U + H_r^e E$ to obtain $(\Gamma_r L_z)$
- Compute Γ_r from a truncated SVD of $(\Gamma_r L_z)$

Basic SID algorithm: obtaining (A, B, C) Computing (A, C)

• From the extended observability matrix observe:

$$\Gamma_{r} = \begin{bmatrix} C \\ CA \\ CA^{2} \\ \vdots \\ CA^{r-1} \end{bmatrix} \Rightarrow \begin{bmatrix} CA \\ CA^{2} \\ \vdots \\ CA^{r} \end{bmatrix} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{r-1} \end{bmatrix} A$$

- Therefore (using Matlab notation):
 - Define C

$$C = \Gamma_r(\mathbf{1}: \mathbf{p}, :)$$

Compute A as **least squares** solution of the following overdetermined linear system: $\Gamma_r(p + 1 : pr, :) = \Gamma_r(1 : p(r - 1), :)A$

Computing B and the rest...

- Having computed (A, C), solving for B can be done again as a least squares problem
- Usually also x_0 and K can be computed by LS operations

Model validation: prediction error analysis

Output predictions

• Given an input sequence, the model output sequence is evaluated

$$\begin{split} x_{k+1} &= A x_k + B u_l \\ y_k^{\text{model}} &= C x_k \end{split}$$

• Comparative plots of y_k vs y_k^{model} are useful to assess the model quality

Prediction error analysis

• Compute the prediction error sequence:

$$\varepsilon_k = y_k - y_k^{\text{mode}}$$

- Analyze its statistical properties:
 - Autocorrelation function (ideally, it should be white noise)
 - Input correlation: if the prediction error is correlated with the input, then we have modeling errors

Multistage evaporator process: input/output relations

From prior knowledge or preliminary tests

- Thoughtfully identify which inputs affects each outputs
- Initial independent step tests can be used
- If an input/output relation is very mild, it is often better to neglect it

	L ₁	Q1	V_1	L2	V ₂	L3	V ₃
M1	\checkmark	-	\checkmark	-	-	-	-
T ₁	-	\checkmark	\checkmark	-	-	-	-
x ₁	-	-	\checkmark	-	-	-	-
M ₂	\checkmark	-	-	\checkmark	\checkmark	-	-
T ₂	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-
x ₂	\checkmark	-	\checkmark	-	\checkmark	-	-
M_3	-	-	-	\checkmark	-	\checkmark	√
T ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark
x3	\checkmark	-	\checkmark	\checkmark	\checkmark	-	\checkmark

Multistage evaporator process: identified model

Identification algorithm and parameters

- MISO approach
- N4SID algorithm from System Identification Toolbox of Matlab
- Automatic order selection, based on singular value threshold

	L ₁	Q1	V ₁	L ₂	V ₂	L ₃	V ₃
M1	$-\frac{0.04797}{z-2.717}$		$-\frac{0.0339}{z-2.717}$	1.0	~	-	· ·
T ₁	-	$\frac{0.564}{z-2.509}$	$-\frac{0.1745}{z-2.509}$	10 C.		-	
x ₁	0	1 - U	$\frac{0.009394}{z-2.549}$			- 11	-
M ₂	$\frac{0.05726}{z-2.716}$		1	$-\frac{0.07207}{z-2.716}$	$-\frac{0.09465}{z-2.716}$	-	
T ₂	$\frac{0.008029z - 0.01856}{z^2 - 4.913z + 6.029}$	$\tfrac{0.089z-0.02579}{z^2-4.913z+6.029}$	$\tfrac{0.2431z-0.6396}{z^2-4.913z+6.029}$	1	$\frac{-0.6057z+1.451}{z^2-4.913z+6.029}$	-	-
x ₂	$-\frac{0.01418}{z-2.604}$	V.V	$\frac{0.01038}{z-2.604}$	0.00	$\frac{0.02976}{z-2.604}$	-	¥ -
M_3			130	$\frac{0.07503}{z-2.712}$		$\frac{0.08504}{z-2.712}$	$-\frac{0.1255}{z-2.712}$
T ₃	$\tfrac{0.001138z+0.03875}{z^2-4.898z+5.986}$	$\frac{-0.02526z+0.3423}{z^2-4.898z+5.986}$	$\tfrac{0.06671z-0.127}{z^2-4.898z+5.986}$	$\frac{0.09903z - 0.2557}{z^2 - 4.898z + 5.986}$	$\frac{2.472z-6.521}{z^2-4.898z+5.986}$		$\frac{-2.895z+7.385}{z^2-4.898z+5.986}$
Χз	$\frac{-0.01013z+0.01865}{z^2-5.241z+6.864}$		$\frac{0.004064z - 0.005355}{z^2 - 5.241z + 6.864}$	$\tfrac{-0.2224z+0.6029}{z^2-5.241z+6.864}$	$\frac{0.01244z - 0.02893}{z^2 - 5.241z + 6.864}$	-	$\frac{0.464z - 1.249}{z^2 - 5.241z + 6.864}$

Multistage evaporator process: model validation

Conclusions

- Systems identification is of paramount importance for the success of advanced control, especially Model Predictive Control
- Systems identification has grown significantly since its origins
- Input design is at least as important as identification algorithms
- Multivariable identification techniques (for input design and identification) are becoming ubiquitous in process control