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Exercises for Lecture Course on Optimal Control and Estimation (OCE)
Albert-Ludwigs-Universität Freiburg – Summer Term 2015

Exercise 6 - Sequential Quadratic Programming (deadline: 15.6.2015, 2:15pm)
Prof. Dr. Moritz Diehl and Jonas Koenemann

In this exercise, we use the same simple pendulum system as in the previous exercise sheets. This time, we solve the
non-linear problem formulated as an Non-Linear Program (NLP) by a self written Sequential Quadratic Programming
(SQP) solver with Gauss-Newton Hessian.

Recall the system dynamics of the pendulum with state x = [φ, ω]>:

ẋ =

[
ω

2 sin(φ) + u

]
and the optimal control problem that we want to solve

minimize
x0, . . . , xN , u0, . . . , uN−1

N−1∑
k=0

(φ2k + u2k)

subject to
x̄0 − x0 = 0

f(xk, uk)− xk+1 = 0, for k = 0, . . . , N − 1
ωmin ≤ ωk ≤ ωmax, for k = 0, . . . , N
umin ≤ uk ≤ umax, for k = 0, . . . , N − 1

where the discrete time system dynamics are obtain by a Runge-Kutta integrator of order 4 with a timestep of h = 0.2.
The horizon of the optimal control problem is N = 60, the given initial state is x̄0 = [−π, 0]>, and the bounds are given
by ωmin = −π, ωmax = π, umin = −1.1, umax = 1.1.

The NLP with variables y = [x>0 , u0, . . . , uN−1, x
>
N ]> that we solved in the last exercise sheet with fmincon has

the form:

minimize
y

ψ(y)

subject to
G(y) = 0,
ymin ≤ y ≤ ymax

In this exercise sheet, we will first prepare the calculation of the Jacobian that is needed in the SQP iterations. We will
test the correctness of the Jacobian by passing it to the fmincon solver and find a faster way to compute the Jacobian.

Then we will implement the SQP solver by solving the Quadratic Programs (QP) in each iteration with then Matlab
quadprog function.

Use the same initialization for y0 as in Exercise Sheet 5. You can start by using the template sqp_template.m on
the course page which includes the solution to the last exercise sheet.

1. Inside the fmincon function the Jacobian of the non-linear equality constraints JG(y) = ∂G
∂y (y) is needed quite

often and internally calculated by finite differences. It is possible to manually calculate the Jacobian and pass it to
the solver.

Calculate the Jacobian JG(y) by finite differences, perturbing all 182 directions one after the other using δ = 10−4.
This needs in total 183 calls of G. Give your routine e.g. the name [jac,Gy]=GJacSlow(y). Compute JG for
w0 and look at the structure of this matrix by making a plot using the command spy(J).

Pass this Jacobian to your constraints function (see Matlab constraints documentation). How many iterations and
how much time does the solver need to converge? Specify which algorithm you used.

Don’t forget to set the option to tell the solver to use your Jacobian:

options=optimoptions(@fmincon,...,’GradConstr’,’on’,...);

(2 points)
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2. By looking at the structure of JG, we see that the matrix is very sparse can be calculated much more efficiently.

The Jacobian JG(y) = ∂G
∂y (y) is block sparse with as blocks either (negative) unit matrices or the partial derivatives

Ak = ∂f
∂x (xk, uk) and Bk = ∂f

∂u (xk, uk). Fill in the corresponding blocks in the following matrix

JG(y) =

 . . . . . . . . .


(2 points)

3. With this knowledge you can construct the Jacobian in a computationally much more efficient way, as follows:

• First write a function [A,B]=RK4stepJac(x,u) using finite differences with a step size of δ = 10−4.
Here, A = ∂f

∂x (x, u) and B = ∂f
∂u (x, u).

• Using this function [A,B]=RK4stepJac(x,u), implement a function [jac,Gy]=GJacFast(y).

• Compare if the result is correct by taking the difference of the Jacobians you obtain by
[jac,Gy]=GJacFast(y) and [jac,Gy]=GJacSlow(y).
Pass this Jacobian to your constraints function. How many iterations and how much time does the solver need
now?

(2 points)

4. Now learn how to use the MATLAB QP solver quadprog e.g. by calling help quadprog.

5. The SQP with Gauss-Newton Hessian (also called constrained Gauss-Newton method) solves a linearized version
of this problem in each iteration. More specific, if the current iterate is ȳ, the next iterate is the solution of the
following Quadratic Program (QP):

minimize
y

yTHy (1a)

subject to G(ȳ) + JG(ȳ)(y − ȳ) = 0, (1b)
ymin ≤ y ≤ ymax. (1c)

Define what Hx and Hu need to be in the Hessian

H =


Hx

Hu

. . .
Hx

 , Hx =

[ ]
, Hu =

[ ]
.

(1 point)

6. Write a function [ybar_next]=GNStep(ybar) that performs one SQP-Gauss-Newton step by first calling
[jac,Gy] = GJacFast(y) and then solving the resulting QP (1) using quadprog. Note that the QP is a
very sparse QP but that this sparsity is not exploited in full during the call of quadprog.

7. Write a loop around your function GNStep, initialize the GN procedure at at y0, and stop the iterations when
‖yk+1 − yk‖ gets smaller than 10−4. Plot the iterates as well as the vector G during the iterations. How many
iterations do you need? How much time does your SQP solver need to converge?

Plot the evolution of the state and the applied controls in time.

(3 points)

8. Bonus question: Find out how to exploit sparsity in the quadprog solver and solve the SQP with the sparse QP
solver. How much time does your SQP solver need to converge now?

(2 bonus points)
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