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Exercises for Lecture Course on Optimal Control and Estimation (OCE)
Albert-Ludwigs-Universität Freiburg – Summer Term 2015

Exercise 5 - Non-linear Programs (deadline: 8.6.2015, 2:15pm)
Prof. Dr. Moritz Diehl and Jonas Koenemann

In this exercise, we use the same simple pendulum system as in the previous exercise sheets. This time, we solve the
non-linear problem formulated as an Non-Linear Program (NLP) with the Matlab fmincon function.

Recall the system dynamics of the pendulum with state x = [φ, ω]>:

ẋ =

[
ω

2 sin(φ) + u

]
and the optimal control problem that we want to solve

minimize
x0, . . . , xN , u0, . . . , uN−1

N−1∑
k=0

(φ2k + u2k)

subject to
x̄0 − x0 = 0

f(xk, uk) − xk+1 = 0, for k = 0, . . . , N − 1
ωmin ≤ ωk ≤ ωmax, for k = 0, . . . , N
umin ≤ uk ≤ umax, for k = 0, . . . , N − 1

where the discrete time system dynamics are obtain by a Runge-Kutta integrator of order 4 with a timestep of h = 0.2.
The horizon of the optimal control problem is N = 60, the given initial state is x̄0 = [−π, 0], and the bounds are given
by ωmin = −π, ωmax = π, umin = −1.1, umax = 1.1.

In order to pass the optimal control problem to the solver we first have to formulate it as an NLP. The variables of
the optimal control problem are summarized in a vector y = (x0, u0, . . . , uN−1, xN )>. Then the NLP has the following
form:

minimize
y

ψ(y)

subject to
G(y) = 0,
ymin ≤ y ≤ ymax

1. Write down the objective function ψ(y) and the constraints on paper. Use the same order for the constraints as in
the optimal control problem.

G(y) =

 ...


ymax =


 ymin =




Implement the objective and the equality constraints as Matlab functions

(3 points)

2. Check if your functionG(y) does what you want by writing a forward simulation function [y]=simulate(x0,U)
that simulates, for a given initial value x0 and control profile U = (u0, . . . , uN−1), the whole trajectory x1, . . . , xN
and constructs from this the full vector y = (x0, u0, x1, . . . , xN ). If you generate for any x0 and U a vector y and
then you call your function G(y) with this input, almost all of your residuals should be zero. Which ones are not
zero?

As a test, simulate e.g. with x0 = [0, 0.5]> and uk = 1, k = 0, . . . , N − 1 in order to generate y, and then call
G(y), to test that your function G is correct. Specify the norm of the residuals G(y).

(2 points)
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3. Check the Matlab documentation to find out how to use fmincon:

http://de.mathworks.com/help/optim/ug/fmincon.html

and how to properly pass constraints to fmincon:

http://de.mathworks.com/help/optim/ug/writing-constraints.html

Then in your Matlab script, use fmincon to solve the NLP:

options=optimoptions(@fmincon, ’display’,’final/iter’,’MaxFunEvals’,100000);

y=fmincon(@objective,y0,[],[],[],[],lby,uby,@nonlconstraints,options);

As an initialization for y0 you can use x̄0 for all state variables and zero for all control variables.

How many iteration does the solver need to converge (use display option iter)? How long does the call to the
minimizer take (use tic/toc and the display option final)? Plot the evolution of the state and the applied
controls in time. Make an animation to see if the pendulum swings up (no need to submit).

(4 points)

4. Do a RK4 simulation of the pendulum and apply the optimal controls of Task 3 open-loop. Does the pendulum
swing up? Does the resulting state trajectory differ from the output of the solver? Why?

(1 points)

5. Bonus question: Set options to the solver to use different algorithms (Active-set, Interior-point, SQP). Compare
number of iterations and computation times.

Play with other options of the solvers like the type of finite differences for computing the Jacobian, stopping criteria,
and tolerances for violating the constraints. How do they influences computation time, number of iterations, and
precision of the solution.

(2 bonus points)
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