
i
i

“exercise2” — 2015/5/4 — 13:45 — page 1 — #1 i
i

i
i

i
i

Exercises for Lecture Course on Optimal Control and Estimation (OCE)
Albert-Ludwigs-Universität Freiburg – Summer Term 2015

Exercise 2 - Continuous Dynamic Systems (deadline: 11.5.2014)
Prof. Dr. Moritz Diehl, Jonas Koenemann and Greg Horn

1 Paper Airplane Modeling
Consider a two-dimensional model of an airplane with states x = [px, pz, vx, vz]

> where position ~p = [px, pz]
> and

velocity ~v = [vx, vz]
> are vectors in the x− z directions. We will use the standard aerospace convention that x̂ is forward

and ẑ is DOWN, so altitude is −pz . The system has one control u = [α], where α is the aerodynamic angle of attack in
radians. The system dynamics are:

d

dt


px
pz
vx
vz

 =


vx
vz

Fx/m
Fz/m

 (1)

where m = 2.0 is the mass of the airplane. The forces ~F on the airplane are

~F = ~Flift + ~Fdrag + ~Fgravity (2)

Lift force ~Flift is
~Flift =

1

2
ρ‖~v‖2CL(α)Sref êL (3)

where lift direction êL = [vz,−vx]>/‖~v‖, and lift coefficient CL = 2πα 10
12 . Sref is the wing aerodynamic reference area.

The drag force ~Fdrag is
~Fdrag =

1

2
ρ‖~v‖2CD(α)Sref êD (4)

Drag direction êD = −~v/‖~v‖, and drag coefficient CD = 0.01 +
C2

L

ARπ . The gravitational force is

~Fgravity = [0,m g]> (5)

Use AR = 10, ρ = 1.2, g = 9.81, Sref = 0.5.

Tasks

1. Write the continuous time model in the form of

d

dt
x = f(x, u) (6)

(1 point)

2. Simulate the system for 10 seconds using the ode45 MATLAB function. Use α = 5◦, and initial conditions
px = pz = vz = 0, vx = 10. Plot px, pz , vx, vz vs. time, and px vs. altitude.

(2 point)

3. Convert the system to the discrete time form

x(k + 1) = fd(x(k), u(k)) (7)

using an euler integrator with a timestep of 0.001 and a Runge-Kutta integrator of order 4 with a timestep of 0.1.
Simulate the system with both integration methods for 10 seconds and compare to ode45 from the previous task.
Using the MATLAB functions tic and toc, compare the computation times of all three simulations.

(2 points)
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4. Do a high accuracy simulation with ode45 to get the state of the system xode45 after one second. You can set the
accuracy with by passing options to the solver:

options = odeset(′RelTol′, 1.e− 12,′AbsTol′, 1.e− 15); (8)

Then simulate the system for 1 second using euler and rk4 integration with 5 different timesteps of 10−1s, 10−2s,
10−3s, 10−4s, and 10−5s. Plot the distance (error) of the final state to the high accuracy solution xode45 for the
different timesteps. Use a logarithmic scale for both axes.

(2 points)

5. Linearize the discrete time RK4 system to make an approximate system of the form

x(k + 1) ≈ f(x̃, ũ) + ∂f

∂x
(x̃, ũ)︸ ︷︷ ︸
A

(x(k)− x̃) + ∂f

∂u
(x̃, ũ)︸ ︷︷ ︸
B

(u(k)− ũ) (9)

using a first order Taylor expansion around the point x̃ = [10, 3, 11, 5]>, ũ = 5◦.

The Jacobian is given by
∂f

∂x
=
(
∂f
∂px

, ∂f∂pz ,
∂f
∂vx

, ∂f∂vz

)
. (10)

You can approximate the Jacobian by doing small variations in all directions of x and u (finite differences). For
example, in the direction of px the derivative ∂f

∂px
is given by:

∂f

∂px
(x̃, ũ) ≈ f(x̃+ [δ, 0, 0, 0]>, ũ)− f(x̃, ũ)

δ
. (11)

(2 points)

6. Plot the Eigenvalues of A in the complex plane. Is the system stable? Is this a problem?

(1 point)

7. Bonus question: Check the controllability of the linearized system (A,B) and discuss.

(2 bonus points)
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