
Time Optimal Flight of a Hexacopter

Johan Vertens and Fabian Fischer

Abstract— This project presents a way to calculate a time
optimal control path of a hexacopter using direct multiple
shooting in Matlab and the code generated integrators from
the ACADO toolkit. The path is along some waypoints and
within constraints. A physical model of the hexacopter and
some example trajectories are also presented. The trajectory
was simulated in Matlab and visualized with RViz from ROS.

I. INTRODUCTION

In this project we calculated an optimal control of a hex-
acopter using direct Multiple Shooting. The goal was to let
a multi-rotor system with 6 rotors fly along some waypoints
and within some given constraints, e.g. on angle and speed.
We used a physical model of the hexacopter and Matlab’s
fmincon in combination with a runge kutta integrator of
the order four for the control and trajectory calculation. The
trajectory was then visualized using a Matlab-ROS bridge
and the ROS tool RViz.
The hexacopter model is presented in Section II, while the
control calculation is presented in Section III. In the final
Section IV we present two example trajectories.

II. HEXACOPTER MODEL

For simulating the hexacopter within Matlab we
implemented a model of the system and pd-regulators
consisting of ordinary differential equations (ODE).
Movement of the hexacopter can be generated by changing
the thrusts of the different motors (T1...T6, Fig. 1) which
leads to a change of the torques and the velocities. In order
to compensate the rotational moment of the motors there
are three motors spinning right and three motors spinning
left.
The torques can be described with the following equation.
The motor thrusts are negative here because the z axis is
pointing downwards.

 T
Mx
My
Mz

=


−1 −1 −1 −1 −1 −1

0 −L
2√3
2 −L

2√3
2 0 L

2√3
2 L

2√3
2

L L
2 − L

2 −L − L
2

L
2

−Mc Mc −Mc Mc −Mc Mc




T1
T2
T3
T4
T5
T6

 (1)

T : total thrust
T1...T6 : thrust of each motor
Mx,My,Mz : torques of the x, y and z axis
L : distance between the motor axis and the center of the
hexacopter

Optimal Control and Estimation Course, Final Project
Albert-Ludwigs University of Freiburg, Faculty of Engineering

T4
T3

T2

T1

T5

T6
L

mg

Fig. 1. Thrusts of the motors [1]

With the calculated torques it is easily possible to compute
also the velocities and the accelerations of the system. Here
the translation-velocities are in the coordinate system of the
world, while the angular velocities and angular accelerations
are in the coordinate system of the hexacopter.

We summarize all quantities of interest:
v̇x, v̇y, v̇z : Accelerations in x-, y- and z
ωx,ωy,ωz : Angular velocities of x- ,y- and z
ẋ, ẏ, ż : Velocities of x-, y- und z.
Θ : Pitch angle
Φ : Roll angle
Ψ : Yaw angle
Ky : Propeller-yaw ratio
Mc : Yaw moment of the motors
Jmp : Inertia of a propeller
Jx,Jy,Jz : Inertia of the hexacopter

For the model equation part we used the model from
Baranek et. al presented in [6]. The accelerations in the
local coordinate system of the hexacopter can be modeled
in the following way:

v̇x =−vzωy + vyωz−gsin(Θ)

v̇y =−vxωz + vzωx +gcos(Θ)sin(Φ) (2)

v̇z =−vyωx + vxωy +gcos(Θ)cos(Φ)− T
m



The angular accelerations are modeled with:

ω̇x =
1
Jx
(−ωyωz(Jz− Jy)+Mx +Ky · Jmp ·Mz ·ωy)

ω̇y =
1
Jy
(−ωxωz(Jx− Jz)+My +Ky · Jmp ·Mz ·ωx) (3)

ω̇z =
Mz

Jz

The angular velocities are modeled with:

Θ̇ = ωy cos(Φ)−ωz sin(Φ)

Φ̇ = ωx +ωy sin(Φ) tan(Θ)+ωz cos(Φ) tan(Θ) (4)

Ψ̇ = ωy
sin(Φ)

cos(Θ)
+ωz

cos(Φ)

cos(Θ)

The velocities of the hexacopter in the world coordinate
system are modeled with:

ẋ = cos(Φ)cos(Θ)vx +(−sin(Ψ)cos(Φ)

+ cos(Ψ)sin(Θ)sin(Φ))vy

+(sin(Ψ)sin(Φ)+ cos(Ψ)sin(Θ)cos(Φ))vz

ẏ = sin(Φ)cos(Θ)vx +(−cos(Ψ)cos(Φ)

+ sin(Ψ)sin(Θ)sin(Φ))vy

+(−cos(Ψ)sin(Φ)+ sin(Ψ)sin(Θ)cos(Φ))vz

(5)

ż =−sin(Θ)vx + cos(Θ)sin(Φ)vy + cos(Θ)cos(Φ)vz

A. PD Regulators

The PD-regulators are controlling the motor thrusts with
respect to angle inputs in order to be able to control roll,
pitch and yaw (Fig. 2), while the total thrust is controlled
directly without any regulator. The resulting controls from
the PD’s (Rpitch,Rroll,Ryaw) are combined in a motor mixer
function Eq.9 to calculate the desired thrusts of each motor.
This function is part of the microcopter driver [2].
In conclusion the control inputs of the model are then
upitch,uroll, uyaw and uthrust.
The parameters given in Tab. I were obtained from
Solidworks simulations and experiments. A overview of the
inputs is represented in Fig. 3.

Rpitch = P1 epitch(t)+D1
d
dt

epitch(t)

Rroll = P2 eroll(t)+D2
d
dt

eroll(t) (6)

Ryaw = P3 eyaw(t)+D3
d
dt

eyaw(t)

with the equations in (7,8):

epitch(t) = Θ(t)−upitch(t)

eroll(t) = Φ(t)−uroll(t) (7)
eyaw(t) = Ψ(t)−uyaw(t)

zx

y

Θ

Φ

Ψ

Pitch

Roll

Yaw

Fig. 2. Local coordinate system of the hexacopter [1]

TABLE I
PARAMETERS

Parameter Value Parameter Value
Ky 0.001 P1 8
Jmp 0.00102638 kgm

s2 P1 0.83
Jx 0.006503 kgm

s2 P3 9
Jy 0.006503 kgm

s2 D1 0.83
Jz 0.012983 kgm

s2 D2 0.3
Mc 0.1 Nm D3 0.2

d
dt

epitch(t)≈ ωx

d
dt

eroll(t)≈ ωy (8)

d
dt

eyaw(t)≈ ωz

T1 = uthrust +δpitch +δyaw

T2 = uthrust +δroll +
δpitch

2
−δyaw

T3 = uthrust +δroll−
δpitch

2
+δyaw (9)

T4 = uthrust−δpitch−δyaw

T5 = uthrust−δroll−
δpitch

2
+δyaw

T6 = uthrust−δroll +
δpitch

2
−δyaw

with Eq. 10:

δpitch =
pdpitch

3

δroll =
4pdroll

7
(10)

δyaw = pdyaw

(11)



PD Pitch PD Roll PD Yaw

Controls

Motor mixer

ODE

MODEL

Desired
angles

Total
thrust

Fig. 3. Model structure

III. OPTIMIZATION

The problem is to find a time optimal trajectory from
a starting point x̄0 to a terminal point x̄m via some
k = 1 . . .m−1 waypoints x̄k.

A. Problem description

Because this is a time optimal problem we used the
method in [3] by adding a free variable T which is constant
between two waypoints to the state x of the system. The
scaling factor T can be changed, but only at a waypoint
state si(k). This way it is possible to find a time optimal
flight path between two waypoints, which then also leads
to an overall time optimal flight path. The augmented state
s and system function f (s,q) can be seen in (12). The set
I(k) := {i(1), . . . , i(m−1)} denotes the set of all indices
where a new waypoint starts, with i(0) = 0 and i(m) = N.

si =

[
xi
Ti

]
(12)

f (si,qi) =

[
Ti · fmodel(xi,qi)

Ti

]

The continous time optimal problem can be described as:

min
s,q

1
m

m−1

∑
k=0

Ti(k) (13)

subject to:

x0− x̄0 = 0
f (si,qi)− si+1 = 0, i ∈ {0, . . . ,N−1}\{i(1), . . . , i(m−1)}

P · f (si,qi)− xi+1 = 0, i ∈ {i(1), i(2), . . . , i(m−1)}
xmin ≤ xi ≤ xmax, i ∈ {0, . . . ,N}
umin ≤ ui ≤ umax, i ∈ {0, . . . ,N−1}
Tmin ≤ Ti ≤ Tmax, i ∈ {0, . . . ,N}

P =


1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . . 0 0

0 0 0 1 0


12×13

(14)

where P is a projection matrix from s to x. In the objective
function we sum up all the different Ti(k) in the states si(k) at
the waypoints and add the Ti(0) in the initial State si(0). This
sum divided by m is the overall flight time of the hexacopter.

B. Solving with fmincon

For solving the above problem we used Direct Multiple
Shooting [4] in combination with the Matlab fmincon
solver. By choosing a fixed number of controls N we made
a design variables vector D which contains all the states and
controls.

D =



s0
q0
s1
q1
...

sN−1
sN−1
sN


(15)

As an inital guess x0 and xN were set to x̄0 and x̄m and all
T state variables to some initial flight time T̄0. In fmincon
we used an upper- and lowerbound vector to constrain D in
the following way:
• control constraints: By constraining the controls like in

Table II we avoided negative or excessive thrust and
oversteering with too high pitch and roll angle controls.

• state constraints: By constraining all states to the min-
imal and maximal values in Table III we avoided
behaviour which is not supported by the hexacopter
model. Also we excluded flying through the ground
plane and a negative time-scaling factor T .

• initial state, terminal state and waypoint constraints: By
constraining the minimal and maximal values of the
initial state s0 and terminal state sN to the initial and
terminal points x̄0 and x̄N respectivly, we determined the
start and end point. The k waypoints were determined
in the same manner at every

⌊
j·N

k+1

⌋
state for j = 1 . . .k.

This way every path between two points had the same
number of controls. For the waypoints and the end point



TABLE II
LOWER AND UPPER BOUND OF THE CONTROLS

Control min max
Thrust 0 N 5.5 N
Pitch −50◦ 50◦
Roll −50◦ 50◦
Yaw −180◦ 180◦

TABLE III
LOWER AND UPPER BOUND OF THE STATES

State min max
Velocity in X-direction -16 m/s 16 m/s
Velocity in Y-direction -16 m/s 16 m/s
Velocity in Z-direction -6 m/s 6 m/s

Pitch −50◦ 50◦
Roll −50◦ 50◦
Yaw −180◦ 180◦

we also added, respectivly subtracted, some small delta
values to the states, which helps finding a solution.

The objective function used by fmincon returned the
overall flight time calculated in Eq. (13).

We modeled the system dynamics using the
nonlnconstr function provided to fmincon. In
this function we calculated the vector ceq which can be
seen in (16). The integrator function f (si,qi) is explained
in detail in Section III-C. Since the integrator function
provided the sensitivity with respect to si and qi it was
possible to build the Jacobian Gceq of the nonlnconstr
function, which can be seen in (17). By switching the
GradConstr option on, fmincon uses the Jacobian for
finding a solution faster.

ceq =


f (s0,q0)− s1
f (s1,q1)− s2

...
f (sN−1,qN−1)− sN

 (16)

Gceq =


A0 B0 −I 0 0 . . . 0 0 0
0 0 A1 B1 −I . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 . . . AN−1 BN−1 −I


Ai =

∂ f
∂ s

(s,q) (17)

Bi =
∂ f
∂q

(s,q)

We then deleted the continuity condition for the T state
variable at every waypoint-state si(k) with k = 1 . . .m− 1 in
ceq , so the optimizer is allowed to change the time scaling
factor T in this state. We also deleted the respective line in
the Jacobian Gceq of the nonlinconstr function.
The solver fmincon then calculated an optimal solution
using the interior-point algorithm.

Fig. 4. Flight visualization in RViz.

C. Acado Integrator

To speed up fmincon we used the ACADO Toolkit
and its built-in Matlab interface [5]. ACADO converted the
hexacopter model from Section II to C code, which was
then compiled with GCC to a binary MEX-file, callable from
Matlab. We then used an RK4 integrator with 3 built-in steps
provided by ACADO. The integrator step duration was set to
1
N , because our augmented problem formulation was scaled
from 0 to 1. This integrator function f (si,qi), which also
provided the sensitivity in s and q direction, was used to
compute the nonlinear equality constraints and their Jacobian
in Section III-B.

IV. RESULTS

A. Visualization

For visualizing the whole trajectory we implemented a
Matlab-ROS bridge, which sends the real time motion of
the hexacopter to a ROS node. The ROS node computes
the rotation and translation and transfers the data directly
to RViz. On the RViz side we used a CAD Model of the
hexacopter for showing the trajectory in a 3D space (Fig. 4).

0 0.5 1 1.5 2 2.5
−4

−3

−2

−1

0

1

2

3

4

5

6

 

 

Thrust Ctrl
Pitch Ctrl
Roll Ctrl
Yaw Ctrl

Fig. 5. Simple flight controls



B. Simple flight

In Fig. 5 and Fig.6 we present a simple hexacopter flight
from position (0,0,0) to (2,-2,2) via (-2,0,4). In the end point
the hexacopter should stop with nearly zero velocity. The
duration of the flight was 2.14 s.

−5

0

5

−5

0

5
0

1

2

3

4

5

x−axis in my−axis in m

z−
ax

is
 in

 m

Fig. 6. Simple flight trajectory

C. Angular-constrained flight

In Fig. 7 and Fig. 8 we present a hexacopter flight along
the waypoints given in Tab. IV. On every waypoints the
velocities should be nearly zero. The duration of the flight
was 5.99 s.

TABLE IV
ANGULAR-CONSTRAINED WAYPOINTS

Waypoint X Y Z Pitch Roll Yaw
Sinit 0 0 0 0 0 0
S1 3 -3 3 −45◦ 0 45◦
S2 3 -5 3 −45◦ 0 135◦

Sterm 0 0 0 0 0 0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−3

−2

−1

0

1

2

3

4

5

6

 

 

Thrust Ctrl
Pitch Ctrl
Roll Ctrl
Yaw Ctrl

Fig. 7. Angular-constrained controls

−5

0

5

−5
0

5

0

1

2

3

4

5

y−axis in mx−axis in m

z−
ax

is
 in

 m

Fig. 8. Angular-constrained trajectory

REFERENCES

[1] Bachelor Thesis: 3D-Objektkartierung mit Multi-Rotor-Systemen, Jo-
han Vertens, 2013.

[2] www.mikrokopter.de, July 27, 2014, flight-ctrl
[3] M. Diehl, Lecture Notes on Optimal Control and Estimation, July 23,

2014 , p 60.
[4] M. Diehl, Lecture Notes on Optimal Control and Estimation, July 23,

2014 , pp 64-65.
[5] www.acadotoolkit.org, July 27, 2014
[6] Baranek, R. and Solc, F. , Modelling and control of a hexa-copter,

May 13, 2012


