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Abstract— A model for a sailboat sailing against the wind’s
direction is described. An optimal trajectory with respect to the
velocity of the boat against the wind’s direction is computed
for a straight run and a tack.

I. INTRODUCTION

The report first describes the model of a sailboat. Secondly,
the model is discretized for optimization with an NLP solver.
Two optimizations for different scenarios are set up. Their
results are discussed and future prospects are shown.

II. MODEL

The aim of the model is to describe the movement of a
sailboat sailing on a lake.

A. Simplifications

To make the model feasible for optimization and to fit the
schedule of the project, several simplifications were made:

1) Boat: The sailboat is modeled without heel, i.e. it is
always exactly upright.
The sailboat and its crew are modeled to have constant mass.
The sailboat moves as a single point of mass.
The sailboat has two parts of relevance to it’s movement:

• Above the surface, only one sail contributes to the acting
forces. The exposure of hull parts, crew and rig to the
wind is neglected.

• The submerged part of the boat consists of a part of the
hull and the fin, both contributing to the acting forces.

2) Environment: The wind is modeled with constant val-
ues of velocity and direction. Specifically, it is constant over
time, constant over all positions along the surface of the sea,
and constant over the height of the sail.

The water surface is modeled to be perfectly flat. There
is no influence of waves.

3) Control: The crew of the boat can arbitrarily control
the orientation of the boat’s bow and the position of the sail.

B. Model Components

1) State: The boat model features states with five scalar
components:

~x =

γ~p
~v

 (1)

where ~x is the model state, and γ is the angle of the boat’s
bow direction relative to the direction of the boat’s velocity
(cf. Fig. 3).
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~p and ~v are the position and velocity of the boat in a
cartesian, two-dimensional coordinate system that does not
move.

2) Wind: Following a sailor’s nomenclature, three defini-
tions for the wind are distinguished [3].
An illustration of these is to be found in Fig. 1. The true
wind is the wind in the unmoved coordinate system. It is
modeled as constant vector ~w. The head wind is the wind
felt by an observer in move when no true wind is present. It
is equal to the negative velocity of the boat (−~v).
Both of the latter result in the apparent wind ~s felt by an
observer on the boat when there is true wind present:

~s = ~w − ~v (2)

3) Control: The model features two controls:

~u =

(
ω
α

)
(3)

where ω is the rate of change of the angle γ of the boat’s
bow direction relative to the direction of the boat’s velocity,
and α is the angle of attack of the boat’s sail relative to the
apparent wind ~s (cf. Fig. 2).

C. Model Dynamics

The system’s dynamics are modeled by means of differ-
ential equations:

1) Boat’s position: The boat’s position changes according
to the boat’s velocity:

~̇p = ~v (4)

where the dot above ~p denotes the derivative w.r.t. time.

~s

~w

~v

Fig. 1. Illustration of wind definitions. ~w is the true wind. ~v is the boat’s
velocity. ~s is the apparent wind. Note that the boat’s velocity is not generally
directed to where the boat’s bow is.



2) Bow direction: The boat’s bow direction relative to
the direction of the boat’s velocity changes according to the
respective input:

γ̇ = ω (5)

where the dot above γ denotes the derivative w.r.t. time as
above.

Since no moment of inertia for the boat’s rotation is
included in the model for reasons of simplicity, a constant
limit is imposed on the rotational velocity ω of the boat
against its velocity direction:

− ωl ≤ ω ≤ ωl (6)

where ωl is the limiting maximal value.
3) Boat’s velocity: The boat is subject to aerodynamic and

hydrodynamic forces. These accelerate the boat, yielding for
its velocity:

~̇v = ~F/mB (7)

where the dot above ~v denotes the derivative w.r.t. time as
above. mB denotes the mass of the boat (including crew)
and is a constant. ~F is the sum of the attacking forces.

4) Attacking forces: Both the sail and the submerged parts
of the boat are modeled as symmetric foils. Thus, for both
of them, drag forces and lift forces may occur:

~F = ~Fa,d + ~Fa,l + ~Fw,d + ~Fw,l (8)

where ~Fa,d represents the drag force from the sail (”air”),
~Fa,l represents the lift force from the sail, ~Fw,d represents
the drag force from the submerged boat parts (”water”), and
~Fw,l represents the lift force from the submerged boat parts.

5) Calculation of forces: The equations of the forces are
based on the aerodynamic equations from Exercise Sheet 1
[2]. For simplification, the same equations are used as basis
for forces on the submerged boat parts, which should rather
be subject to hydrodynamic calculations.

The directions of the calculated forces are illustrated in
Fig. 2 for the sail and in Fig. 3 for the submerged boat
parts.

Lift forces are calculated according to:

~Fa,l =
1

2
ρa‖~s‖2CL(α)Aaêa,l (9)

α

~s

Sail

êa,l
êa,d

Fig. 2. Illustration of directions of forces at the sail. α is the angle of
attack of the sail. ~s is the apparent wind. êa,l is the direction of the lift
force. êad is the direction of the drag force.

where ρa is the mass density of air, CL is the lift coefficient,
Aa is the sail area (”air”) and êa,l is a unit vector in direction
of the lift force for the sail.

~Fw,l =
1

2
ρw‖~v‖2CL(γ)Awêw,l (10)

where ρw is the mass density of water, Aw is the reference
area of the submerged boat parts (”water”) and êw,l is a unit
vector in direction of the lift force for the submerged boat
parts.

Lift directions are calculated according to:

êa,l =

(
0 1
−1 0

)
· ~s

‖~s‖
(11)

êw,l =

(
0 −1
1 0

)
· ~v

‖~v‖
(12)

In [2], the lift coefficient is calculated according to:

CL(φ) = 2π · φ · 10

12
(13)

To account for the breakdown of the lift coefficient at higher
angles of attack, the following, modified equation is used
here:

CL(φ) = 2π · φ · 10

12

− exp

(
(φ− φt)

360

2π

)
+ exp

(
(−φ− φt)

360

2π

)
(14)

where φt is a constant threshold angle.
Note that with either equation, the lift coefficient calcu-

lations can only be true for small values of the angle of
attack. Thus, it is useful to constrain the the valid angles in
the optimization process according to:

− φl ≤ φ ≤ φl (15)

where φl is a limiting angle.
A comparing plot of the equations for the lift coefficient

can be found in Fig. 4.

~v

γ

êw,l

êw,d

Fin

Bow

Fig. 3. Illustration of directions of forces under water. γ is the bow direction
relative to the boat’s velocity ~v. êw,l is the direction of the lift force. êw,d

is the direction of the drag force.



Drag forces are calculated according to:

~Fa,d =
1

2
ρa‖~s‖2CD(α)Aaêa,d (16)

where CD is the drag coefficient and êa,d is a unit vector in
direction of the drag force for the sail.

~Fw,d =
1

2
ρw‖~v‖2CD(γ)Awêw,d (17)

where êw,d is a unit vector in direction of the drag force for
the submerged boat parts.

Drag directions are calculated according to:

êa,d = − ~s

‖~s‖
(18)

êw,d = − ~v

‖~v‖
(19)

The drag coefficient is calculated according to [2]:

CD = 0.01 +
C2

L

10π
(20)

D. Model parameters

The model contains some parameters that are valuated
in the following. As in [2], the mass density of air is
approximated as:

ρa = 1.2
kg
m3 (21)

The mass density of water is approximated as [4]:

ρw = 1000
kg
m3 (22)

The mass of boat and crew are set to values that fit a
one-man dinghy plus (one-man) crew:

mB = 160 kg + 80 kg (23)

The area of the sail and the reference area (i.e. the lateral
surface) of the underwater boat parts are set to:

Aa = 16 m2 (24)

Aw = 0.2 m · 5 m + 0.3 m · 0.7 m (25)

Fig. 4. Lift coefficient according do different formulae over angle of attack.
The threshold angle is set to 12◦.

The latter parameter is calculated from height and length
of the submerged hull’s lateral surface area and width and
height of the fin’s lateral surface area.

The wind is set to blow at constant velocity:

~w =

(
−5
0

)
m
s

(26)

The threshold angle and limiting angle for the lift coeffi-
cient are set to:

φl = φt = 12◦
2π

360◦
(27)

The limit to the rotational velocity of the boat relative to
its velocity direction is set to:

ωl = 2◦ · 2π

360◦
· 1

s
(28)

III. OPTIMAL CONTROL

A. Discretization and NLP formulation

To approximate continuous optimal control of the boat, the
direct multiple shooting method as described in [1], chapter
9.2 is used.

Thus, an initial state ~z0, N inputs ~q0, ~q1, . . . , ~qN−1, as
well as N resulting system states ~z1, ~z2, . . . , ~zN as points on
the trajectory, are the decision variables, where N ∈ N>0

denotes the number of multiple shooting intervals.
The NLP problem then takes the form of Fig. 9.2 in [1].
Note that
• These states correspond to si in the notation of [1].

They are renamed to avoid confusion with the apparent
wind ~s in the model.

• Subscripts to these states and inputs enumerate them in
the order of their occurrence in time and do not refer
to their respective vector components.

• The vector components of the states and inputs (e.g. ~p,
~v, α) will be addressed by subscripting, i.e. αq,3 refers
to the α vector component of ~q3.

For optimization of periodic evolutions of the modeled
system, the NLP minimization may be subject to an addi-
tional periodicity constraint.

The integration of the model along the trajectory pieces is
realized by means of the Runge-Kutta Method of Order Four
(RK4), as described in [1], Chapter 1.2. One RK4 integration
step is used per interval.

The length of each trajectory piece is given by a time
interval ∆t.

The optimizations are performed using the function
fmincon (with SQP algorithm) of the software MATLAB
R2013B by THE MATHWORKS, INC.

B. Optimization objectives

A sailboat can make its way against the wind by means
of an alternation of two maneuvers:

• Sailing a long way ”close-hauled”, i.e. sailing with a
velocity component against the wind’s direction, while
at the same time having a certain velocity component
perpendicular to the wind direction. It is desirable to



reach the highest possible velocity component against
the wind’s direction.

• ”Tacking”, i.e. turning the boat’s bow towards the wind
and further, to change the direction of the velocity
component perpendicular to the wind. It is desirable to
maintain as much speed as possible against the wind.

IV. OPTIMAL VELOCITY AGAINST WIND

The first optimization goal is to find the state and controls
of the boat that allow the boat to reach the maximum velocity
component against the wind direction.

A. Constraints

Since the optimal velocity, and the optimal angles of attack
are unknown, the initial state is only constrained in its initial
position to avoid an underdetermined problem formulation:

~pz,0 = 0 (29)

The optimal velocity should be constant along a long way
of sailing. Thus, it may not change in the optimal situation,
and neither may the boat’s direction. This yields periodicity
constraints:

~vz,0 = ~vz,N (30)

γz,0 = γz,N (31)

The optimal velocity is identified as minimizer of the cost
function

E (~zN ) = −vz,x,N (32)

where the only cost is given by the terminal cost function
E (~zN ), and vz,x,N denotes the component in positive X
direction of the velocity ~vz,N of the boat in the trajectory’s
terminal state ~zN .

B. NLP problem

The NLP problem thus takes the form:

minimize
~z0,~q0,...,~zN

−vz,x,N (33)

subject to
~pz,0 = 0 (initial value)

~vz,0 − ~vz,N = 0 (periodicity)
γz,0 − γz,N = 0 (periodicity)

xRK4(∆t;~zi, ~qi) = ~zi+1 i = 0, . . . , N − 1 (continuity)
ωq,i − ωl ≤ 0 i = 0, . . . , N − 1 (path constr.)
−ωq,i − ωl ≤ 0 i = 0, . . . , N − 1 (path constr.)
αq,i − φl ≤ 0 i = 0, . . . , N − 1 (path constr.)
−αq,i − φl ≤ 0 i = 0, . . . , N − 1 (path constr.)
γz,i − φl ≤ 0 i = 0, . . . , N − 1 (path constr.)
−γz,i − φl ≤ 0 i = 0, . . . , N − 1 (path constr.)
γz,N − φl ≤ 0 (term. constr.)
−γz,N − φl ≤ 0 (term. constr.)

(34)

where the terminal constraints could be omitted as they are
implicitly included by the path and periodicity constraints.

xRK4(∆t;~zi, ~qi) denotes the output of the RK4 integrator at
the end of one integration interval of length ∆t.

C. Parameters
To find the optimal velocity, one interval is sufficient:

N = 1 (35)

The timestep is chosen as:

∆t = 0.1 s (36)

The details on the initial guess for the trajectory for the
NLP solver are discussed in the appendix.

D. Results
The NLP solver finds a local minimum after 18 iterations.

It identifies the optimal boat speed as:

~vopt.speed =

(
4.6432
3.8115

)
m
s

(37)

with an angle of attack of the sail against the apparent wind
of:

αopt.speed = 9.6073◦ · 2π

360◦
(38)

and with an angle of the boat’s direction relative to it’s
velocity’s direction of:

γopt.speed = −0.3922◦ · 2π

360◦
(39)

Since the latter angle had to be periodic over one step, it
could not change, thus the result for it’s rate of change is,
as expected, zero.

V. OPTIMAL TACK

The second optimization goal is to find the state and
controls of the boat that let the boat make a tack while losing
as little velocity against the wind as possible.

A. Constraints
To avoid an underdetermined problem, the initial position

is fixed:
~pz,0 = 0 (40)

After the tack, the boat returns to it’s initial Y position
while having made some progress on the way against the
wind, and having tacked once. Thus for the periodic trajec-
tory, we set:

pz,y,N = pz,y,0 (41)

vz,x,N = vz,x,0 (42)

vz,y,N = −vz,y,0 (43)

γz,0 = −γz,N (44)

The optimal tack is identified as minimizer of the cost
function

E(~zN ) = −pz,x,N (45)

where, again, the only cost is given by the terminal cost
function E(~zN ). However, the cost is now determined by
the final position of the boat in positive X direction, since
this is equivalent to optimizing the overall tack speed as the
integrated time interval is fixed as N ·∆t.



B. NLP problem

The NLP problem thus takes the form:

minimize
~z0,~q0,...,~zN

−vz,x,N (46)

subject to
~pz,0 = 0 (initial value)

pz,y,0 − pz,y,N = 0 (periodicity)
vz,x,0 − vz,x,N = 0 (periodicity)
vz,y,0 + vz,y,N = 0 (periodicity)
γz,0 + γz,N = 0 (periodicity)

xRK4(∆t;~zi, ~qi) = ~zi+1 i = 0, . . . , N − 1 (continuity)
ωq,i − ωl ≤ 0 i = 0, . . . , N − 1 (path constr.)
−ωq,i − ωl ≤ 0 i = 0, . . . , N − 1 (path constr.)
αq,i − φl ≤ 0 i = 0, . . . , N − 1 (path constr.)
−αq,i − φl ≤ 0 i = 0, . . . , N − 1 (path constr.)
γz,i − φl ≤ 0 i = 0, . . . , N − 1 (path constr.)
−γz,i − φl ≤ 0 i = 0, . . . , N − 1 (path constr.)
γz,N − φl ≤ 0 (term. constr.)
−γz,N − φl ≤ 0 (term. constr.)

(47)

where the terminal constraints could be omitted as they are
implicitly included by the path and periodicity constraints.

C. Optimal tack: Parameters

The number of integration intervals was chosen as:

N = 7 (48)

In a second run, the number of integration intervals was
chosen as:

N = 10 (49)

The timestep is chosen as:

∆t = 0.3 s (50)

The details on the initial guess for the trajectory for the
NLP solver are discussed in the appendix.

D. Optimal tack: Results

For N = 7, the NLP solver finds a local minimum after
49 iterations. The overall speed in X direction over the tack
is identified as:

vx,opt.tack,N=7 =
pz,x,N
N∆t

= 4.2553
m
s

(51)

For N = 10, the NLP solver finds a local minimum after
64 iterations. The overall speed in X direction over the tack
is identified as:

vx,opt.tack,N=10 =
pz,x,N
N∆t

= 4.4115
m
s

(52)

A plot of the boat’s spatial trajectory in the optimized tack
can be found in Fig. 5.

A plot of the angle of attack of the sail, the boat’s bow
direction and the respective rate of change in the optimized
tack can be found in Fig. 6.

Fig. 5. Spatial trajectory of the boat in the optimized tack for N = 10.
The the sail direction is calculated from apparent wind ~sz and angle of
attack αz . The length of the direction arrows is meaningless.

Fig. 6. Angle of attack of sail α, bow direction w.r.t. boat velocity direction
γ and rate of change ω of the latter in the optimized tack for N = 10.

A plot of the boat’s velocity in the optimized tack can be
found in Fig. 7.

VI. DISCUSSION OF RESULTS

A. Optimal velocity against wind

The result of the optimization for maximal velocity against
the wind is an absolute value of velocity of 6.01 m

s , sailed at
an angle of 39.38◦ against the wind direction. The angle of
attack of the sail has an absolute value of 9.61◦, while the
angle between the boat’s velocity and bow direction is a lot
smaller (0.39◦).

These values match the common sailor’s knowledge about
close-hauled sailing (cf. [5]). Specifically, it is known that the
boat’s velocity can indeed exceed the wind velocity.

However, the angle of attack of the sail is located close to
the value that maximizes the lift coefficient (cf. Fig. 4). Thus,
the applicability of the model is limited (amongst others) by
the accuracy of the model equations of the lift coefficient.

B. Optimal tack

The result of the tack optimizations both yield trajectories
that show a straight approach of the boat to a short tacking,
where the sail is switched to the opposite boat side during the
tack, followed by a straight run again. The boat’s absolute
velocity drops a little in the tacking, while it rises on
the straight parts. During the tack, the velocity component



Fig. 7. Velocity components and absolute velocity of the boat in the
optimized tack for N = 10.

perpendicular to the wind changes its sign, as do the angles
of attack. These results resemble the real tacks of real sailors.

The overall velocity against the wind is a little higher
in the optimization with N = 10 intervals. This can be
explained by the higher amount of time given to the boat to
accelerate on the straight parts of the spatial trajectory. This
also explains the difference between the velocities against
the wind of the tacking sail boat and the higher values from
the close-hauled sailing optimization.

However, the loss of absolute velocity over the tack is
less than 6 % of it’s maximum value over the trajectory.
This loss appears to be quite small compared to real sailing
experiences. The results also show rather scattered values for
the rate of change ω of the boat’s direction. These effects
may be caused by the possibility of arbitrary values for ω.
For the turn of a real sail boat, an angular momentum of
the boat has to be actuated, and course corrections introduce
additional hydrodynamic forces at the rudder (not to mention
the effects caused by a sailboat’s heel). Thus, a greater loss of
absolute velocity could be expected in tacking and generally
in every change of course of the boat.

VII. CONCLUSION

A simple model for the sailboat sailing against the wind
was developed and made subject to optimizations using the
multiple shooting method.

Despite the simplifications made in the model, the results
of the optimization turn out to resemble the form of real
sailing maneuvers closely.

Refinements of the sailboat model (e.g. regarding the
rudder dynamics), more complex model inputs (e.g. dynamic
wind profiles) or optimization under different constraints
(e.g. a lake with a coastline) provide interesting future
prospects.

VIII. APPENDIX
A. Optimal velocity against wind: Initial guess trajectory

The initial state ~z0 on the initial guess trajectory for the
NLP solver is chosen according to:

γz,0 = −0.75◦ · 2π

360◦
(53)

~pz,0 =

(
0
0

)
m (54)

~vz,0 =

(
2
2

)
m
s

(55)

The initial input ~q0 on the initial guess trajectory for the
NLP solver is chosen according to:

ωq,0 = 0◦ · 2π

360◦
· 1

s
(56)

αq,0 = 5◦ · 2π

360◦
(57)

The second and last state ~z1 on the initial guess trajectory
for the NLP solver is calculated by means of an RK4
integration step:

~z1 = xRK4 (∆t;~z0, ~q0) (58)

B. Optimal tack: Initial guess trajectory
The initial state ~z0 on the initial guess trajectory for the

NLP solver makes use of the optimization result from the
previous ”close-hauled” optimization:

γz,0 = γopt.speed (59)

~pz,0 =

(
0
0

)
m (60)

~vz,0 = ~vopt.speed (61)

To initialize the NLP solver with a trajectory that at least
roughly resembles a tack, the inputs ~q0, . . . , ~qN−1 on the
initial guess trajectory for the NLP solver are set to values
that were empirically found:

ωq,i = −0.6◦
2π

360◦
cos((i+ 1)

π

N
) i = 0, . . . , N − 1 (62)

αq,i = αopt.speed sin((i+ 1)
π

N
) i = 0, . . . , N − 1 (63)

The further states ~z1, . . . , ~zN on the initial guess trajec-
tory for the NLP solver are calculated by means of RK4
integration steps according to:

~zi+1 = xRK4 (∆t;~zi, ~qi) i = 0, . . . , N − 1 (64)
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