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Introduction
Many optimization problems in control have the form

min f (x)

s.t. Ax = b

x ∈ X

where

• f (x) is smooth, and often quadratic
• X is simple (minx ‖x − x̄‖, s.t. x ∈ X is easy)

How can we use this information to develop a simple optimization scheme?

Idea : Break into sequence of easy problems involving f or X alone
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Duality

Primal problem: min
z

f (z)

s.t. Az = b

Define the Lagrangian

L(z , λ) = f (z) + λT (Az − b)

and the dual function

d(λ) = min
z

L(z , λ)

The dual problem is

max
λ

d(λ)

Recover the primal optimal solution from

z? = argminz L(z , λ?)
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Properties of the Dual Function

d(λ) is concave1

d(λ) = min
z

f (z) + λT (Az − b)

The dual function is the pointwise minimum of affine functions

d(λ) ≤ f (z) for all λ and all z such that Az = b

Given a feasible z̄ such that Az̄ = b

f (z̄) = f (z̄) + λT (Az̄ − b) ≥ min
z

L(z , λ) = d(λ)

Dual function gives lower bounds on the optimal solution.

1This is true whether f is convex or not
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Dual Problem
Lagrange dual problem (find the best lower bound)

max
λ

d(λ)

• Always a convex optimization problem

• maxλ d(λ) ≤ minAx=b f (x)

If problem is convex, then (under mild assumptions), we have strong duality:

max
λ

d(λ) = min
z

f (z) s.t. Az = b

We can solve the primal, or the dual (whichever is easier).
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Dual Ascent Method
Dual problem:

max
λ

d(λ)

This is a convex, unconstrained optimization problem.

We would like to apply a gradient ascent approach:

λk+1 = λk + ck∇d(λk)

→ How do we compute a gradient of the dual function?

(Note: We’re making the strong assumption that the dual function is
differentiable here. Similar procedure in the non-differentiable case too.)
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Gradient of the Dual
Theorem:

If z̄ = argminL(z , λ), then Az̄ − b ∈ ∂d(λ)

Recall: g is a supergradient of a function h at x if and only if

h(x)− gT (x − y) ≥ h(y)

for all y .

d(λ)− (Az̄ − b)T (λ− λ̂) = L(z̄ , λ)− (Az̄ − b)T (λ− λ̂)

= f (z̄) + λT (Az̄ − b)− (Az̄ − b)T (λ− λ̂)

= f (z̄) + λ̂T (Az̄ − b)

≥ d(λ̂)

Note: If d is differentiable, then ∂d(λ) = ∇d(λ)
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Dual Gradient Method
We can compute the gradient of the dual and implement the gradient method:

xk+1 = argminx L(x , λk)

λk+1 = λk + c(Axk+1 − b)

This works, but requires a number of strong assumptions.
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Dual Decomposition

Suppose our problem has the form:

min f (x) + g(y)

s.t. Ax + By = d

Computing the dual function:

min
x ,y

L(x , y , λ) = min
x ,y

f (x) + g(y) + λT (Ax + By − d)

= min
x

(f (x) + λTAx) + min
y

(g(y) + λTBy)− d

The Lagrangian function is separable for a fixed λ!

Algorithm becomes:

xk+1 = argminx f (x) + λT
k Ax

yk+1 = argminy g(y) + λT
k By

λk+1 = λk + c(Axk+1 + Byk+1 − b)

Minimizing f and g independently and in parallel
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Dual Decomposition

Benefits:

• Can solve very large problems in parallel

• min f and min g may be much simpler to solve than min f + g

Limitations:

• The function value converges non-monotonically to the optimal value
Doesn’t matter for control

• Slow (sub-gradient method)

• If objective is not strongly convex, then the primal iterates xk do not
necessarily converge

MPC objectives will almost never be strongly convex because they will
include indicator functions
The primal iterates are the control law → these must converge!

Operator Splitting Methods for Fast MPC 13 Colin Jones, EPFL



Outline

1. Duality

2. Dual Decomposition

3. Method of Multipliers

4. Alternating Direction Method of Multipliers

5. Common Patterns in Control

6. ADMM for MPC

7. Alternating Minimization Algorithm

8. Accelerating Convergence

Operator Splitting Methods for Fast MPC 14 Colin Jones, EPFL



Augmented Lagrangian

min f (z)

s.t. Az = b

Add a penalty term to the cost function to make it strongly convex:

min f (z) +
ρ

2
‖Az − b‖2

s.t. Az = b

Note that this doesn’t change the solution!

Recall: f (z) is strongly convex if

∀z1, z2,∀t ∈ (0, 1) f (tz1 + (1− t)z2) < tf (z1) + (1− t)f (z2)
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Dual Function
The (augmented) Lagrangian is:

Lρ(z , λ) = f (z) + λT (Az − b) +
ρ

2
‖Az − b‖2

The dual function is

d(λ) = min
z

Lρ(z , λ)

Note that the dual function has changed

Theorem: Convex Analysis, Rockafellar (1970)

If a convex program has a strongly convex objective, it has a unique solution
and its Lagrangian dual function is differentiable.

• Convergence of the iterates

• Differentiable function → faster gradient method, rather than sub-gradient
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Augmented Lagrangian Method

xk+1 = argminx f (x) + λT
k (Ax − b) +

ρ

2
‖Ax − b‖2

λk=1 = λk + ρ(Axk+1 − b)

We want to apply this to problems of the form

min f (x) + g(y)

s.t. Ax + By = d

Problem: Augmented Lagrangian doesn’t decompose

min
x ,y

f (x) + g(y) + λT
k (Ax + By − b) +

ρ

2
‖Ax + By − b‖2︸ ︷︷ ︸

Couples x and y
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Augmented Lagrangian Method

Positive:

• Converges under extremely loose conditions:
non-differentiable functions, unbounded functions / indicator functions, etc

Negative:

• Does not decompose / parallelize due to the quadratic term
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Alternating Direction Method of Multipliers

min f (x) + g(y)

s.t. Ax + By = b

Lρ(x , y , λ) = f (x) + g(y) + λT (Ax + By − b) +
ρ

2
‖Ax + By − b‖2

ADMM:

xk+1 = argminx Lρ(x , y k , λk)

y k+1 = argminy Lρ(xk+1, y , λk)

λk+1 = λk + ρ(Axk+1 + By k+1 − b)

Idea: Approximate the computation of the dual (sort of) via one step of
Gauss-Seidel / block coordinate descent.
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ADMM: A Cleaner Formulation
Combine linear and quadratic terms:

Lρ(x , y , λ) = f (x) + g(y) + λT (Ax + By − b) +
ρ

2
‖Ax + By − b‖2 (1)

= f (x) + g(y) +
ρ

2
‖Ax + By − b + µ‖2 (2)

where µ = 1
ρλ

ADMM (scaled form):

xk+1 = argminx f (x) +
ρ

2
‖Ax + By k − b + µk‖2

y k+1 = argminy g(y) +
ρ

2
‖Axk+1 + By − b + µk‖2

µk+1 = µk + Axk+1 + By k+1 − b
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Convergence of ADMM

If

• f , g convex, closed, proper

• Lρ has a saddle point (i.e., an optimal solution exists).
Note that this requires that the problem is feasible!

then

• iterates approach feasibility Axk + By k − b → 0

• objective approaches optimal value
f (xk) + g(y k)→ minx ,y f (x) + g(y) s.t. Ax + By = c

Operator Splitting Methods for Fast MPC 23 Colin Jones, EPFL



Outline

1. Duality

2. Dual Decomposition

3. Method of Multipliers

4. Alternating Direction Method of Multipliers

5. Common Patterns in Control

6. ADMM for MPC

7. Alternating Minimization Algorithm

8. Accelerating Convergence

Operator Splitting Methods for Fast MPC 24 Colin Jones, EPFL



Easily Evaluated Updates

Given a function f (x), we need to compute

x+ = argminx f (x) +
ρ

2
‖Ax − v‖2

If A = I (common), then this is called the proximal operator of f

proxf ,ρ (v) = argminx f (x) +
ρ

2
‖x − v‖2

For which types of functions f can we evaluate this easily?
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Common Patterns in Control
. Upper / lower bounds

f (x) =





∞ x ≤ l

0 l ≤ x ≤ u

∞ x ≥ u

proxf ,ρ (v) = argminx f (x) +
ρ

2
‖x − v‖2

= argminx ‖x − v‖2

s.t. l ≤ x ≤ u

=





l v ≤ l

v l ≤ v ≤ u

u v ≥ u

Evaluation of the proximal operator is trivial!
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Common Patterns in Control
. Polytopic constraints

min f (x)

s.t. Hx ≤ h

Re-write using slack variables:

min f (x) + g(s)

s.t. Hx + s = h

where g(s) is the indicator function for the positive orthant

g(s) =

{
0 s ≥ 0

∞ otherwise

proxg,ρ (s) = max{s, 0}
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Common Patterns in Control
. Quadratic function

f (x) =
1
2
xTQx + cT x

proxf ,ρ (v) = argminx
1
2
xTQx + cT x +

ρ

2
(x − v)T (x − v)

Take gradient, set to zero

Qx + c + ρ(x − v) = 0

proxf ,ρ (v) = (Q + ρI )−1(ρv − c)
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Other Common Patterns
Many other common constraints and functions have nice proximal operators

• Ellipsoidal / ball-constraints

• Vector norms: 1−, 2−, inf −norms

• Matrix norms: Frobenius-norm, 2−norm, Nuclear-norm

• Standard convex cones: second-order cone, semi-definite cone, positive
orthant, etc
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Distributed Optimization

Separable cost function with shared variables

min
∑

fi (xi )

s.t. xi = z for all i

Note that g(z) = 0.

Augmented Lagrangian is:

L(x0, . . . , xn, µ) =
∑

fi (xi ) +
∑ ρ

2
‖xi − z + µi‖2

ADMM:

xk+1
i = argminxi

fi (xi ) +
ρ

2
‖xi − zk + µk

i ‖2 Parallel

zk+1 = argminz

∑ ρ

2
‖xk+1

i − z + µk
i ‖2

=
1
n

∑
xk+1
i + µk

i Consensus

µk+1
i = µk

i + xk+1
i − zk+1 Parallel
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Linear Quadratic Predictive Control

 14

Assumption: Prox operators for X and U are simple
(Also possible for more complex sets)

•  Linear dynamics
•  Quadratic stage costs
•  Simple stage constraints

How to define functions f and g?

min
x,u

N�1�

i=0

x �iQxi + u�iRui

Z�[� xi+1 = Axi + Bui

xi � X, ui � U



Sequential Convex Program
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Make a ‘copy’ of 
states and inputsmin

x,u

N�1�

i=0

x �iQxi + u�iRui

Z�[� xi+1 = Axi + Bui

x̄i = xi , ūi = ui

x̄i � X, ūi � U



Sequential Convex Program
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min
x,u

N�1�

i=0

x �iQxi + u�iRui

Z�[� xi+1 = Axi + Bui

x̄i = xi , ūi = ui

x̄i � X, ūi � U



f (x,u) 
Linear quadratic regulator

Sequential Convex Program
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f (x,u) 
Linear quadratic regulator

Linear coupling constraints
 

Sequential Convex Program
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min
x,u

N�1�

i=0

x �iQxi + u�iRui

Z�[� xi+1 = Axi + Bui

x̄i = xi , ūi = ui

x̄i � X, ūi � U
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f (x,u) 
Linear quadratic regulator

 
Simple constraints

Linear coupling constraints
 

Sequential Convex Program
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min
x,u

N�1�

i=0

x �iQxi + u�iRui

Z�[� xi+1 = Axi + Bui

x̄i = xi , ūi = ui

x̄i � X, ūi � U
x̄i , ūi � xi , ui

g(x̄i , ūi)



Sequential Convex Program – Proximal Operators
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2. Stage constraints
•  Box (upper/lower bounds)   � Clipping
•  Sphere � Scaling

Also possible with additional scaling:
•  Polyhedron
•  Ellipse

1. LQR (Linearly constrained least-squares)

prox�f (x̃ , ũ) = min
x,u

N�1�

i=0

x �iQxi + u�iRui +
�

2
�xi � x̃i�22 +

�

2
�ui � ũi�22

Z�[� xi+1 = Axi + Bui

= M

�
x̃

ũ

�
.



Putting it Together: Sequential Convex Programming
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min
x,u

N�1�

i=0

x �iQxi + u�iRui

Z�[� xi+1 = Axi + Bui

x̄i = xi , ūi = ui

x̄i � X, ūi � U

min f (x) + g(y)

Z�[� Ax + By = c

�
xk+1

uk+1

�
= M

�
x̄k + �k

ūk + �k

�

x̄k+1 = �X(x
k+1) ūk+1 = �U(u

k+1)

�k+1 = �k + xk+1 � x̄k+1

�k+1 = �k + uk+1 � ūk+1

Multiplication

Clipping

Addition



Second-Order Example
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k  = 1 

)SHJR! x
6YHUNL! x̄



Second-Order Example
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k  = 2 

)SHJR! x
6YHUNL! x̄



Second-Order Example

 24

k  = 3 

)SHJR! x
6YHUNL! x̄



Second-Order Example
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k  = 5 

)SHJR! x
6YHUNL! x̄



Second-Order Example
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k  = 10 

)SHJR! x
6YHUNL! x̄



Second-Order Example
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k  = 15 

)SHJR! x
6YHUNL! x̄



Second-Order Example
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k  = 20 

)SHJR! x
6YHUNL! x̄



Second-Order Example
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k  = 30 

)SHJR! x
6YHUNL! x̄



Second-Order Example

 30

k  = 40 

)SHJR! x
6YHUNL! x̄



Second-Order Example
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k  = 50 

)SHJR! x
6YHUNL! x̄



Second-Order Example
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k  = 60 

)SHJR! x
6YHUNL! x̄



Second-Order Example
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k  = 70 

)SHJR! x
6YHUNL! x̄



Second-Order Example
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k  = 75 

)SHJR! x
6YHUNL! x̄
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Example: Quad-Copter
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•  7 states, 4 inputs, horizon 8
•  Upper/lower bounds on states and inputs
•  Ellipsoidal terminal set
•  Algorithm: Fast AMA

Max: 100μs"

Mean: 18μs"

Time [Ye, et al, 2013]

Mean time to solve 
with CPLEX: 5.6ms"



Example: AC/DC Converter

36

AC grid DC source

Switched inverter (1…50 kHz)
CL filter

[Richter, et al, 2010]

min
1

2
uTHu + g(x, xss , uss , w)

T u

Z�[�uk � U(�)� uss , k = 0, . . . , N � 1
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Performance of Auto-Tuned FGM on 2.5GHz PC
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Time step

CPLEX: 0.51 ms  
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Time step

CPLEX: 0.51 ms  

0 100 200 300 400 500

100 ns

1 us

10 us

100 us

1 ms

Fast gradient: 360ns

On average 1400x faster than CPLEX


[Richter, et al, 2010]



Step 2: Singular-value decomposition
•  Prox of nuclear norm => Clip singular values that are too big

Step 1: Matrix multiply
•  Prox of Frobenius norm is unconstrained least-squares
•  Compute off-line

Subspace Identification with Rank Regularization
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Procedure:
1.  Matrix-matrix multiply
2.  Singular-value decomposition
3.  Matrix-vector multiply and addition

Impose Hankel 
structure

min

f (H)� �� �
�Ȳ �HŪ�2F +

g(H)� �� �
��H��

Z�[� L(H) = H



Subspace Identification - Example
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Properties of optimal controller:
•  Stabilizing
•  Invariant (satisfies constraints)
•  Maximizes region of attraction
•  ‘Optimal’ performance

Stabilizing Predictive Control

Predictive Control
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Infinite-Horizon Optimal Control

u�(x) := argmin

��

i=0

xT
i Qxi + uT

i Rui

Z�[� xi+1 = Axi + Bui

xi � X ui � U
x0 = x

Additional cost / constraints enforce
•  Stability
•  Constraint satisfaction
Downsides:
•  XN calculable for limited systems
•  Small region of attraction

min

N�

i=0

xTi Qxi + uTi Rui + Vf (xN)

Z�[� xi+1 = Axi + Bui

xi � X ui � U
x0 = x

xN � XN

Reason never used in practice



Operator Splitting on Hilbert Spaces
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z = (zi)i�N� zi = (xi , ui) HYL�LSLTLU[Z�VM�H�YLHS�/PSILY[�ZWHJL

min

��

i=0

xT
i Qxi + uT

i Rui

Z�[� xi+1 = Axi + Bui , x0 = x

Cxi +Dui � �i = b

�i � 0

f (z) =

��

i=0

x�i Qxi + u�i Rui + �D(z)

g(�) =

�
0 �i � 0 �i � N
� V[OLY^PZL

(Az)i = Cxi +Dui = C̄zi

min f (z) + g(�)

Z�[� Az� � = b

Theorem: Optimal solution can be computed with a finite amount of memory 
and computation [Stathopolous, Korda, Jones, IFAC 2014]
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Alternating Direction Method of Multipliers

min f (x) + g(y)

s.t. Ax + By = b

Lagrangian L(x , y , λ) = f (x) + g(y) + λT (Ax + By − b)

Augmented
Lagrangian

Lρ(x , y , λ) = f (x) + g(y) + λT (Ax + By − b) +
ρ

2
‖Ax + By − b‖2

ADMM:

xk+1 = argminx Lρ(x , y k , λk) Augmented Lagrangian

y k+1 = argminy Lρ(xk+1, y , λk) Augmented Lagrangian

λk+1 = λk + ρ(Axk+1 + By k+1 − b)

Requirement : f and g convex
Operator Splitting Methods for Fast MPC 62 Colin Jones, EPFL



Alternating Minimization Algorithm (AMA)

min f (x) + g(y)

s.t. Ax + By = b

Lagrangian L(x , y , λ) = f (x) + g(y) + λT (Ax + By − b)

Augmented
Lagrangian

Lρ(x , y , λ) = f (x) + g(y) + λT (Ax + By − b) +
ρ

2
‖Ax + By − b‖2

AMA:

xk+1 = argminx L(x , y k , λk) Lagrangian

y k+1 = argminy Lρ(xk+1, y , λk) Augmented Lagrangian

λk+1 = λk + ρ(Axk+1 + By k+1 − b)

Requirement : f strongly convex, g convex
Operator Splitting Methods for Fast MPC 63 Colin Jones, EPFL



AMA : A cleaner formulation
Problem prototype

min f (x) + g(y)

s.t. Ax + b = y

where f is strongly convex

AMA:

xk+1 = argminx f (x) + 〈λk ,Ax〉
y k+1 = proxg,ρ

(
Axk+1 + b + λk/ρ

)

λk+1 = λk + ρ(Axk+1 + b − y k+1)
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AMA vs ADMM

• ADMM has weaker assumptions (f must be strongly convex for AMA)
f is strongly convex for many control problems

• AMA better when minimizing Lagrangian is simpler than augmented form

• Theoretically stronger results for AMA
Acceleration
Pre-conditioning

• Tuning easier for AMA
Any stepsize ρ works for ADMM, limited for AMA
Optimal stepsize relates to properties of the functions being optimized

Note : The theoretical derivation of AMA and ADMM are very different
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Convergence Rates

Splitting methods are generally slow O(1/k)

f (zk)− f (z?) ≤ M
k

Key factors in speeding them up:

• Acceleration

• Pre-conditioning

Other factors to consider:

• Stepsize selection

• How to split / formulate problem?

• Which algorithm to use (many variants)?

See [Stathopoulos et al, soon to be submitted] for details
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Accelerated Variants

min f (z)

Gradient method

zk+1 = zk − ρk∇f (zk)

Heavy-ball method [Polyak, 1964]

ẑk = zk + αk(zk − zk−1)

zk+1 = ẑk − ρk∇f (zk)

Nesterov acceleration [Nesterov, 1983]

αk =

(
1 +

√
4(αk−1)2 + 1

)
/2

ẑk = zk +
αk−1 − 1
αk (zk − zk−1)

zk+1 = ẑk − ρk∇f (ẑk)





Optimal convergence O(1/k2)
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Fast Alternating Minimization Algorithm : FAMA

Acceleration can be directly applied to the dual sequence λk

xk+1 = argminx f (x) + 〈λ̂k ,Ax〉

y k+1 = proxg,ρ

(
Axk+1 + b + λ̂k/ρ

)

λk = λ̂k + ρ(Axk+1 + b − y k+1)

λ̂k+1 = λk + ((αk − 1)/αk+1)(λk − λk−1)

→ Result : O(1/k2) convergence rate

• ADMM can be accelerated, but in a heuristic fashion (no guarantee that it
goes faster)
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Pre-conditioning

Unlike Newton methods, first-order methods are very sensitive to conditioning.

Consider the problem

min f (x) + g(y)

s.t. Ax + b = y

Define the new coordinate system

xp = Dx Primal pre-conditioning

yd = Ey Dual pre-conditioning

The problem now becomes

min f (D−1xp) + g(E−1yd)

s.t. Adxp + bd = yd

where Ad = EAD−1, bd = Eb
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Pre-conditioned AMA
AMA with pre-conditioning:

xk+1 = argminx f (x) + 〈λk ,Adx〉
y k+1 = E proxP

g,ρ(E
−1(Adxk+1 + b + λk/ρ)

λk+1 = λk + ρ(Adxk+1 + bd − y k+1)

where

proxP
g,ρ(z̄) = g(z) +

1
2
‖x − z̄‖2P

and

‖x − z̄‖2P = (x − z̄)TP(x − z̄)

Requirements

• P must be positive definite and diagonal
• E and D selected to maintain sparsity structure of A

The question : How to choose a good pre-conditioner?
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How to Choose a Preconditioning Matrix?

The main idea:

• Derive an expression for the convergence rate in terms of E and D

• Solve optimization problem to maximize rate of convergence
→ Often requires solution of an SDP
→ Many heuristic approaches available

For details see

• [P. Giselsson and S. Boyd, 2015]
http://stanford.edu/~boyd/papers/pdf/metric_select_fdfbs.pdf

• [Stathopoulos et al, soon to be submitted]
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Impact of Pre-conditioning and Acceleration

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

So
lv

e 
tim

e 
(µ

s)

Time

Example: Quad-Copter
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•  7 states, 4 inputs, horizon 8
•  Upper/lower bounds on states and inputs
•  Ellipsoidal terminal set
•  Algorithm: Fast AMA

Max: 100μs"

Mean: 18μs"

Time [Ye, et al, 2013]

Mean time to solve 
with CPLEX: 5.6ms"

• 7 states, 4 inputs, horizon 8

• Upper/lower bounds on states and inputs

• Ellipsoidal terminal set

• Algorithm : Fast AMA

Pre-conditioned via new invariance-maintaining approach for SOCPs2
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Figure 1: Performance of ADMM, FADMM, FAMA and FAMA with preconditioning applied

to Problem 4.1 for the quadroter example
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Figure 2: Performance of ADMM, FADMM and FAMA applied to Problem 4.7 for the quadroter

example
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Splitting Methods for Control

Main idea:

• Separate complex optimization into a sequence of simpler operations

• Use dual to push the individual problems into consensus

Key properties

• Centralized optimization : Each iteration is extremely cheap

• Parallel optimization : Sub-problems can be solved in parallel

Major downside

• Number of iterations may be very high and sensitive to the current
parameter / state (Lots of ongoing research to deal with this issue)
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Simple prox 
operators

Least-
squares

Toolbox for Deployment of Embedded Optimization

 64
Release date: Very soon ;)

% Optimization variables
x = splitvar(n, N);
u = splitvar(m, N-1);
x(:,1) = parameter(n,1);
 
% Objective and dynamics
obj = 0;
for i = 1:N-1
  x(:,i+1) == A*x(:,i) + B*u(:,i);
  obj = obj + x(:,i)'*Q*x(:,i) + ... 

u(:,i)'*R*u(:,i);
end
obj = obj + x(:,end)'*x(:,end);
 
% set up constraints
-5 <= x <= 5;
-1 <= u <= 1;
norm(x(2,:), 2) + x(:)'*x(:,) <= 4;
 
minimize(obj);!

min
x

x �Qx + f �x +
�

pi(Lix + li)

Z�[� Ax = b

Solve in Matlab Export to C

Standard form for splitting algorithms“CVX”-like syntax

TSPL

Wide range of algorithms implemented



Exercise : Revisit the inverted pendulum

Current time: 4.95s

Pendulum angle

Pendulum input

Number of iterations

Tasks:

1. Implement the AMA algorithm for
the linearized pendulum model

2. Implement the accelerated version
FAMA

3. Implement pre-conditioning
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