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Preface

This lecture manuscript was written to accompany a lecture course on “Optimal Control and Estimation” given
in the summer 2014 at the University of Freiburg. Some parts of it are based on a previous manuscript written
in spring 2011 during a course on numerical optimal control given at ETH Zurich. Aim of the manuscript is that
it shall serve to the students as a reference for study and future use. While most of the material included in this
manuscript was actually covered in the lectures of the Freiburg course, some parts, in particular the second last
chapter on “Parametric Nonlinear Optimization”, was just added for the interested reader. Thanks go to the exercise
group tutor of the course, Greg Horn, as well as the students for inspiring discussions that helped to shape some
parts of the script, and to Dominik Finke for sharing some hand-written lecture notes that helped in writing-up the
chapter on “Moving Horizon Estimation”. Thank you!

Freiburg, July 2014 Moritz Diehl
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Chapter 1

Introduction

Optimal control regards the optimization of dynamic systems. In this lecture we identify dynamic systems with
processes that are evolving with time and that can be characterized by states x that allow us to predict the future
behavior of the system. If the state is not known, we first need to estimate it based on the available measurement
information. The estimation process is very often optimization-based and uses the same optimization methods that
are used for optimal control. This is the reason why this lecture bundles both optimal control and estimation in one
single course. Often, a dynamic system can be controlled by a suitable choice of inputs that we denote as controls
u in this script. In optimal control, these controls shall be chosen optimally in order to optimize some objective
function and respect some constraints.

For optimal control, we might think of an electric train where the state x consists of the current position and
velocity, and where the control u is the engine power that the train driver can choose at each moment. We might
regard the motion of the train on a time interval [tinit, tfin], and the objective could be to minimize the consumed
energy to drive from Station A to Station B, and one of the constraints would be that the train should arrive in
Station B at the fixed final time, tfin.

On the other hand, in optimization-based estimation, we treat unknown disturbances as inputs, and the objective
function is the misfit between the actual measurements and their model predictions. The resulting optimization
problems are mathematically of the same form as the problems of optimal control, with the disturbances as controls.
For this reason, we focus the larger part of the course on the topic “optimal control”. At several occasions we
specialize to estimation problems as a special case.

A typical property of a dynamic system is that knowledge of an initial state xinit and a control input trajectory
u(t) for all t ∈ [tinit, tfin] allows one to determine the whole state trajectory x(t) for t ∈ [tinit, tfin]. As the motion
of a train can very well be modelled by Newton’s laws of motion, the usual description of this dynamic system is
deterministic and in continuous time and with continuous states.

But dynamic systems and their mathematical models can come in many variants, and it is useful to properly
define the names given commonly to different dynamic system classes, which we do in the next section. After-
wards, we will discuss two important classes, continuous time and discrete time systems, in more mathematical
detail, before we give an overview of optimization problem classes and finally outline the contents of the lecture
chapter by chapter.

1.1 Dynamic System Classes
In this section, let us go, one by one, through the many dividing lines in the field of dynamic systems.

Continuous vs Discrete Time Systems

Any dynamic system evolves over time, but time can come in two variants: while the physical time is continu-
ous and forms the natural setting for most technical and biological systems, other dynamic systems can best be
modelled in discrete time, such as digitally controlled sampled-data systems, or games.

We call a system a discrete time system whenever the time in which the system evolves only takes values on a
predefined time grid, usually assumed to be integers. If we have an interval of real numbers, like for the physical
time, we call it a continuous time system. In this lecture, we usually denote the continuous time by the variable

7
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8 CHAPTER 1. INTRODUCTION

t ∈ R and write for example x(t). In case of discrete time systems, we use an index, usually k ∈ N, and write xk
for the state at time point k.

Continuous vs Discrete State Spaces

Another crucial element of a dynamic system is its state x, which often lives in a continuous state space, like the
position of the train, but can also be discrete, like the position of the figures on a chess game. We define the state
space X to be the set of all values that the state vector x may take. If X is a subset of a real vector space such as
Rnx or another differentiable manifold, we speak of a continuous state space. If X is a finite or a countable set, we
speak of a discrete state space. If the state of a system is described by a combination of discrete and continuous
variables we speak of a hybrid state space.

A multi-stage system is the special case of a system with hybrid state space that develops through a sequence
of stages and where the state space on each stage is continuous. An example for a multi-stage system is walking,
where consecutive stages are characterized by the number of feet that are on the ground at a given moment. For
multi-stage systems, the time instant when one stage ends and the next one starts can often be described by a
switching function. This function is positive on one and negative on the other stage, and assumes the value zero at
the time instant that separates the stages.

Another special case are systems that develop in a continuous state space and in continuous time, but are some-
times subject to discontinuous jumps, such as bouncing billiard balls. These can often be modelled as multi-stage
systems with switching functions, plus so called jump conditions that describe the discontinuous state evolution at
the time instant between the stages.

Finite vs Infinite Dimensional State Spaces

The class of continuous state spaces can be further subdivided into the finite dimensional ones, whose state can
be characterized by a finite set of real numbers, and the infinite dimensional ones, which have a state that lives in
function spaces. The evolution of finite dimensional systems in continuous time is usually described by ordinary
differential equations (ODE) or their generalizations, such as differential algebraic equations (DAE).

Infinite dimensional systems are sometimes also called distributed parameter systems, and in the continuous
time case, their behaviour is typically described by partial differential equations (PDE). An example for a con-
trolled infinite dimensional system is the evolution of the airflow and temperature distribution in a building that is
controlled by an air-conditioning system.

Continuous vs Discrete Control Sets

We denote by U the set in which the controls u live, and exactly as for the states, we can divide the possible control
sets into continuous control sets and discrete control sets. A mixture of both is a hybrid control set. An example
for a discrete control set is the set of gear choices for a car, or any switch that we can can choose to be either on or
off, but nothing in between.

In the systems and control community, the term hybrid system denotes a dynamic system which has either a
hybrid state or hybrid control space, or both. Generally speaking, hybrid systems are more difficult to optimize
than systems with continuous control and state spaces.

However, an interesting and relevant class are hybrid systems that have continuous time and continuous states,
but discrete controls. They might be called hybrid systems with external switches or integer controls and turn
out to be tremendously easier to optimize than other forms of hybrid systems, if treated with the right numerical
methods.

Time-Variant vs Time-Invariant Systems

A system whose dynamics depend on time is called a time-variant system, while a dynamic system is called time-
invariant if its evolution does not depend on the time and date when it is happening. As the laws of physics are
time-invariant, most technical systems belong to the latter class, but for example the temperature evolution of a
house with hot days and cold nights might best be described by a time-variant system model. While the class
of time-variant systems trivially comprises all time-invariant systems, it is an important observation that also the
other direction holds: each time-variant system can be modelled by a nonlinear time-invariant system if the state
space is augmented by an extra state that takes account of the advancement of time, and which we might call the
“clock state”.
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1.1. DYNAMIC SYSTEM CLASSES 9

Linear vs Nonlinear Systems

If the state trajectory of a system depends linearly on the initial value and the control inputs, it is called a linear
system. If the dependence is affine, one should ideally speak of an affine system, but often the term linear is used
here as well. In all other cases, we speak of a nonlinear system.

A particularly important class of linear systems are linear time invariant (LTI) systems. An LTI system can be
completely characterized in at least three equivalent ways: first, by two matrices that are typically called A and B;
second, by its step response function; and third, by its frequency response function. A large part of the research in
the control community is devoted to the study of LTI systems.

Controlled vs Uncontrolled Dynamic Systems

While we are in this lecture mostly interested in controlled dynamic systems, i.e. systems that have a control input
that we can choose, it is good to remember that there exist many systems that cannot be influenced at all, but that
only evolve according to their intrinsic laws of motion. These uncontrolled systems have an empty control set,
U = ∅. If a dynamic system is both uncontrolled and time-invariant it is also called an autonomous system.

Note that an autonomous system with discrete state space that also lives in discrete time is often called an
automaton.

Within the class of controlled dynamic systems, of special interest are the so called controllable systems, which
have the desirable property that their state vector x can be steered from any initial state xinit to any final state xfin in
a finite time with suitably chosen control input trajectories. Many controlled systems of interest are not completely
controllable because some parts of their state space cannot be influenced by the control inputs. If these parts are
stable, the system is called stabilizable.

Stable vs Unstable Dynamic Systems

A dynamic system whose state trajectory remains bounded for bounded initial values and controls is called a stable
system, and an unstable system otherwise. For autonomous systems, stability of the system around a fixed point
can be defined rigorously: for any arbitrarily small neighborhoodN around the fixed point there exists a region so
that all trajectories that start in this region remain in N . Asymptotic stability is stronger and additionally requires
that all considered trajectories eventually converge to the fixed point. For autonomous LTI systems, stability can
be computationally characterized by the eigenvalues of the system matrix.

Deterministic vs Stochastic Systems

If the evolution of a system can be predicted when its initial state and the control inputs are known, it is called a
deterministic system. When its evolution involves some random behaviour, we call it a stochastic system.

The movements of assets on the stockmarket are an example for a stochastic system, whereas the motion of
planets in the solar system can usually be assumed to be deterministic. An interesting special case of deterministic
systems with continuous state space are chaotic systems. These systems are so sensitive to their initial values that
even knowing these to arbitrarily high, but finite, precisions does not allow one to predict the complete future of the
system: only the near future can be predicted. The partial differential equations used in weather forecast models
have this property, and one well-known chaotic system of ODE, the Lorenz attractor, was inspired by these.

Note that also games like chess can be interpreted as dynamic systems. Here the evolution is neither determin-
istic nor stochastic, but determined by the actions of an adverse player. If we assume that the adversary always
chooses the worst possible control action against us, we enter the field of game theory, which in continuous state
spaces and engineering applications is often denoted by robust optimal control.

Open-Loop vs Closed-Loop Controlled Systems

When choosing the inputs of a controlled dynamic system, one first way is decide in advance, before the process
starts, which control action we want to apply at which time instant. This is called open-loop control in the systems
and control community, and has the important property that the control u is a function of time only and does not
depend on the current system state.

A second way to choose the controls incorporates our most recent knowledge about the system state which
we might observe with the help of measurements. This knowledge allows us to apply feedback to the system by
adapting the control action according to the measurements. In the systems and control community, this is called
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10 CHAPTER 1. INTRODUCTION

closed-loop control, but also the more intuitive term feedback control is used. It has the important property that the
control action does depend on the current state. The map from the state to the control action is called a feedback
control policy. In case this policy optimizes our optimization objective, it is called the optimal feedback control
policy.

Open-loop control can be compared to a cooking instruction that says: cook the potatos for 25 minutes in
boiling water. A closed-loop, or feedback control of the same process would for example say: cook the potatos in
boiling water until they are so soft that they do not attach anymore to a fork that you push into them. The feedback
control approach promises the better result, but requires more work as we have to take the measurements.

This lecture is mainly concerned with numerical methods of how to compute optimal open-loop controls for
given objective and constraints. But the last part of the lecture is concerned with a powerful method to approximate
the optimal feedback control policy: model predictive control, a feedback control technique that is based on the
repeated solution of open-loop optimal control problems.

Focus of This Script

In this script we have a strong focus on deterministic systems with continuous state and control spaces. Mostly, we
consider discrete time systems, while in a follow up lecture on numerical optimal control we discuss the treatment
of continuous time systems in much more detail.

The main reason for our focus on continuous state and control spaces is that the resulting optimal control
problems can efficiently be treated by derivative-based optimization methods. They are thus tremendously easier
to solve than most other classes, both in terms of the solvable system sizes and of computational speed. Also, these
continuous optimal control problems comprise the important class of convex optimal control problems, which
allow us to find a global solution reliably and fast. Convex optimal control problems are important in their own
right, but also serve as an approximation of nonconvex optimal control problems within Newton-type optimization
methods.

1.2 Continuous Time Systems
Most systems of interest in science and engineering are described in form of differential equations which live
in continuous time. On the other hand, all numerical simulation methods have to discretize the time interval of
interest in some form or the other and thus effectively generate discrete time systems. We will thus only briefly
sketch some relevant properties of continuous time systems in this section, and sketch how they can be transformed
into discrete time systems. Throughout the lecture, we will mainly be concerned with discrete time systems, while
we occasionally come back to the continuous time case.

Ordinary Differential Equations

A controlled dynamic system in continuous time can in the simplest case be described by an ordinary differential
equation (ODE) on a time interval [tinit, tfin] by

ẋ(t) = f(x(t), u(t), t), t ∈ [tinit, tfin] (1.1)

where t ∈ R is the time, u(t) ∈ Rnu are the controls, and x(t) ∈ Rnx is the state. The function f is a map from
states, controls, and time to the rate of change of the state, i.e. f : Rnx × Rnu × [tinit, tfin] → Rnx . Due to the
explicit time dependence of the function f , this is a time-variant system.

We are first interested in the question if this differential equation has a solution if the initial value x(tinit) is
fixed and also the controls u(t) are fixed for all t ∈ [tinit, tfin]. In this context, the dependence of f on the fixed
controls u(t) is equivalent to a a further time-dependence of f , and we can redefine the ODE as ẋ = f̃(x, t) with
f̃(x, t) := f(x, u(t), t). Thus, let us first leave away the dependence of f on the controls, and just regard the
time-dependent uncontrolled ODE:

ẋ(t) = f(x(t), t), t ∈ [tinit, tfin]. (1.2)

Initial Value Problems

An initial value problem (IVP) is given by (1.2) and the initial value constraint x(tinit) = xinit with some fixed
parameter xinit. Existence of a solution to an IVP is guaranteed under continuity of f with respect to to x and t
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1.2. CONTINUOUS TIME SYSTEMS 11

according to a theorem from 1886 that is due to Giuseppe Peano. But existence alone is of limited interest as the
solutions might be non-unique.

Example 1 (Non-Unique ODE Solution) The scalar ODE with f(x) =
√
|x(t)| can stay for an undetermined

duration in the point x = 0 before leaving it at an arbitrary time t0. It then follows a trajectory x(t) = (t− t0)2/4
that can be easily shown to satisfy the ODE (1.2). We note that the ODE function f is continuous, and thus
existence of the solution is guaranteed mathematically. However, at the origin, the derivative of f approaches
infinity. It turns out that this is the reason which causes the non-uniqueness of the solution.

As we are only interested in systems with well-defined and deterministic solutions, we would like to formulate
only ODE with unique solutions. Here helps the following theorem by Charles Émile Picard (1890) and Ernst
Leonard Lindelöf (1894).

Theorem 1 (Existence and Uniqueness of IVP) Regard the initial value problem (1.2) with x(tinit) = xinit, and
assume that f : Rnx × [tinit, tfin] → Rnx is continuous with respect to x and t. Furthermore, assume that f
is Lipschitz continuous with respect to x, i.e., that there exists a constant L such that for all x, y ∈ Rnx and all
t ∈ [tinit, tfin]

‖f(x, t)− f(y, t)‖ ≤ L‖x− y‖. (1.3)

Then there exists a unique solution x : [tinit, tfin]→ Rnx of the IVP.

Lipschitz continuity of f with respect to x is not easy to check. It is much easier to verify if a function is differ-
entiable. It is therefore a helpful fact that every function f that is differentiable with respect to x is also locally
Lipschitz continuous, and one can prove the following corollary to the Theorem of Picard-Lindelöf.

Corollary 1 (Local Existence and Uniqueness) Regard the same initial value problem as in Theorem 1, but in-
stead of global Lipschitz continuity, assume that f is continuously differentiable with respect to x for all t ∈
[tinit, tfin]. Then there exists a possibly shortened, but non-empty interval [tinit, t

′
fin] with t′fin ∈ (tinit, tfin] on

which the IVP has a unique solution.

Note that for nonlinear continuous time systems – in contrast to discrete time systems – it is very easily possible
to obtain an “explosion”, i.e., a solution that tends to infinity for finite times, even with innocently looking and
smooth functions f .

Example 2 (Explosion of an ODE) Regard the scalar example f(x) = x2 with tinit = 0 and xinit = 1, and let
us regard the interval [tinit, tfin] with tfin = 10. The IVP has the explicit solution x(t) = 1/(1 − t), which is
only defined on the half open interval [0, 1), because it tends to infinity for t → 1. Thus, we need to choose some
t′fin < 1 in order to have a unique and finite solution to the IVP on the shortened interval [tinit, t

′
fin]. The existence

of this local solution is guaranteed by the above corollary. Note that the explosion in finite time is due to the fact
that the function f is not globally Lipschitz continuous, so Theorem 1 is not applicable.

Discontinuities with Respect to Time

It is important to note that the above theorem and corollary can be extended to the case that there are finitely many
discontinuities of f with respect to t. In this case the ODE solution can only be defined on each of the continuous
time intervals separately, while the derivative of x is not defined at the time points at which the discontinuities
of f occur, at least not in the strong sense. But the transition from one interval to the next can be determined by
continuity of the state trajectory, i.e. we require that the end state of one continuous initial value problem is the
starting value of the next one.

The fact that unique solutions still exist in the case of discontinuities is important because, first, many optimal
control problems have discontinuous control trajectories u(t) in their solution, and, second, many algorithms
discretize the controls as piecewise constant functions which have jumps at the interval boundaries. Fortunately,
this does not cause difficulties for existence and uniqueness of the IVPs.

Linear Time Invariant (LTI) Systems

A special class of tremendous importance are the linear time invariant (LTI) systems. These are described by an
ODE of the form
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12 CHAPTER 1. INTRODUCTION

ẋ = Ax+Bu (1.4)

with fixed matrices A ∈ Rnx×nx and B ∈ Rnx×nu . LTI systems are one of the principal interests in the field
of automatic control and a vast literature exists on LTI systems. Note that the function f(x, u) = Ax + Bu is
Lipschitz continuous with respect to x with Lipschitz constant L = ‖A‖, so that the global solution to any initial
value problem with a piecewise continuous control input can be guaranteed.

Many important notions such as controllability or stabilizability, and computational results such as the step
response or frequency response function can be defined in terms of the matrices A and B alone. Note that in the
field of linear system analysis and control, usually also output equations y = Cx are present, where the outputs y
may be the only physically relevant quantities. Only the linear operator from u to y - the input-output-behaviour
- is of interest, while the state x is just an intermediate quantity. In that context, the states are not even unique,
because different state space realizations of the same input-output behavior exist. In this lecture, however, we are
not interested in input-outputs-behaviours, but assume that the state is the principal quantity of interest. Output
equations are not part of the models in this lecture. If one wants to make the connection to the LTI literature, one
might set C = I.

Zero Order Hold and Solution Map

In the age of digital control, the inputs u are often generated by a computer and implemented at the physical
system as piecewise constant between two sampling instants. This is called zero order hold. The grid size is
typically constant, say of fixed length ∆t > 0, so that the sampling instants are given by tk = k · ∆t. If our
original model is a differentiable ODE model, but we have piecewise constant control inputs with fixed values
u(t) = uk wtih uk ∈ Rnu on each interval t ∈ [tk, tk+1], we might want to regard the transition from the state
x(tk) to the state x(tk+1) as a discrete time system. This is indeed possible, as the ODE solution exists and is
unique on the interval [tk, tk+1] for each initial value x(tk) = xinit.

If the original ODE system is time-invariant, it is enough to regard one initial value problem with constant
control u(t) = uconst

ẋ(t) = f(x(t), uconst), t ∈ [0,∆t], with x(0) = xinit. (1.5)

The unique solution x : [0,∆t]→ Rnx to this problem is a function of both, the initial value xinit and the control
uconst, so we might denote the solution by

x(t;xinit, uconst), for t ∈ [0,∆t]. (1.6)

This map from (xinit, uconst) to the state trajectory is called the solution map. The final value of this short trajectory
piece, x(∆t;xinit, uconst), is of major interest, as it is the point where the next sampling interval starts. We might
define the transition function fdis : Rnx ×Rnu → Rnx by fdis(xinit, uconst) = x(∆t;xinit, uconst). This function
allows us to define a discrete time system that uniquely describes the evolution of the system state at the sampling
instants tk:

x(tk+1) = fdis(x(tk), uk). (1.7)

Solution Map of Linear Time Invariant Systems

Let us regard a simple and important example: for linear continuous time systems

ẋ = Ax+Bu

with initial value xinit at tinit = 0, and constant control input uconst, the solution map x(t;xinit, uconst) is explicitly
given as

x(t;xinit, uconst) = exp(At)xinit +

∫ t

0

exp(A(t− τ))Buconstdτ,

where exp(A) is the matrix exponential. It is interesting to note that this map is well defined for all times t ∈ R,
as linear systems cannot explode. The corresponding discrete time system with sampling time ∆t is again a linear
time invariant system, and is given by

fdis(xk, uk) = Adisxk +Bdisuk (1.8)
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1.2. CONTINUOUS TIME SYSTEMS 13

with

Adis = exp(A∆t) and Bdis =

∫ ∆t

0

exp(A(∆t− τ))Bdτ. (1.9)

One interesting observation is that the discrete time system matrix Adis resulting from the solution of an LTI
system in continuous time is by construction an invertible matrix, with inverse A−1

dis = exp(−A∆t). For systems
with strongly decaying dynamics, however, the matrix Adis might have some very small eigenvalues and will thus
be nearly singular.

Sensitivities

In the context of optimal control, derivatives of the dynamic system simulation are needed for nearly all numerical
algorithms. Following Theorem 1 and Corollary 1 we know that the solution map to the IVP (1.5) exists on an
interval [0,∆t] and is unique under mild conditions even for general nonlinear systems. But is it also differentiable
with respect to the initial value and control input?

In order to discuss the issue of derivatives, which in the dynamic system context are often called sensitivities,
let us first ask what happens if we call the solution map with different inputs. For small perturbations of the values
(xinit, uconst), we still have a unique solution x(t;xinit, uconst) on the whole interval t ∈ [0,∆t]. Let us restrict
ourselves to a neighborhood N of fixed values (xinit, uconst). For each fixed t ∈ [0,∆t], we can now regard
the well defined and unique solution map x(t; ·) : N → Rnx , (xinit, uconst) 7→ x(t;xinit, uconst). A natural
question to ask is if this map is differentiable. Fortunately, it is possible to show that if f is m-times continuously
differentiable with respect to both x and u, then the solution map x(t; ·), for each t ∈ [0,∆t], is also m-times
continuously differentiable with respect to (xinit, uconst).

In the general nonlinear case, the solution map x(t;xinit, uconst) can only be generated by a numerical simula-
tion routine. The computation of derivatives of this numerically generated map is a delicate issue that we discuss
in detail in a follow up course on numerical optimal control. To mention already the main difficulty, note that
most numerical integration routines are adaptive, i.e., might choose to do different numbers of integration steps for
different IVPs. This renders the numerical approximation of the map x(t;xinit, uconst) typically non-differentiable
in the inputs xinit, uconst. Thus, multiple calls of a black-box integrator and application of finite differences might
result in very wrong derivative approximations.

Numerical Integration Methods

A numerical simulation routine that approximates the solution map is often called an integrator. A simple but very
crude way to generate an approximation for x(t;xinit, uconst) for t ∈ [0,∆t] is to perform a linear extrapolation
based on the time derivative ẋ = f(x, u) at the initial time point:

x̃(t;xinit, uconst) = xinit + tf(xinit, uconst), t ∈ [0,∆t]. (1.10)

This is called one Euler integration step. For very small ∆t, this approximation becomes very good. In fact,
the error x̃(∆t;xinit, uconst) − x(∆t;xinit, uconst) is of second order in ∆t. This motivated Leonhard Euler to
perform several steps of smaller size, and propose what is now called the Euler integration method. We subdivide
the interval [0,∆t] into M subintervals each of length h = ∆t/M , and perform M such linear extrapolation steps
consecutively, starting at x̃0 = xinit:

x̃j+1 = x̃j + hf(x̃j , uconst), j = 0, . . . ,M − 1. (1.11)

It can be proven that the Euler integration method is stable, i.e. that the propagation of local errors is bounded with
a constant that is independent of the step size h. Therefore, the approximation becomes better and better when we
decrease the step size h: since the consistency error in each step is of order h2, and the total number of steps is of
order ∆t/h, the accumulated error in the final step is of order h∆t. As this is linear in the step size h, we say that
the Euler method has the order one. Taking more steps is more accurate, but also needs more computation time.
One measure for the computational effort of an integration method is the number of evaluations of f , which for
the Euler method grows linearly with the desired accuracy.

In practice, the Euler integrator is rarely competitive, because other methods exist that deliver the desired
accuracy levels at much lower computational cost. We discuss several numerical simulation methods later, but
present here already one of the most widespread integrators, the Runge-Kutta Method of Order Four, which we
will often abbreviate as RK4. One step of the RK4 method needs four evaluations of f and stores the results in
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14 CHAPTER 1. INTRODUCTION

four intermediate quantities ki ∈ Rnx , i = 1, . . . , 4. Like the Euler integration method, the RK4 also generates a
sequence of values x̃j , j = 0, . . . ,M , with x̃0 = xinit. At x̃j , and using the constant control input uconst, one step
of the RK4 method proceeds as follows:

k1 = f(x̃j , uconst) (1.12a)

k2 = f(x̃j +
h

2
k1, uconst) (1.12b)

k3 = f(x̃j +
h

2
k2, uconst) (1.12c)

k4 = f(x̃j + h k3, uconst) (1.12d)

x̃j+1 = x̃j +
h

6
(k1 + 2k2 + 2k3 + k4) (1.12e)

One step of RK4 is thus as expensive as four steps of the Euler method. But it can be shown that the accuracy of the
final approximation x̃M is of order h4∆t. In practice, this means that the RK4 method usually needs tremendously
fewer function evaluations than the Euler method to obtain the same accuracy level.

From here on, and throughout the major part of the lecture, we will leave the field of continuous time systems,
and directly assume that we control a discrete time system xk+1 = fdis(xk, uk). Let us keep in mind, however, that
the transition map fdis(xk, uk) is usually not given as an explicit expression but can instead be a relatively involved
computer code with several intermediate quantities. In the exercises of this lecture, we will usually discretize the
occuring ODE systems by using only one Euler or RK4 step per control interval, i.e. use M = 1 and h = ∆t. The
RK4 step often gives already a sufficient approximation at relatively low cost.

1.3 Discrete Time Systems
Let us now discuss in more detail the discrete time systems that are at the basis of the control problems in the first
part of this lecture. In the general time-variant case, these systems are characterized by the dynamics

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1 (1.13)

on a time horizon of length N , with N control input vectors u0, . . . , uN−1 ∈ Rnu and (N + 1) state vectors
x0, . . . , xN ∈ Rnx .

If we know the initial state x0 and the controls u0, . . . , uN−1 we could recursively call the functions fk in
order to obtain all other states, x1, . . . , xN . We call this a forward simulation of the system dynamics.

Definition 1 (Forward simulation) The forward simulation is the map

fsim : Rnx+Nnu → R(N+1)nx

(x0;u0, u1, . . . , uN−1) 7→ (x0, x1, x2, . . . , xN )
(1.14)

that is defined by solving Equation (1.13) recursively for all k = 0, 1, . . . , N − 1.

The inputs of the forward simulation routine are the initial value x0 and the controls uk for k = 0, . . . , N − 1.
In many practical problems we can only choose the controls while the initial value is fixed. Though this is a very
natural assumption, it is not the only possible one. In optimization, we might have very different requirements: We
might, for example, have a free initial value that we want to choose in an optimal way. Or we might have both a
fixed initial state and a fixed terminal state that we want to reach. We might also look for periodic sequences with
x0 = xN , but do not know x0 beforehand. All these desires on the initial and the terminal state can be expressed
by suitable constraints. For the purpose of this manuscript it is important to note that the fundamental equation
that is characterizing a dynamic optimization problem are the system dynamics stated in Equation (1.13), but no
initial value constraint, which is optional.

Linear Time Invariant (LTI) Systems

As discussed already for the continuous time case, linear time invariant (LTI) systems are not only one of the
simplest possible dynamic system classes, but also have a rich and beautiful history. In the discrete time case, they
are determined by the system equation

xk+1 = Axk +Buk, k = 0, 1, . . . , N − 1. (1.15)
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1.3. DISCRETE TIME SYSTEMS 15

with fixed matrices A ∈ Rnx×nx and B ∈ Rnx×nu . An LTI system is asymptotically stable if all eigenvalues of
the matrix A are strictly inside the unit disc of the complex plane, i.e. have a modulus smaller than one. It is easy
to show that the forward simulation map for an LTI system on a horizon with length N is given by

fsim(x0;u0, . . . , uN−1) =


x0

x1

x2

...
xN

 =


x0

Ax0 +Bu0

A2x0 +ABu0 +Bu1

...
ANx0 +

∑N−1
k=0 AN−1−kBuk


In order to check controllability, due to linearity, one might ask the question if after N steps any terminal state xN
can be reached from x0 = 0 by a suitable choice of control inputs. Because of

xN =
[
AN−1B AN−2B · · · B

]︸ ︷︷ ︸
=CN


u0

u1

...
uN−1


this is possible if and only if the matrix CN ∈ Rnx×Nnu has the rank nx. Increasing N can only increase the rank,
but one can show that the maximum possible rank is already reached for N = nx, so it is enough to check if the
so called controllability matrix Cnx has the rank nx.

Eigenvalues and Eigenvectors of LTI Systems

Every square matrix A ∈ Rnx×nx can be brought into the Jordan canonical form A = QJQ−1 with non-singular
Q ∈ Cnx×nx and J block diagonal, consisting of m-Jordan blocks Ji. Thus, it holds that

J =


J1

J2

. . .
Jm

 with Ji =


λi 1

λi 1
. . . . . .

λi

 .
Many of the Jordan blocks might just have size one, i.e. Ji = [λi]. To better understand the uncontrolled system
evolution with dynamics xk+1 = Axk and initial condition x0 = xinit, one can regard the solution map xN =
ANx0 in the eigenbasis, which yields the expression

xN = Q JN (Q−1x0)

First, it is seen that all Jordan blocks evolve independently, after the initial condition is represented in the eigenba-
sis. Second, a simple Jordan block Ji will just result in the corresponding component being multiplied by a factor
λNi . Third, for nontrivial Jordan blocks, one obtains more complex expressions with N upper diagonals of the
form

JNi =



λNi NλN−1
i · · · 1

λNi NλN−1
i

. . .

. . .

λNi


.

If one eigenvalue has a larger modulus |λi| than all others, the Jordan block JNi will grow faster (or shrink slower)
than the others for increasing N . The result is that the corresponding eigenvector(s) will dominate the final state
xN for large N , while all others “die out”. Here, the second largest eigenvalues will result in the most slowly
decaying components, and their corresponding eigenvectors will keep a visible contribution in xN the longest.

Interestingly, complex eigenvalues as well as eigenvectors appear in complex conjugate pairs. If an eigenvalue
λi is complex, the (real part of) the corresponding eigenvector will perform oscillatory motion. To understand the
behaviour of complex eigenvectors, let us regard a complex conjugate pair of simple eigenvalues λi and λj = λ̄i,
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and their eigenvectors vi, vj ∈ Cnx , i.e. Avi = λivi and Avj = λ̄ivj . It is easy to see that, because A is real,
vj = v̄i is a possible choice for the eigenvector corresponding to λ̄i. Then holds that Re{vi} = 1

2 (vi + vj).
Therefore,

AN Re{vi} =
1

2
(λNi vi + λNj vj) =

1

2
(λNi vi + λ̄Ni v̄i) = Re{λNi vi}.

If we represent λi as λi = reφi (where the i in the exponent is the imaginary unit while the other i remains just
an integer index), then λNi = rNeNφi. If φ is a fraction of 2π, there is an N such that Nφ = 2π, and after N
iterations we will obtain the same real part as in the original eigenvector, but multiplied with rN . We can conclude
that the real part of the eigenvector to a complex eigenvalue reφi performs a form of damped or growing oscillatory
motion with period duration N = 2π/φ and growth constant r.

Affine Systems and Linearizations along Trajectories

An important generalization of linear systems are affine time-varying systems of the form

xk+1 = Akxk +Bkuk + ck, k = 0, 1, . . . , N − 1. (1.16)

These often appear as linearizations of nonlinear dynamic systems along a given reference trajectory. To see this,
let us regard a nonlinear dynamic system and some given reference trajectory values x̄0, . . . , x̄N−1 as well as
ū0, . . . , ūN−1. Then the Taylor expansion of each function fk at the reference value (x̄k, ūk) is given by

(xk+1 − x̄k+1) ≈ ∂fk
∂x

(x̄k, ūk)(xk − x̄k) +
∂fk
∂u

(x̄k, ūk)(uk − ūk) + (fk(x̄k, ūk)− x̄k+1)

thus resulting in affine time-varying dynamics of the form (1.16). Note that even for a time-invariant nonlinear
system the linearized dynamics becomes time-variant due to the different linearization points on the reference
trajectory.

It is an important fact that the forward simulation map of an affine system (1.16) is again an affine function of
the initial value and the controls. More specifically, this affine map is for any N ∈ N given by:

xN = (AN−1 · · ·A0)x0 +

N−1∑
k=0

(
ΠN−1
j=k+1Aj

)
(Bkuk + ck) .

1.4 Optimization Problem Classes
Mathematical optimization refers to finding the best, or optimal solution among a set of possible decisions, where
optimality is defined with the help of an objective function. Some solution candidates are feasible, others not, and
it is assumed that feasibility of a solution candidate can be checked by evaluation of some constraint functions
that need for example be equal to zero. Like the field of dynamic systems, the field of mathematical optimization
comprises many different problem classes, which we will briefly try to classify in this section.

Historically, optimization has been identified with programming, where a program was understood as a deter-
ministic plan, e.g., in logistics. For this reason, many of the optimization problem classes have been given names
that contain the words program or programming. In this script we will often use these names and their abbrevi-
ations, because they are still widely used. Thus, we use e.g. the term linear program (LP) as a synonym for a
linear optimization problem. It is interesting to note that the major society for mathematical optimization, which
had for decades the name Mathematical Programming Society (MPS), changed its name in 2011 to Mathemati-
cal Optimization Society (MOS), while it decided not to change the name of its major journal, that still is called
Mathematical Programming. In this script we chose a similarly pragmatic approach to the naming conventions.

Finite vs Infinite Dimensional Optimization

An important divididing line in the field of optimization regards the dimension of the space in which the decision
variable, say x, is chosen. If x can be represented by finitely many numbers, e.g. x ∈ Rn with some n ∈ N, we
speak of a finite dimensional optimization problem, otherwise, of an infinite dimensional optimization problem.
The second might also be referred to as optimization in function spaces. Discrete time optimal control problems
fall into the first, continuous time optimal control problems into the second class.
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1.4. OPTIMIZATION PROBLEM CLASSES 17

Besides the dimension of the decision variable, also the dimension of the constraint functions can be finite or
infinite. If an infinite number of inequality constraints is present while the decision variable is finite dimensional,
one speaks of a semi-infinite optimization problem. This class naturally arises in the context of robust optimization,
where one wants to find the best choice of the decision variable that satisfies the constraints for all possible values
of an unknown but bounded disturbance.

Continuous vs Integer Optimization

A second dividing line concerns the type of decision variables. These can be either continuous, like for example
real valued vectors x ∈ Rn, or any other elements of a smooth manifold. On the other hand, the decision variable
can be discrete, or integer valued, i.e. we have z ∈ Zn, or, when a set of binary choices has to be made, z ∈ {0, 1}n.
In this case one often also speaks of combinatorial optimization. If an optimization problem has both, continuous
and integer variables, it is called a mixed-integer optimization problem.

An important class of continuous optimization problems are the so called nonlinear programs (NLP). They can
be stated in the form

minimize
x ∈ Rn

f(x) (1.17a)

subject to g(x) = 0, (1.17b)
h(x) ≤ 0, (1.17c)

where f : Rn → R, g : Rn → Rng , and h : Rn → Rnh are assumed to be at least once continuously differentiable.
Note that we use function and variable names such as f and x with a very different meaning than before in the
context of dynamic systems. In the first part of the lecture we discuss algorithms to solve this kind of optimization
problems, and the discrete time optimal control problems treated in this lecture can also be regarded as a specially
structured form of NLPs. Two important subclasses of NLPs are the linear programs (LP), which have affine
problem functions f, g, h, and the quadratic programs (QP), which have affine constraint functions g, h and a
more general linear quadratic objective f(x) = cTx+ 1

2x
THx with a symmetric matrix H ∈ Rn×n.

A large class of mixed-integer optimization problems are the so called mixed integer nonlinear programs
(MINLP), which can be stated as

minimize
x∈Rn

z∈Zm

f(x, z) (1.18a)

subject to g(x, z) = 0, (1.18b)
h(x, z) ≤ 0. (1.18c)

Among the MINLPs, an important special case arises if the problem functions f, g, h are affine in both variables, x
and z, which is called a mixed integer linear program (MILP). If the objective is allowed to be linear quadratic, one
speaks of a mixed integer quadratic program (MIQP). If in an MILP only integer variables are present, one usually
just calls it an integer program (IP). The field of (linear) integer programming is huge and has powerful algorithms
available. Most problems in logistics fall into this class, a famous example being the travelling salesman problem,
which concerns the shortest closed path that one can travel through a given number of towns, visiting each town
exactly once.

An interesting class of mixed-integer optimization problems arises in the context of optimal control of hybrid
dynamic systems, which in the discrete time case can be regarded a special case of MINLP. In continuous time, we
enter the field of infinite dimensional mixed-integer optimization, often also called Mixed-integer optimal control
problems (MIOCP).

Convex vs Nonconvex Optimization

Arguably the most important dividing line in the world of optimization is between convex and nonconvex opti-
mization problems. Convex optimization problems are a subclass of the continuous optimization problems and
arise if the objective function is a convex function and the set of feasible points a convex set. In this case one can
show that any local solution, i.e. values for the decision variables that lead to the best possible objective value
in a neighborhood, is also a global solution, i.e. has the best possible objective value among all feasible points.
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18 CHAPTER 1. INTRODUCTION

Practically very important is the fact that convexity of a function or a set can be checked just by checking convexity
of its building blocks and if they are constructed in a way that preserves convexity.

Several important subclasses of NLPs are convex, such as LPs. Also QPs are convex if they have a convex
objective f . Another example are Quadratically Constrained Quadratic Programs (QCQP) which have quadratic
inequalities and whose feasible set is the intersection of ellipsoids. Some other optimization problems are convex
but do not form part of the NLP family. Two widely used classes are second-order cone programs (SOCP) and
semi-definite programs (SDP) which have linear objective functions but more involved convex feasible sets: for
SOCP, it is the set of vectors which have one component that is larger than the Euclidean norm of all the other
components and which it is called the second order cone, and for SDP it is the set of symmetric matrices that
are positive semi-definite, i.e. have all eigenvalues larger than zero. SDPs are often used when designing linear
feedback control laws. Also infinite dimensional optimization problems such as optimal control problems in
continuous time can be convex under fortunate circumstances.

In this context, it is interesting to note that a sufficient condition for convexity of an optimal control problem
is that the underlying dynamic system is linear and that the objective and constraints are convex in controls and
states. On the other hand, optimal control problems with underlying nonlinear dynamic systems, which are the
focus of this lecture, are usually nonconvex.

Optimization problems with integer variables can never be convex due to the nonconvexity of the set of integers.
However, it is of great algorithmic advantage if mixed-integer problems have a convex substructure in the sense
that convex problems arise when the integer variables are allowed to also take real values. These so called convex
relaxations are at the basis of nearly all competitive algorithms for mixed-integer optimization. For example, linear
integer programs can be solved very efficiently because their convex relaxations are just linear programs, which
are convex and can be solved very efficiently.

1.5 Overview and Notation
The chapters of these lecture notes can roughly be divided into six major areas.

• Introduction

• Optimization Background

• Discrete Time Optimal Control

• Continuous Time Optimal Control

• Model Predictive Control and Moving Horizon Estimation

Notation

Within this lecture we use R for the set of real numbers, R+ for the non-negative ones and R++ for the positive
ones, Z for the set of integers, and N for the set of natural numbers including zero, i.e. we identify N = Z+. The
set of real-valued vectors of dimension n is denoted by Rn, and Rn×m denotes the set of matrices with n rows and
m columns. By default, all vectors are assumed to be column vectors, i.e. we identify Rn = Rn×1. We usually use
square brackets when presenting vectors and matrices elementwise. Because will often deal with concatenations of
several vectors, say x ∈ Rn and y ∈ Rm, yielding a vector in Rn+m, we abbreviate this concatenation sometimes
as (x, y) in the text, instead of the correct but more clumsy equivalent notations [x>, y>]> or[

x
y

]
.

Square and round brackets are also used in a very different context, namely for intervals in R, where for two real
numbers a < b the expression [a, b] ⊂ R denotes the closed interval containing both boundaries a and b, while an
open boundary is denoted by a round bracket, e.g. (a, b) denotes the open interval and [a, b) the half open interval
containing a but not b.

When dealing with norms of vectors x ∈ Rn, we denote by ‖x‖ an arbitrary norm, and by ‖x‖2 the Euclidean
norm, i.e. we have ‖x‖22 = x>x. We denote a weighted Euclidean norm with a positive definite weighting matrix
Q ∈ Rn×n by ‖x‖Q, i.e. we have ‖x‖2Q = x>Qx. The L1 and L∞ norms are defined by ‖x‖1 =

∑n
i=1 |xi|
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and ‖x‖∞ = max{|x1|, . . . , |xn|}. Matrix norms are the induced operator norms, if not stated otherwise, and the
Frobenius norm ‖A‖F of a matrix A ∈ Rn×m is defined by ‖A‖2F = trace(AA>) =

∑n
i=1

∑m
j=1AijAij .

When we deal with derivatives of functions f with several real inputs and several real outputs, i.e. functions
f : Rn → Rm, x 7→ f(x), we define the Jacobian matrix ∂f

∂x (x) as a matrix in Rm×n, following standard
conventions. For scalar functions with m = 1, we denote the gradient vector as ∇f(x) ∈ Rn, a column vector,
also following standard conventions. Slightly less standard, we generalize the gradient symbol to all functions
f : Rn → Rm even with m > 1, i.e. we generally define in this lecture

∇f(x) =
∂f

∂x
(x)> ∈ Rn×m.

Using this notation, the first order Taylor series is e.g. written as

f(x) = f(x̄) +∇f(x̄)>(x− x̄)) + o(‖x− x̄‖)

The second derivative, or Hessian matrix will only be defined for scalar functions f : Rn → R and be denoted by
∇2f(x).

For square symmetric matrices of dimension n we sometimes use the symbol Sn, i.e. Sn = {A ∈ Rn×n|A =
A>}. For any symmetric matrixA ∈ Sn we writeA<0 if it is a positive semi-definite matrix, i.e. all its eigenvalues
are larger or equal to zero, and A�0 if it is positive definite, i.e. all its eigenvalues are positive. This notation is
also used for matrix inequalities that allow us to compare two symmetric matrices A,B ∈ Sn, where we define
for example A<B by A−B<0.

When using logical symbols, A⇒ B is used when a propositionA implies a propositionB. In words the same
is expressed by “If A then B”. We write A⇔ B for “A if and only if B”, and we sometimes shorten this to “A iff
B”, with a double “f”, following standard practice.
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Chapter 2

Nonlinear Optimization

”The great watershed in optimization is not between linearity and nonlinearity, but convexity and nonconvexity.”
R. Tyrrell Rockafellar

In this first part of the book we discuss several concepts from the field of mathematical optimization that are
important for optimal control. Our focus is on quickly arriving at a point where the specific optimization methods
for dynamic systems can be treated, while the same material can be found in much greater detail in many excellent
textbooks on numerical optimization such as [NW06].

The reason for keeping this part on optimization self-contained and without explicit reference to optimal control
is that this allows us to separate between the general concepts of optimization and those specific to optimal control.
For this reason, we use in this part the language and notation that is customary in mathematical optimization. The
optimization problem with which we are concerned in this part is the standard Nonlinear Program (NLP) that was
already stated in the introduction:

minimize
x ∈ Rn

f(x) (2.1a)

subject to g(x) = 0, (2.1b)
h(x) ≤ 0, (2.1c)

where f : Rn → R, g : Rn → Rng , and h : Rn → Rnh are assumed to be twice continuously differentiable.
Function f is called the objective function, function g is the vector of equality constraints, and h the vector of
inequality constraints. We start with some fundamental definitions. First, we collect all points that satisfy the
constraints in one set.

Definition 2 (Feasible set) The feasible set Ω is the set

Ω := {x ∈ Rn | g(x) = 0, h(x) ≤ 0} .

The points of interest in optimization are those feasible points that minimize the objective, and they come in two
different variants.

Definition 3 (Global minimum) The point x∗ ∈ Rn is a global minimizer if and only if (iff) x∗ ∈ Ω and ∀x ∈ Ω :
f(x) ≥ f(x∗). The value f(x∗) is the global minimum.

Unfortunately, the global minimum is usually difficult to find, and most algorithms allow us to only find local
minimizers, and to verify optimality only locally.

Definition 4 (Local minimum) The point x∗ ∈ Rn is a local minimizer iff x∗ ∈ Ω and there exists a neighbor-
hood N of x∗ (e.g., an open ball around x∗) so that ∀x ∈ Ω ∩N : f(x) ≥ f(x∗). The value f(x∗) is a local
minimum.

In order to be able to state the optimality conditions that allow us to check if a candidate point x∗ is a local
minimizer or not, we need to describe the feasible set in the neighborhood of x∗. It turns out that not all inequality
constraints need to be considered locally, but only the active ones.

21
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22 CHAPTER 2. NONLINEAR OPTIMIZATION

Definition 5 (Active Constraints and Active Set) An inequality constraint hi(x) ≤ 0 is called active at x∗ ∈ Ω
iff hi(x∗) = 0 and otherwise inactive. The index set A(x∗) ⊂ {1, . . . , nh} of active inequality constraint indices
is called the ”active set”.

Often, the name active set also comprises all equality constraint indices, as equalities could be considered to be
always active.

Problem (2.1) is very generic. In Section 2.1 we review some special cases, which still yield large classes of
optimization problems. In order to choose the right algorithm for a practical problem, we should know how to
classify it and which mathematical structures can be exploited. Replacing an inadequate algorithm by a suitable
one can reduce solution times by orders of magnitude. E.g., an important structure is convexity. It allows us to to
find global minima by searching for local minima only.

For the general case we review the first and second order conditions of optimality in Sections 2.2 and 2.3,
respectively.

2.1 Important Special Classes
Linear Optimization

An obvious special case occurs when the functions f , g, and h in (2.1) are linear, resulting in a linear optimization
problem (or Linear Program, LP)

minimize
x ∈ Rn

c>x (2.2a)

subject to Ax− b = 0, (2.2b)
Cx− d ≤ 0. (2.2c)

Here, the problem data are c ∈ Rn, A ∈ Rng×n, b ∈ Rng , C ∈ Rnh×n, and d ∈ Rnh .
It is easy to show that one optimal solution of any LP – if the LP does have a solution and is not unbounded

– has to be a vertex of the polytope of feasible points. Vertices can be represented and calculated by means of
basis solution vectors, with a basis of active inequality constraints. Thus, there are only finitely many vertices,
giving rise to Simplex algorithms that compare all possible solutions in a clever way. However, naturally also the
optimality conditions of Section 2.2 are valid and can be used for algorithms, in particular interior point methods.

Quadratic Optimization

If in the general NLP formulation (2.1) the constraints g, h are affine, and the objective is a linear-quadratic
function, we call the resulting problem a Quadratic Optimization Problem or Quadratic Program (QP). A general
QP can be formulated as follows.

minimize
x ∈ Rn

c>x+
1

2
x>Bx (2.3a)

subject to Ax− b = 0, (2.3b)
Cx− d ≤ 0. (2.3c)

Here, the problem data are c ∈ Rn, A ∈ Rng×n, b ∈ Rng , C ∈ Rnh×n, d ∈ Rnh , as well as the “Hessian matrix”
B ∈ Rn×n. Its name stems from the fact that∇2f(x) = B for f(x) = c>x+ 1

2x
>Bx.

The eigenvalues ofB decide on convexity or non-convexity of a QP, i.e., the possibility to solve it in polynomial
time to global optimality, or not. If B<0 we speak of a convex QP, and if B�0 we speak of a strictly convex QP.
The latter class has the property that it always has unique minimizers.

Convex Optimization

Roughly speaking, a set is convex, if all connecting lines lie inside the set:

Definition 6 (Convex Set) A set Ω ⊂ Rn is convex if

∀x, y ∈ Ω, t ∈ [0, 1] : x+ t(y − x) ∈ Ω. (2.4)
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A function is convex, if all secants are above the graph:

Definition 7 (Convex Function) A function f : Ω→ R is convex, if Ω is convex and if

∀x, y ∈ Ω, t ∈ [0, 1] : f(x+ t(y − x)) ≤ f(x) + t(f(y)− f(x)). (2.5)

Note that this definition is equivalent to saying that the Epigraph of f , i.e., the set {(x, s) ∈ Rn × R|x ∈ Ω, s ≥
f(x)}, is a convex set.

Definition 8 (Concave Function) A function f : Ω→ R is called “concave” if (−f) is convex.

Note that the feasible set Ω of an optimization problem (2.1) is convex if the function g is affine and the
functions hi are convex, as supported by the following theorem.

Theorem 2 (Convexity of Sublevel Sets) The sublevel set {x ∈ Ω | h(x) ≤ 0} of a convex function h : Ω → R
is convex.

Definition 9 (Convex Optimization Problem) An optimization problem with convex feasible set Ω and convex
objective function f : Ω→ R is called a convex optimization problem.

Theorem 3 (Local Implies Global Optimality for Convex Problems) For a convex optimization problem, every
local minimum is also a global one.

We leave the proofs of Theorems 2 and 3 as an exercise.
There exists a whole algebra of operations that preserve convexity of functions and sets, which is excellently

explained in the text books on convex optimization [BTN01, BV04]. Here we only mention an important fact that
is related to the positive curvature of a function.

Theorem 4 (Convexity for C2 Functions) Assume that f : Ω → R is twice continuously differentiable and Ω
convex and open. Then f is convex if and only if for all x ∈ Ω the Hessian is positive semi-definite, i.e.,

∀x ∈ Ω : ∇2f(x)<0. (2.6)

Again, we leave the proof as an exercise. As an example, the quadratic objective function f(x) = c>x +
1
2x
>Bx of (2.3) is convex if and only if B<0, because ∀x ∈ Rn : ∇2f(x) = B.

2.2 First Order Optimality Conditions

An important question in continuous optimization is if a feasible point x∗ ∈ Ω satisfies necessary first order
optimality conditions. If it does not satisfy these conditions, x∗ cannot be a local minimizer. If it does satisfy these
conditions, it is a hot candidate for a local minimizer. If the problem is convex, these conditions are even sufficient
to guarantee that it is a global optimizer. Thus, most algorithms for nonlinear optimization search for such points.
The first order condition can only be formulated if a technical “constraint qualification” is satisfied, which in its
simplest and numerically most attractive variant comes in the following form.

Definition 10 (LICQ) The linear independence constraint qualification (LICQ) holds at x∗ ∈ Ω iff all vectors
∇gi(x∗) for i ∈ {1, . . . , ng} and ∇hi(x∗) for i ∈ A(x∗) are linearly independent.

To give further meaning to the LICQ condition, let us combine all active inequalities with all equalities in a map g̃
defined by stacking all functions on top of each other in a colum vector as follows:

g̃(x) =

[
g(x)

hi(x)(i ∈ A(x∗))

]
. (2.7)

LICQ is then equivalent to full row rank of the Jacobian matrix ∂g̃
∂x (x∗).
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The Karush-Kuhn-Tucker Optimality Conditions

This condition allows us to formulate the famous KKT conditions that are due to Karush [Kar39] and Kuhn and
Tucker [KT51].

Theorem 5 (KKT Conditions) If x∗ is a local minimizer of the NLP (2.1) and LICQ holds at x∗ then there exist
so called multiplier vectors λ ∈ Rng and µ ∈ Rnh with

∇f(x∗) +∇g(x∗)λ∗ +∇h(x∗)µ∗ = 0 (2.8a)
g(x∗) = 0 (2.8b)
h(x∗) ≤ 0 (2.8c)

µ∗ ≥ 0 (2.8d)
µ∗i hi(x

∗) = 0, i = 1, . . . , nh. (2.8e)

Regarding the notation used in the first line above, please observe that in this script we use the gradient symbol ∇
also for functions g, h with multiple outputs, not only for scalar functions like f . While ∇f is a column vector,
in ∇g we collect the gradient vectors of all output components in a matrix which is the transpose of the Jacobian,
i.e., ∇g(x) := ∂g

∂x (x)>.

Definition 11 (KKT Point) We call a triple (x∗, λ∗, µ∗) a “KKT Point” if it satisfies LICQ and the KKT condi-
tions Eqs. (2.8a)-(2.8e).

Note: The KKT conditions are the First order necessary conditions for optimality (FONC) for constrained
optimization, and are thus the equivalent to ∇f(x∗) = 0 in unconstrained optimization. In the special case of
convex problems, the KKT conditions are not only necessary for a local minimizer, but even sufficient for a global
minimizer. In fact, the following extremely important statement holds.

Theorem 6 Regard a convex NLP and a point x∗ at which LICQ holds. Then:

x∗ is a global minimizer⇐⇒ ∃λ, µ so that the KKT conditions hold.

The Lagrangian Function

Definition 12 (Lagrangian Function) We define the so called “Lagrangian function” to be

L(x, λ, µ) = f(x) + λ>g(x) + µ>h(x). (2.9)

Here, we have used again the so called “Lagrange multipliers” or “dual variables” λ ∈ Rng and µ ∈ Rnh .
The Lagrangian function plays a crucial role in both convex and general nonlinear optimization, not only as
a practical shorthand within the KKT conditions: using the definition of the Lagrangian, we have (2.8a) ⇔
∇xL(x∗, λ∗, µ∗) = 0.

Remark 1: In the absence of inequalities, the KKT conditions simplify to ∇xL(x, λ) = 0, g(x) = 0, a
formulation that is due to Lagrange and was much earlier known than the KKT conditions.

Remark 2: The KKT conditions require the inequality multipliers µ to be positive, µ ≥ 0, while the sign of the
equality multipliers λ is arbitrary. An interesting observation is that for a convex problem with f and all hi convex
and g affine, and for µ ≥ 0, the Lagrangian function is a convex function in x. This often allows us to explicitly
find the unconstrained minimum of the Lagrangian for any given λ and µ ≥ 0, which is called the Lagrange dual
function, and which can be shown to be an underestimator of the minimum. Maximizing this underestimator over
all λ and µ ≥ 0 leads to the concepts of weak and strong duality, which we omit here for brevity.

Complementarity

The last three KKT conditions (2.8c)-(2.8e) are called the complementarity conditions. For each index i, they
define an L-shaped set in the (hi, µi) space. This set is not a smooth manifold but has a non-differentiability at
the origin, i.e., if hi(x∗) = 0 and also µ∗i = 0. This case is called a weakly active constraint. Often we want to
exclude this case. On the other hand, an active constraint with µ∗i > 0 is called strictly active.

Definition 13 Regard a KKT point (x∗, λ∗, µ∗). We say that strict complementarity holds at this KKT point iff all
active constraints are strictly active.
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Strict complementarity is a favourable condition because, together with a second order condition, it implies that
the active set is stable against small perturbations. It also makes many theorems easier to formulate and to prove,
and is also required to prove convergence of some numerical methods.

2.3 Second Order Optimality Conditions

In case of strict complementarity at a KKT point (x∗, λ∗, µ∗), the optimization problem can locally be regarded to
be a problem with equality constraints only, namely those within the function g̃ defined in Equation (2.7). Though
more complex second order conditions can be formulated that are applicable even when strict complementarity
does not hold, we restrict ourselves here to this special case.

Theorem 7 (Second Order Optimality Conditions) Let us regard a point x∗ at which LICQ holds together with
multipliers λ∗, µ∗ so that the KKT conditions (2.8a)-(2.8e) are satisfied and let strict complementarity hold. Regard
a basis matrix Z ∈ Rn×(n−ng̃) of the null space of ∂g̃∂x (x∗) ∈ Rng̃×n, i.e., Z has full column rank and ∂g̃

∂x (x∗)Z =
0.

Then the following two statements hold:

(a) If x∗ is a local minimizer, then Z>∇2
xL(x∗, λ∗, µ∗)Z<0.

(Second Order Necessary Condition, short : SONC)

(b) If Z>∇2
xL(x∗, λ∗, µ∗)Z�0, then x∗ is a local minimizer.

This minimizer is unique in its neighborhood, i.e., a strict local minimizer, and stable against small differen-
tiable perturbations of the problem data. (Second Order Sufficient Condition, short: SOSC)

The matrix ∇2
xL(x∗, λ∗, µ∗) plays an important role in optimization algorithms and is called the Hessian of the

Lagrangian, while its projection on the null space of the Jacobian, Z>∇2
xL(x∗, λ∗, µ∗)Z, is called the reduced

Hessian.

Quadratic Problems with Equality Constraints

To illustrate the above optimality conditions, let us regard a QP with equality constraints only.

minimize
x ∈ Rn

c>x+
1

2
x>Bx (2.10a)

subject to Ax+ b = 0. (2.10b)

We assume that A has full row rank i.e., LICQ holds. The Lagrangian is L(x, λ) = c>x+ 1
2x
>Bx+ λ>(Ax+ b)

and the KKT conditions have the explicit form

c + Bx + A>λ = 0 (2.11a)
b + Ax = 0. (2.11b)

This is a linear equation system in the variable (x, λ) and can be solved if the so called KKT matrix[
B A>

A 0

]
is invertible. In order to assess if the unique solution (x∗, λ∗) of this linear system is a minimizer, we need first to
construct a basis Z of the null space of A, e.g., by a full QR factorization of A> = QR with Q = (Y |Z) square
orthonormal andR = (R̄>|0)>. Then we can check if the reduced Hessian matrix Z>BZ is positive semidefinite.
If it is not, the objective function has negative curvature in at least one of the feasible directions and x∗ cannot be
a minimizer. If on the other hand Z>BZ�0 then x∗ is a strict local minimizer. Due to convexity this would also
be the global solution of the QP.
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26 CHAPTER 2. NONLINEAR OPTIMIZATION

Invertibility of the KKT Matrix and Stability under Perturbations

An important fact is the following. If the second order sufficient conditions for optimality of Theorem 7 (b) hold,
then it can be shown that the KKT-matrix[

∇2
xL(x∗, λ∗, µ∗) ∂g̃

∂x (x∗)>
∂g̃
∂x (x∗)

]
is invertible. This implies that the solution is stable against perturbations. To see why, let us regard a perturbed
variant of the optimization problem (2.1)

minimize
x ∈ Rn

f(x) + δ>f x (2.12a)

subject to g(x) + δg = 0, (2.12b)
h(x) + δh ≤ 0, (2.12c)

with small vectors δf , δg, δh of appropriate dimensions that we summarize as δ = (δf , δg, δh). If a solution exists
for δ = 0, the question arises if a solution exists also for small δ 6= 0, and how this solution depends on the
perturbation δ. This is is answered by the following theorem.

Theorem 8 (SOSC implies Stability of Solutions) Regard the family of perturbed optimization problems (2.12)
and assume that for δ = 0 exists a local solution (x∗(0), λ∗(0), µ∗(0)) that satisfies LICQ, the KKT condition,
strict complementarity, and the second order sufficient condition of Theorem 7 (b). Then there exists an ε > 0
so that for all ‖δ‖ ≤ ε exists a unique local solution (x∗(δ), λ∗(δ), µ∗(δ)) that depends differentiably on δ. This
local solution has the same active set as the nominal one, i.e., its inactive constraint multipliers remain zero
and the active constraint multipliers remain positive. The solution does not depend on the inactive constraint
perturbations. If g̃ is the combined vector of equalities and active inequalities, and λ̃ and δ̃2 the corresponding
vectors of multipliers and constraint perturbations, then the derivative of the solution (x∗(δ), λ̃∗(δ)) with respect
to (δ1, δ̃2) is given by

d

d(δ1, δ̃2)

[
x∗(δ)

λ̃∗(δ)

]∣∣∣∣
δ=0

= −
[
∇2
xL(x∗, λ∗, µ∗) ∂g̃

∂x (x∗)>
∂g̃
∂x (x∗)

]−1

(2.13)

This differentiability formula follows from differentiation of the necessary optimality conditions of the parametrized
optimization problems with respect to (δ1, δ̃2)

∇f(x∗(δ)) +
∂g̃

∂x
(x∗)>λ̃+ δ1 = 0 (2.14)

g̃(x∗(δ)) + δ̃2 = 0 (2.15)

Invertibility of the KKT matrix and stability of the solution under perturbations are very useful facts for the appli-
cability of Newton-type optimization methods that are discussed in the next chapter.

Software: An excellent tool to formulate and solve convex optimization problems in a MATLAB environment
is CVX, which is available as open-source code and easy to install.

Software for solving a QP Problem: MATLAB: quadprog. Commercial: CPLEX, MOSEK. Open-source:
CVX, qpOASES.

For anyone not really familiar with the concepts of nonlinear optimization that are only very briefly outlined
here, it is highly recommended to have a look at the excellent Springer text book “Numerical Optimization” by
Jorge Nocedal and Steve Wright [NW06]. Who likes to know more about convex optimization than the much too
brief outline given in this script is recommended to have a look at the equally excellent Cambridge University
Press text book “Convex Optimization” by Stephen Boyd and Lieven Vandenberghe [BV04], whose PDF is freely
available.
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Chapter 3

Newton-Type Optimization Algorithms

”Nature and nature’s laws lay hid in night;
God said “Let Newton be” and all was light.”
Alexander Pope

3.1 Equality Constrained Optimization

Let us first regard an optimization problem with only equality constraints,

minimize
x ∈ Rn

f(x) (3.1a)

subject to g(x) = 0 (3.1b)

where f : Rn → R and g : Rn → Rng are both smooth functions. The idea of the Newton-type optimization
methods is to apply a variant of Newton’s method to solve the nonlinear KKT conditions

∇xL(x, λ) = 0 (3.2a)
g(x) = 0 (3.2b)

In order to simplify notation, we define

w :=

[
x
λ

]
and F (w) :=

[
∇xL(x, λ)
g(x)

]
(3.3)

with w ∈ Rn+ng , F : Rn+ng → Rn+ng , so that we can compactly formulate the above nonlinear root finding
problem as

F (w) = 0. (3.4)

Starting from an initial guess w0, Newton’s method generates a sequence of iterates {wk}∞k=0 by linearizing the
nonlinear equation at the current iterate

F (wk) +
∂F

∂wk
(wk)(w − wk) = 0 (3.5)

and obtaining the next iterate as its solution, i.e.

wk+1 = wk −
∂F

∂wk
(wk)−1F (wk) (3.6)

27
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28 CHAPTER 3. NEWTON-TYPE OPTIMIZATION ALGORITHMS

For equality constrained optimization, the linear system (3.5) has the specific form1

[
∇xL(xk, λk)

g(xk)

]
+

[
∇2
xL(xk, λk) ∇g(xk)
∇g(xk)T 0

]
︸ ︷︷ ︸

KKT-matrix

[
x− xk
λ− λk

]
= 0 (3.7)

Using the definition

∇xL(xk, λk) = ∇f(xk) +∇g(xk)λk (3.8)

we see that the contributions depending on the old multiplier λk cancel each other, so that the above system is
equivalent to [

∇f(xk)
g(xk)

]
+

[
∇2
xL(xk, λk) ∇g(xk)
∇g(xk)T 0

] [
x− xk
λ

]
= 0. (3.9)

This formulation shows that the data of the linear system only depend on λk via the Hessian matrix. We need not
use the exact Hessian matrix, but can approximate it with different methods. This leads to the more general class
of Newton-type optimization methods. Using any such approximation Bk ≈ ∇2

xL(xk, λk), we finally obtain the
Newton-type iteration as [

xk+1

λk+1

]
=

[
xk
0

]
−
[

Bk ∇g(xk)
∇gT (xk) 0

]−1 [∇f(xk)
g(xk)

]
(3.10)

The general Newton-type method is summarized in Algorithm 1. If we use Bk = ∇2
xL(xk, λk), we recover the

exact Newton method.

Algorithm 1 Equality constrained full step Newton-type method

Choose: initial guesses x0, λ0, and a tolerance ε
Set: k = 0

while ‖∇L(xk, λk)‖ ≥ ε or ‖g(xk)‖ ≥ ε do
obtain a Hessian approximation Bk
get xk+1, λk+1 from (3.10)
k = k + 1

end while

3.1.1 Quadratic Model Interpretation

It is easy to show that xk+1 and λk+1 from (3.10) can equivalently be obtained from the solution of a QP:

minimize
x ∈ Rn

∇f(xk)T (x− xk) +
1

2
(x− xk)TBk(x− xk) (3.11a)

subject to g(xk) +∇g(xk)T (x− xk) = 0 (3.11b)

So we can interpret the Newton-type optimization method as a “Sequential Quadratic Programming” (SQP)
method, where we find in each iteration the solution xQP and λQP of the above QP and take it as the next NLP
solution guess and linearization point xk+1 and λk+1. This interpretation will turn out to be crucial when we treat
inequality constraints. But let us first discuss what methods exist for the choice of the Hessian approximation Bk.

1Recall that in this script we use the convention ∇g(x) := ∂g
∂x

(x)T that is consistent with the definition of the gradient ∇f(x) of a scalar
function f being a column vector.
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3.1.2 The Exact Newton Method
The first and obvious way to obtain Bk is to use the exact Newton method and just set

Bk := ∇2
xL(xk, λk)

But how can this matrix be computed? Many different ways for computing this second derivative exist. The most
straightforward way is a finite difference approximation where we perturb the evaluation of∇L in the direction of
all unit vectors {ei}ni=1 by a small quantity δ > 0. This yields each time one column of the Hessian matrix, as

∇2
xL(xk, λk)ei =

∇xL(xk + δei, λk)−∇xL(xk, λk)

δ
+O(δ) (3.12)

Unfortunately, the evaluation of the numerator of this quotient suffers from numerical cancellation, so that δ cannot
be chosen arbitrarily small, and the maximum attainable accuracy for the derivative is

√
ε if ε is the accuracy

with which the gradient ∇xL can be obtained. Thus, we loose half the valid digits. If ∇xL was itself already
approximated by finite differences, this means that we have lost three quarters of the originally valid digits. More
accurate and also faster ways to obtain derivatives of arbitrary order will be presented in the chapter on algorithmic
differentiation.

Local convergence rate: The exact Newton method has a quadratic convergence rate, i.e. ‖wk+1 − w∗‖ ≤
ω
2 ‖wk − w

∗‖2. This means that the number of accurate digits doubles in each iteration. As a rule of thumb, once
a Newton method is in its area of quadratic convergence, it needs at maximum 6 iterations to reach the highest
possible precision.

3.1.3 The Constrained Gauss-Newton Method
Let us regard the special case that the objective f(x) has a nonlinear least-squares form, i.e. f(x) = 1

2‖R(x)‖22
with some function R : Rn → RnR . In this case we can use a very powerful Newton-type method which
approximates the Hessian Bk using only first order derivatives. It is called the Gauss-Newton method. To see how
it works, let us thus regard the nonlinear least-squares problem

minimize
x ∈ Rn

1

2
‖R(x)‖22 (3.13a)

subject to g(x) = 0 (3.13b)

The idea of the Gauss-Newton method is to linearize at a given iterate xk both problem functions R and g, in order
to obtain the following approximation of the original problem.

minimize
x ∈ Rn

1

2
‖R(xk) +∇R(xk)T (x− xk)‖22 (3.14a)

subject to g(xk) +∇g(xk)T (x− xk) = 0 (3.14b)

This is a convex QP which can easily be seen by noting that the objective (3.14a) is equal to

1

2
R(xk)TR(xk) + (x− xk)T ∇R(xk)R(xk)︸ ︷︷ ︸

=∇f(xk)

+
1

2
(x− xk)T ∇R(xk)∇R(xk)T︸ ︷︷ ︸

=:Bk

(x− xk)

which is convex because Bk<0. Note that the constant term does not influence the solution and can be dropped.
Thus, the Gauss-Newton subproblem (3.14) is identical to the SQP subproblem (3.11) with a special choice of the
Hessian approximation, namely

Bk := ∇R(xk)∇R(xk)T =

nR∑
i=1

∇Ri(xk)∇Ri(xk)T

Note that no multipliers λk are needed in order to compute Bk. In order to assess the quality of the Gauss-Newton
Hessian approximation, let us compare it with the exact Hessian, that is given by

∇2
xL(x, λ) =

∑nR

i=1∇Ri(xk)∇Ri(xk)T +

nF∑
i=1

Ri(x)∇2Ri(x) +

ng∑
i=1

λi∇2gi(x) (3.15)

= Bk + O(‖R(xk)‖) + O(‖λ‖). (3.16)
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One can show that in the solution of a problem holds ‖λ∗‖ = O(‖R(x∗)‖). Thus, in the vicinity of the solution,
the difference between the exact Hessian and the the Gauss-Newton approximation Bk is of order O(‖R(x∗)‖).

Local convergence rate: The Gauss-Newton method converges linearly, ‖wk+1 − w∗‖ ≤ κ‖wk − w∗‖ with
a contracton rate κ = O(‖R(x∗)‖). Thus, it converges fast if the residuals Ri(x∗) are small, or equivalently, if the
objective is close to zero, which is our desire in least-squares problems. In estimation problems, a low objective
corresponds to a “good fit”. Thus the Gauss-Newton method is only attracted by local minima with a small function
value, a favourable feature in practice.

3.1.4 Hessian Approximation by Quasi-Newton BFGS Updates
Besides the exact Hessian and the Gauss-Newton Hessian approximation, there is another widely used way to
obtain a Hessian approximation Bk within the Newton-type framework. It is based on the observation that the
evaluation of ∇xL at different points can deliver curvature information that can help us to estimate ∇2

xL, similar
as it can be done by finite differences, cf. Equation (3.12), but without any extra effort per iteration besides the
evaluation of∇f(xk) and∇g(xk) that we need anyway in order to compute the next step. Quasi-Newton Hessian
update methods use the previous Hessian approximation Bk, the step sk := xk+1−xk and the gradient difference
yk := ∇xL(xk+1, λk+1) − ∇xL(xk, λk+1) in order to obtain the next Hessian approximation Bk+1. As in the
finite difference formula (3.12), this approximation shall satisfy the secant condition

Bk+1sk = yk (3.17)

but because we only have one single direction sk, this condition does not uniquely determine Bk+1. Thus, among
all matrices that satisfy the secant condition, we search for the ones that minimize the distance to the old Bk,
measured in some suitable norm. The most widely used Quasi-Newton update formula is the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) update that can be shown to minimize a weighted Frobenius norm. It is given by the
explicit formula:

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

sTk yk
. (3.18)

Local convergence rate: It can be shown that Bk → ∇2
xL(x∗, λ∗) in the relevant directions, so that superlin-

ear convergence is obtained with the BFGS method, i.e. ‖wk+1 − w∗‖ ≤ κk‖wk − w∗‖ with κk → 0.

3.2 Local Convergence of Newton-Type Methods
We have seen three examples for Newton-type optimization methods which have different rates of local conver-
gence if they are started close to a solution. They are all covered by the following theorem that exactly states the
conditions that are necessary in order to obtain local convergence.

Theorem 9 (Newton-Type Convergence) Regard the root finding problem

F (w) = 0, F : Rn → Rn (3.19)

with w∗ a local solution satisfying F (w∗) = 0 and a Newton-type iteration wk+1 = wk − M−1
k F (wk) with

Mk ∈ Rn×m invertible for all k. Let us assume a Lipschitz condition on the Jacobian J(w) := ∂F
∂w (w) as follows:

‖M−1
k (J(wk)− J(w))‖ ≤ ω‖wk − w∗‖ (3.20)

Let us also assume a bound on the distance of approximation Mk from the true Jacobian J(wk):

‖M−1
k (J(wk)−Mk)‖ ≤ κk (3.21)

where κk ≤ κ with κ < 1. Finally, we assume that the initial guess w0 is sufficiently close to the solution w∗,

‖w0 − w∗‖ ≤
2

ω
(1− κ). (3.22)

Then wk → w∗ with the following linear contraction in each iteration:

‖wk+1 − w∗‖ ≤
(
κk +

ω

2
‖wk − w∗‖

)
· ‖wk − w∗‖. (3.23)

If κk → 0, this results in a superlinear convergence rate, and if κ = 0 quadratic convergence results.
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Noting that in Newton-type optimization we have

J(wk) =

[
∇2
xL(xk, λk) ∂g

∂x (xk)T
∂g
∂x (xk) 0

]
(3.24)

Mk =

[
Bk

∂g
∂x (xk)T

∂g
∂x (xk) 0

]
(3.25)

J(wk)−Mk =

[
∇2
xL(·)−Bk 0

0 0

]
(3.26)

the above theorem directly implies the three convergence rates that we had already mentioned.

Corollary 2 Newton-type optimization methods converge

• quadratically if Bk = ∇2
xL(xk, λk) (exact Newton),

• superlinearly if Bk → ∇2
xL(xk, λk) (BFGS),

• linearly if ‖Bk −∇2
xL(xk, λk)‖ is small (Gauss-Newton).

3.3 Inequality Constrained Optimization
When a nonlinear optimization problem with inequality constraints shall be solved, two big families of methods
exist, first, nonlinear interior point (IP), and second, sequential quadratic programming (SQP) methods. Both aim
at solving the KKT conditions (2.8) which include the non-smooth complementarity conditions, but have different
ways to deal with this non-smoothness.

3.3.1 Interior Point Methods
The basic idea of an interior point method is to replace the non-smooth L-shaped set resulting from the comple-
mentarity conditions with a smooth approximation, typically a hyberbola. Thus, a smoothing constant τ > 0 is
introduced and the KKT conditions are replaced by the smooth equation system

∇f(x∗) +∇g(x∗)λ∗ +∇h(x∗)µ∗ = 0 (3.27a)
g(x∗) = 0 (3.27b)

µ∗i hi(x
∗) + τ = 0, i = 1, . . . , nh. (3.27c)

Note that the last equation ensures that −hi(x∗) and µ∗i are both strictly positive and on a hyperbola.2 For τ very
small, the L-shaped set is very closely approximated by the hyperbola, but the nonlinearity is increased. Within an
interior point method, we usually start with a large value of τ and solve the resulting nonlinear equation system by
a Newton method, and then iteratively decrease τ , always using the previously obtained solution as initialization
for the next one.

One way to interpret the above smoothened KKT-conditions is to use the last condition to eliminate µ∗i =
− τ
hi(x∗)

and to insert this expression into the first equation, and to note that ∇x (log(−hi(x))) = 1
hi(x)∇hi(x)).

Thus, the above smooth form of the KKT conditions is nothing else than the optimality conditions of a barrier
problem

minimize
x ∈ Rn

f(x)− τ
nh∑
i=1

log (−hi(x)) (3.28a)

subject to g(x) = 0. (3.28b)

Note that the objective function of this problem tends to infinity when hi(x) → 0. Thus, even for very small
τ > 0, the barrier term in the objective function will prevent the inequalities to be violated. The primal barrier
method just solves the above barrier problem with a Newton-type optimization method for equality constrained

2In the numerical solution algorithms for this system, we have to ensure that the iterates do not jump to a second hyperbola of infeasible
shadow solutions, by shortening steps if necessary to keep the iterates in the correct quadrant.
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optimization for each value of τ . Though easy to implement and to interpret, it is not necessarily the best for
numerical treatment, among other because its KKT matrices become very ill-conditioned for small τ . This is not
the case for the primal-dual IP method that solves the full nonlinear equation system (3.27) including the dual
variables µ.

For convex problems, very strong complexity results exist that are based on self-concordance of the barrier
functions and give upper bounds on the total number of Newton iterations that are needed in order to obtain a
numerical approximation of the global solution with a given precision. When an IP method is applied to a general
NLP that might be non-convex, we can of course only expect to find a local solution, but convergence to KKT
points can still be proven, and these nonlinear IP methods perform very well in practice.

Software: A very widespread and successful implementation of the nonlinear IP method is the open-source code
IPOPT [WB06, WB09]. Though IPOPT can be applied to convex problems and will yield the global solution,
dedicated IP methods for different classes of convex optimization problems can exploit more problem structure
and will solve these problems faster and more reliably. Most commercial LP and QP solution packages such as
CPLEX or MOSEK make use of IP methods, as well as many open-source implementations such as the sparsity
exploiting QP solver OOQP.

3.3.2 Sequential Quadratic Programming (SQP) Methods
Another approach to address NLPs with inequalities is inspired by the quadratic model interpretation that we
gave before for Newton-type methods. It is called Sequential Quadratic Programming (SQP) and solves in each
iteration an inequality constrained QP that is obtained by linearizing the objective and constraint functions:

minimize
x ∈ Rn

∇f(xk)T (x− xk) +
1

2
(x− xk)TBk(x− xk) (3.29a)

subject to g(xk) +∇g(xk)T (x− xk) = 0 (3.29b)
h(xk) +∇h(xk)T (x− xk) ≤ 0 (3.29c)

Note that the active set is automatically discovered by the QP solver and can change from iteration to iteration.
However, under strict complementarity, it will be the same as in the true NLP solution x∗ once the SQP iterates xk
are in the neighborhood of x∗.

As before for equality constrained problems, the Hessian Bk can be chosen in different ways. First, in the
exact Hessian SQP method we use Bk = ∇2

xL(xk, λk, µk), and it can be shown that under the second or-
der sufficient conditions (SOSC) of Theorem 7 (b), this method has locally quadratic convergence. Second, in
the case of a least-squares objective f(x) = 1

2‖R(x)‖22, we can use the Gauss-Newton Hessian approxima-
tion Bk = ∇R(xk)∇R(xk)T , yielding linear convergence with a contraction rate κ = O(‖R(x∗)‖). Third,
quasi-Newton updates such as BFGS can directly be applied, using the Lagrange gradient difference yk :=
∇xL(xk+1, λk+1, µ

k+1)−∇xL(xk, λk+1, µ
k+1) in formula (3.18).

Note that in each iteration of an SQP method, an inequality constrained QP needs to be solved, but that we did
not mention yet how this should be done. One way would be to apply an IP method tailored to QP problems. This
is indeed done, in particular within SQP methods for large sparse problems. Another way is to use a QP solver
that is based on an active set method, as sketched in the next subsection.

Software: A successful and sparsity exploiting SQP code is SNOPT [GMS97]. Many optimal control packages
such as MUSCOD-II [LSBS03] or the open-source package ACADO [HFD11] contain at their basis structure
exploiting SQP methods. Also the MATLAB solver fmincon is based on an SQP algorithm.

3.3.3 Active Set Methods
Another class of algorithms to address optimization problems with inequalities, the active set methods, are based
on the following observation: if we would know the active set, then we could solve directly an equality constrained
optimization problem and obtain the correct solution. The main task is thus to find the correct active set, and an
active set method iteratively refines a guess for the active set that is often called the working set, and solves in each
iteration an equality constrained problem. This equality constrained problem is particularly easy to solve in the
case of linear inequality constraints, for example in LPs and QPs. Many very successful LP solvers are based on
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an active set method which is called the simplex algorithm, whose invention by Dantzig [Dan63] was one of the
great breakthroughs in the field of optimization. Also many successful QP solvers are based on active set methods.
A major advantage of active set strategies is that they can very efficiently be warm-started under circumstances
where a series of related problems have to be solved, e.g. within an SQP method, within codes for mixed integer
programming, or in the context of model predictive control (MPC) [FBD08].

3.4 Globalisation Strategies
In all convergence results for the Newton-type algorithms stated so far, we had to assume that the initialization was
sufficiently close to the true solution in order to make the algorithm converge, which is not always the case. An
approach often used to overcome this problem is to use a homotopy between a problem we have already solved and
the problem we want to solve: in this procedure, we start with the known solution and then proceed slowly, step by
step modifying the relevant problem parameters, towards the problem we want to solve, each time converging the
Newton-type algorithm and using the obtained solution as initial guess for the next problem. Applying a homotopy
requires more user input than just the specification of the problem, so most available Newton-typ optimization
algorithms have so called globalisation strategies. Most of these strategies can be interpreted as automatically
generated homotopies.

In the ideal case, a globalisation strategy ensures global convergence, i.e. the Newton-type iterations converge
to a local minimum from arbitrary initial guesses. Note that the terms global convergence and globalisation
strategies have nothing to do with global optimization, which is concerned with finding global minima for non-
convex problems.

Here, we only touch the topic of globalisation strategies very superficially, and for all details we refer to
textbooks on nonlinear optimization and recommend in particular [NW06].

Two ingredients characterize a globalization strategy: first, a measure of progress, and second, a way to ensure
that progress is made in each iteration.

3.4.1 Measuring Progress: Merit Functions and Filters
When two consecutive iterations of a Newton-type algorithm for solution of a constrained optimization problem
shall be compared with each other it is not trivial to judge if progress is made by the step. The objective function
might be improved, while the constraints might be violated more, or conversely. A merit function introduces a
scalar measure of progress with the property that each local minimum of the NLP is also a local minimum of the
merit function. Then, during the optimization routine, it can be monitored if the next Newton-type iteration gives
a better merit function than the iterate before. If this is not the case, the step can be rejected or modified.

A widely used merit function is the exact L1 merit function

T1(x) = f(x) + σ(‖g(x)‖1 + ‖h+(x)‖1)

with f(x) the objective, g(x) the residual vector of the equality constraints, and h+(x) the violations of the
inequality constraints, i.e. h+

i (x) = max(0, hi(x)) for i = 1, . . . , nh. Note that the L1 penalty function is
non-smooth. If the penalty parameter σ is larger than the largest modulus of any Lagrange multiplier at a local
minimum and KKT point (x∗, λ∗, µ∗), i.e. if σ > max(‖λ∗‖∞, ‖µ∗‖∞), then the L1 penalty is exact in the sense
that x∗ also is a local minimum of T1(x). Thus, in a standard procedure we require that in each iteration a descent
is achieved, i.e. T1(xk+1) < T1(xk), and if it is not the case, the step is rejected or modified, e.g. by a line search
or a trust region method.

A disadvantage of requiring a descent in the merit function in each iteration is that the full Newton-type steps
might be too often rejected, which can slow down the speed of convergence. Remedies to are e.g. a “watchdog
technique” that starting at some iterate xk allows up to M − 1 full Newton-type steps without merit function
improvement if the M th iterate is better, i.e. if at the end holds T1(xk+M ) < T1(xk), so that the generosity was
justified. If this is not the case, the algorithm jumps back to xk and enforces strict descent for a few iterations.

A different approach that avoids the arbitrary weighting of objective function and constraint violations within a
merit function and often allows to accept more full Newton-steps comes in the form of filter methods. They regard
the pursuit of a low objective function and low constraint violations as two equally important aims, and accept
each step that leads to an improvement in at least one of the two, compared to all previous iterations. To ensure
this, a so called filter keeps track of the best objective and constraint violation pairs that have been achieved so far,
and the method rejects only those steps that are dominated by the filter i.e., for which one of the previous iterates
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had both, a better objective and a lower constraint violation. Otherwise the new iterate is accepted and added to the
filter, possibly dominating some other pairs in the filter that can then be removed from the filter. Filter methods are
popular because of the fact that they often allow the full Newton-step and still have a global convergence guarantee.

3.4.2 Ensuring Progress: Line Search and Trust-Region Methods
If a full Newton-type step does not lead to progress in the chosen measure, it needs to be rejected. But how can a
step be generated that is acceptable? Two very popular ways for this exist, one called line search, the other trust
region.

A line search method takes the result of the QP subproblem as a trial step only, and shortens the step if
necessary. If (xQP

k , λQP
k , µQP

k ) is the solution of the QP at an SQP iterate xk, it can be shown (if the QP multipliers
are smaller than σ) that the step vector or search direction (xQP

k − xk) is a descent direction for the L1 merit
function T1, i.e. descent in T1 can be enforced by performing, instead of the full SQP step xk+1 = xQP

k , a shorter
step

xk+1 = xk + t(xQP
k − xk)

with a damping factor or step length t ∈ (0, 1]. One popular way to ensure global convergence with help of of
a merit function is to require in each step the so called Armijo condition, a tightened descent condition, and to
perform a backtracking line search procedure that starts by trying the full step (t = 1) first and iteratively shortens
the step by a constant factor (t← t/β with β > 1 ) until this descent condition is satisfied. As said, the L1 penalty
function has the desirable property that the search direction is a descent direction so that the Armijo condition will
eventually be satisfied if the step is short enough. Line-search methods can also be combined with a filter as a
measure of progress, instead of the merit function.

An alternative way to ensure progress is to modify the QP subproblem by adding extra constraints that enforce
the QP solution to be in a small region around the previous iterate, the trust region. If this region is small enough,
the QP solution shall eventually lead to an improvement of the merit function, or be acceptable by the filter. The
underlying philosophy is that the linearization is only valid in a region around the linearization point and only here
we can expect our QP approximation to be a good model of the original NLP. Similar as for line search methods
with the L1 merit function, it can be shown for suitable combinations that the measure of progress can always be
improved when the trust region is made small enough. Thus, a trust region algorithm checks in each iteration if
enough progress was made to accept the step and adapts the size of the trust region if necessary.

As said above, a more detailed description of different globalisation strategies is given in [NW06].
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Chapter 4

Calculating Derivatives

”Progress is measured by the degree of differentiation within a society.”
Herbert Read

Derivatives of computer coded functions are needed everywhere in optimization. In order to just check op-
timality of a point, we need already to compute the gradient of the Lagrangian function. Within Newton-type
optimization methods, we need the full Jacobian of the constraint functions. If we want to use an exact Hessian
method, we even need second order derivatives of the Lagrangian.

There are many ways to compute derivatives: Doing it by hand is error prone and nearly impossible for longer
evaluation codes. Computer algebra packages like Mathematica or Maple can help us, but require that the function
is formulated in their specific language. More annoyingly, the resulting derivative code can become extremely
long and slow to evaluate.

On the other hand, finite differences can always be applied, even if the functions are only available as black-box
codes. They are easy to implement and relatively fast, but they necessarily lead to a loss of precision of half the
valid digits, as they have to balance the numerical errors that originate from Taylor series truncation and from
finite precision arithmetic. Second derivatives obtained by recursive application of finite differences are even more
inaccurate. The best perturbation sizes are difficult to find in practice. Note that the computational cost to compute
the gradient ∇f(x) of a scalar function f : Rn → R is (n+ 1) times the cost of one function evaluation.

We will see that a more efficient way exists to evaluate the gradient of a scalar function, which is also more
accurate. The technology is called algorithmic differentiation (AD) and requires in principle nothing more than
that the function is available in the form of source code in a standard programming language such as C, C++ or
FORTRAN.

4.1 Algorithmic Differentiation (AD)
Algorithmic differentiation uses the fact that each differentiable function F : Rn → RnF is composed of several
elementary operations, like multiplication, division, addition, subtraction, sine-functions, exp-functions, etc. If the
function is written in a programming language like e.g. C, C++ or FORTRAN, special AD-tools can have access to
all these elementary operations. They can process the code in order to generate new code that does not only deliver
the function value, but also desired derivative information. Algorithmic differentiation was traditionally called
automatic differentiation, but as this might lead to confusion with symbolic differentiation, most AD people now
prefer the term algorithmic differentiation, which fortunately has the same abbreviation. A good and authoritative
textbook on AD is [GW08].

In order to see how AD works, let us regard a function F : Rn → RnF that is composed of a sequence
of m elementary operations. While the inputs x1, . . . , xn are given before, each elementary operation φi, i =
0, . . . ,m − 1 generates another intermediate variable, xn+i+1. Some of these intermediate variables are used as
output of the code, but in principle we can regard all variables as possible outputs, which we do here. This way to
regard a function evaluation is stated in Algorithm 4.1 and illustrated in Example 3 below.

Example 3 (Function Evaluation via Elementary Operations) Let us regard the simple scalar function

f(x1, x2, x3) = sin(x1x2) + exp(x1x2x3)

35



i
i

“oce” — 2014/7/24 — 0:11 — page 36 — #36 i
i

i
i

i
i

36 CHAPTER 4. CALCULATING DERIVATIVES

Input: x1, . . . , xn
Output: x1, . . . , xn+m

for i = 0 to m− 1 do
xn+i+1 ← φi(x1, . . . , xn+i)

end for

Note: each φi depends on only one or two out of {x1, . . . , xn+i}.

with n = 3. We can decompose this function into m = 5 elementary operations, namely

x4 = x1x2

x5 = sin(x4)

x6 = x4x3

x7 = exp(x6)

x8 = x5 + x7

Thus, if the n = 3 inputs x1, x2, x3 are given, the m = 5 elementary operations φ0, . . . , φ4 compute the m = 5
intermediate quantities, x4, . . . , x8, the last of which is our desired scalar output, xn+m.

The idea of AD is to use the chain rule and differentiate each of the elementary operations φi separately.
There are two modes of AD, on the one hand the “forward” mode of AD, and on the other hand the “backward”,
“reverse”, or “adjoint” mode of AD. In order to present both of them in a consistent form, we first introduce an
alternative formulation of the original user function, that uses augmented elementary functions, as follows1: we
introduce new augmented states

x̃0 = x =

 x1

...
xn

 , x̃1 =

 x1

...
xn+1

 , . . . , x̃m =

 x1

...
xn+m

 (4.1)

as well as new augmented elementary functions φ̃i : Rn+i → Rn+i+1, x̃i 7→ x̃i+1 = φ̃i(x̃i) with

φ̃i(x̃i) =


x1

...
xn+i

φi(x1, . . . , xn+i)

 , i = 0, . . . ,m− 1. (4.2)

Thus, the whole evaluation tree of the function can be summarized as a concatenation of these augmented functions
followed by a multiplication with a “selection matrix” C that selects from x̃m the final outputs of the computer
code.

F (x) = C · φ̃m−1(φ̃m−2(· · · φ̃1(φ̃0(x)))).

The full Jacobian of F , that we denote by JF = ∂F
∂x is given by the chain rule as the product of the Jacobians of

the augmented elementary functionsJ̃i = ∂φ̃i

∂x̃i
, as follows:

JF = C · J̃m−1 · J̃m−2 · · · J̃1 · J̃0. (4.3)

Note that each elementary Jacobian is given as a unit matrix plus one extra row. Also note that the extra row that
is here marked with stars ∗ has at maximum two non-zero entries.

J̃i =


1

1
. . .

1
∗ ∗ ∗ ∗

 .
1MD thanks Carlo Savorgnan for having outlined to him this way of presenting forward and backward AD
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Input: ẋ1, . . . , ẋn and all partial derivatives ∂φi

∂xj

Output: ẋ1, . . . , ẋn+m

for i = 0 to m− 1 do
ẋn+i+1 ←

∑n+i
j=1

∂φi

∂xj
ẋj

end for

Note: each sum consist of only one or two non-zero entries.

For the generation of first order derivatives, algorithmic differentiation uses two alternative ways to evaluate the
product of these Jacobians, the forward and the backward mode as described in the next two sections.

4.2 The Forward Mode of AD
In forward AD we first define a seed vector p ∈ Rn and then evaluate the directional derivative JF p in the following
way:

JF p = C · (J̃m−1 · (J̃m−2 · · · (J̃1 · (J̃0p)))). (4.4)

In order to write down this long matrix product as an efficient algorithm where the multiplications of all the ones
and zeros do not cause computational costs, it is customary in the field of AD to use a notation that uses “dot
quantities” ẋi that we might think of as the velocity with which a certain variable changes, given that the input x
changes with speed ẋ = p. We can interpret them as

ẋi ≡
dxi
dx

p.

In the augmented formulation, we can introduce dot quantities ˙̃xi for the augmented vectors x̃i, for i = 0, . . . ,m−
1, and the recursion of these dot quantities is just given by the initialization with the seed vector, ˙̃xi = p, and then
the recursion

˙̃xi+1 = J̃i(x̃i) ˙̃xi, i = 0, 1, . . . ,m− 1.

Given the special structure of the Jacobian matrices, most elements of ˙̃xi are only multiplied by one and nothing
needs to be done, apart from the computation of the last component of the new vector ˙̃xi+1. This last component
is ẋn+i+1 Thus, in an efficient implementation, the forward AD algorithm works as the algorithm below. It first
sets the seed ẋ = p and then proceeds as follows.

In forward AD, the function evaluation and the derivative evaluation can be performed in parallel, which
eliminates the need to store any internal information. This is best illustrated using an example.

Example 4 (Forward Automatic Differentiation) We regard the same example as above, f(x1, x2, x3) = sin(x1x2)+
exp(x1x2x3). First, each intermediate variable has to be computed, and then each line can be differentiated. For
given x1, x2, x3 and ẋ1, ẋ2, ẋ3, the algorithm proceeds as follows:

x4 = x1x2 ẋ4 = ẋ1x2 + x1ẋ2

x5 = sin(x4) ẋ5 = cos(x4)ẋ4

x6 = x4x3 ẋ6 = ẋ4x3 + x4ẋ3

x7 = exp(x6) ẋ7 = exp(x6)ẋ6

x8 = x5 + x7 ẋ8 = ẋ5 + ẋ7

The result is ẋ8 = (ẋ1, ẋ2, ẋ3)∇f(x1, x2, x3).

It can be proven that the computational cost of Algorithm 4.2 is smaller than two times the cost of Algorithm 4.1,
or short

cost(JF p) ≤ 2 cost(F ).
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If we want to obtain the full Jacobian of F , we need to call Algorithm 4.2 several times, each time with the seed
vector corresponding to one of the n unit vectors in Rn, i.e. we have

cost(JF ) ≤ 2n cost(F ).

AD in forward mode is slightly more expensive than numerical finite differences, but it is exact up to machine
precision.

4.2.1 The “Imaginary trick” in MATLAB

An easy way to obtain high precision derivatives in MATLAB is closely related to AD in forward mode. It is based
on the following observation: if F : Rn → RnF is analytic and can be extended to complex numbers as inputs and
outputs, then for any t > 0 holds

JF (x)p =
j(F (x+ itp))

t
+O(t2). (4.5)

In contrast to finite differences, there is no subtraction in the numerator, so there is no danger of numerical can-
cellation errors, and t can be chosen extremely small, e.g. t = 10−100, which means that we can compute the
derivative up to machine precision. This “imaginary trick” can most easily be used in a programming language
like MATLAB that does not declare the type of variables beforehand, so that real-valued variables can automati-
cally be overloaded with complex-valued variables. This allows us to obtain high-precision derivatives of a given
black-box MATLAB code. We only need to be sure that the code is analytic (which most codes are) and that matrix
or vector transposes are not expressed by a prime ’ (which conjugates a complex number), but by transp.

4.3 The Backward Mode of AD
In backward AD we evaluate the product in Eq. (4.3) in the reverse order compared with forward AD. Backward
AD does not evaluate forward directional derivatives. Instead, it evaluates adjoint directional derivatives: when we
define a seed vector λ ∈ RnF then backward AD is able to evaluate the product λTJF . It does so in the following
way:

λTJF = ((((λTC) · J̃m−1) · J̃m−2) · · · J̃1) · J̃0. (4.6)

When writing this matrix product as an algorithm, we use “bar quantities” instead of the “dot quantities” that we
used in the forward mode. These quantities can be interpreted as derivatives of the final output with respect to the
respective intermediate quantity. We can interpret

x̄i ≡ λT
dF

dxi
.

Each intermediate variable has a bar variable and at the start, we initialize all bar variables with the value that we
obtain from CTλ. Note that most of these seeds will usually be zero, depending on the output selection matrix
C. Then, the backward AD algorithm modifies all bar variables. Backward AD gets most transparent in the
augmented formulation, where we have bar quantities ¯̃xi for the augmented states x̃i. We can transpose the above
Equation (4.6) in order to obtain

JTF λ = J̃T0 · (J̃T1 · · · J̃Tm−1 (CTλ)︸ ︷︷ ︸
=¯̃xm︸ ︷︷ ︸

=¯̃xm−1

).

In this formulation, the initialization of the backward seed is nothing else than setting ¯̃xm = CTλ and then going
in reverse order through the recursion

¯̃xi = J̃i(x̃i)
T ¯̃xi+1, i = m− 1,m− 2, . . . , 0.

Again, the multiplication with ones does not cause any computational cost, but an interesting feature of the reverse
mode is that some of the bar quantities can get several times modified in very different stages of the algorithm.
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Input: seed vector x̄1, . . . , x̄n+m and all partial derivatives ∂φi

∂xj

Output: x̄1, x̄2, . . . , x̄n

for i = m− 1 down to 0 do
for all j = 1, . . . , n+ i do
x̄j ← x̄j + x̄n+i+1

∂φi

∂xj

end for
end for

Note: each inner loop will only update one or two bar quantities.

Note that the multiplication J̃Ti ¯̃xi+1 with the transposed Jacobian

J̃Ti =


1 ∗

1 ∗
. . . ∗

1 ∗

 .

modifies at maximum two elements of the vector ¯̃xi+1 by adding to them the partial derivative of the elementary
operation multiplied with x̄n+i+1. In an efficient implementation, the backward AD algorithm looks as follows.

Example 5 (Reverse Automatic Differentiation) We regard the same example as before, and want to compute
the gradient ∇f(x) = (x̄1, x̄2, x̄3)T given (x1, x2, x3). We set λ = 1. Because the selection matrix C selects
only the last intermediate variable as output, i.e. C = (0, · · · 0, 1), we initialize the seed vector with zeros apart
from the last component, which is one. In the reverse mode, the algorithm first has to evaluate the function with all
intermediate quantities, and only then it can compute the bar quantities, which it does in reverse order. At the end
it obtains, among other, the desired quantitities (x̄1, x̄2, x̄3). The full algorithm is the following.

// *** forward evaluation of the function ***

x4 = x1x2

x5 = sin(x4)

x6 = x4x3

x7 = exp(x6)

x8 = x5 + x7

// *** initialization of the seed vector ***

x̄i = 0, i = 1, . . . , 7

x̄8 = 1
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// *** backwards sweep ***

// * differentiation of x8 = x5 + x7

x̄5 = x̄5 + 1 x̄8

x̄7 = x̄7 + 1 x̄8

// * differentiation of x7 = exp(x6)

x̄6 = x̄6 + exp(x6)x̄7

// * differentiation of x6 = x4x3

x̄4 = x̄4 + x3x̄6

x̄3 = x̄3 + x4x̄6

// * differentiation of x5 = sin(x4)

x̄4 = x̄4 + cos(x4)x̄5

// differentiation of x4 = x1x2

x̄1 = x̄1 + x2x̄4

x̄2 = x̄2 + x1x̄4

The desired output of the algorithm is (x̄1, x̄2, x̄3), equal to the three components of the gradient ∇f(x). Note
that all three are returned in only one reverse sweep.

It can be shown that the cost of Algorithm 4.3 is less than 3 times the cost of Algorithm 4.1, i.e.,

cost(λTJF ) ≤ 3 cost(F ).

If we want to obtain the full Jacobian of F , we need to call Algorithm 4.3 several times with the nF seed vectors
corresponding to the unit vectors in RnF , i.e. we have

cost(JF ) ≤ 3nF cost(F ).

This is a remarkable fact: it means that the backward mode of AD can compute the full Jacobian at a cost that is
independent of the state dimension n. This is particularly advantageous if nF � n, e.g. if we compute the gradient
of a scalar function like the objective or the Lagrangian. The reverse mode can be much faster than what we can
obtain by finite differences, where we always need (n+ 1) function evaluations. To give an example, if we want to
compute the gradient of a scalar function f : Rn → R with n =1 000 000 and each call of the function needs one
second of CPU time, then the finite difference approximation of the gradient would take 1 000 001 seconds, while
the computation of the same quantity with the backward mode of AD needs only 4 seconds (1 call of the function
plus one backward sweep). Thus, besides being more accurate, backward AD can also be much faster than finite
differences.

The only disadvantage of the backward mode of AD is that we have to store all intermediate variables and
partial derivatives, in contrast to finite differences or forward AD. A partial remedy to this problem exist in form of
checkpointing that trades-off computational speed and memory requirements. Instead of all intermediate variables,
it only stores some “checkpoints” during the forward evaluation. During the backward sweep, starting at these
checkpoints, it re-evaluates parts of the function to obtain those intermediate variables that have not been stored.
The optimal number and location of checkpoints is a science of itself. Generally speaking, checkpointing reduces
the memory requirements, but comes at the expense of runtime.

From a user perspective, the details of implementation are not too relevant, but it is most important to just know
that the reverse mode of AD exists and that it allows in many cases a much more efficient derivative generation
than any other technique.

4.3.1 Efficient Computation of the Hessian
A particularly important quantity in Newton-type optimization methods is the Hessian of the Lagrangian. It is the
second derivative of the scalar function L(x, λ, µ) with respect to x. As the multipliers are fixed for the purpose of
differentiation, we can for notational simplicity just regard a function f : Rn → R of which we want to compute
the Hessian∇2f(x). With finite differences we would at least need (n+2)(n+1)/2 function evaluations in order
to compute the Hessian, and due to round-off and truncation errors, the accuracy of a finite difference Hessian
would be much lower than the accuracy of the function f : we loose three quarters of the valid digits.
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In contrast to this, algorithmic differentiation can without problems be applied recursively, yielding a code
that computes the Hessian matrix at the same precision as the function f itself, i.e. typically at machine precision.
Moreover, if we use the reverse mode of AD at least once, e.g. by first generating an efficient code for∇f(x) (using
backward AD) and then using forward AD to obtain the Jacobian of it, we can reduce the CPU time considerably
compared to finite differences. Using the above procedure, we would obtain the Hessian∇2f at a cost of 2n times
the cost of a gradient ∇f , which is about four times the cost of evaluating f alone. This means that we have the
following runtime bound:

cost(∇2f) ≤ 8n cost(f).

A compromise between accuracy and ease of implementation that is equally fast in terms of CPU time is to
use backward AD only for computing the first order derivative ∇f(x), and then to use finite differences for the
differentiation of∇f(x).

4.4 Algorithmic Differentiation Software
Most algorithmic differentiation tools implement both forward and backward AD, and most are specific to one
particular programming language. They come in two different variants: either they use operator overloading or
source-code transformation.

The first class does not modify the code but changes the type of the variables and overloads the involved
elementary operations. For the forward mode, each variable just gets an additional dot-quantity, i.e. the new
variables are the pairs (xi, ẋi), and elementary operations just operate on these pairs, like e.g.

(x, ẋ) · (y, ẏ) = (xy, xẏ + yẋ).

An interesting remark is that operator overloading is also at the basis of the imaginary trick in MATLAB were we
use the overloading of real numbers by complex numbers and used the small imaginary part as dot quantity and
exploited the fact that the extremely small higher order terms disappear by numerical cancellation.

A prominent and widely used AD tool for generic user supplied C++ code that uses operator overloading is
ADOL-C. Though it is not the most efficient AD tool in terms of CPU time it is well documented and stable.
Another popular tool in this class is CppAD.

The other class of AD tools is based on source-code transformation. They work like a text-processing tool that
gets as input the user supplied source code and produces as output a new and very differently looking source code
that implements the derivative generation. Often, these codes can be made extremely fast. Tools that implement
source code transformations are ADIC for ANSI C, and ADIFOR and TAPENADE for FORTRAN codes.

In the context of ODE or DAE simulation, there exist good numerical integrators with forward and backward
differentiation capabilities that are more efficient and reliable than a naive procedure that would consist of taking
an integrator and processing it with an AD tool. Examples for integrators that use the principle of forward and
backward AD are the code DAESOL-II or the open-source codes from the ACADO Integrators Collection or from
the SUNDIALS Suite.
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Chapter 5

Discrete Time Optimal Control
Formulations

Throughout this part of the script we regard for notational simplicity time-invariant dynamical systems with dy-
namics

xk+1 = f(xk, uk), k = 0, . . . , N − 1. (5.1)

Recall that uk are the controls and xk the states, with xk ∈ Rnx and uk ∈ Rnu .
As discussed in the first chapter, if we know the initial state x0 and the controls u0, . . . , uN−1, we could

simulate the system to obtain all other states. But in optimization, we might have different requirements than just
a fixed initial state. We might, for example, have both a fixed initial state and a fixed terminal state that we want to
reach. Or we might just look for periodic sequences with x0 = xN . All these desires on the initial and the terminal
state can be expressed by a boundary constraint function

r(x0, xN ) = 0. (5.2)

For the case of fixed initial value, this function would just be

r(x0, xN ) = x0 − x̄0 (5.3)

where x̄0 is the fixed initial value and not an optimization variable. Another example would be to have both ends
fixed, resulting in a function r of double the state dimension, namely:

r(x0, xN ) =

[
x0 − x̄0

xN − x̄N

]
. (5.4)

Finally, periodic boundary conditions can be imposed by setting

r(x0, xN ) = x0 − xN . (5.5)

Other constraints that are usually present are path constraint inequalities of the form

h(xk, uk) ≤ 0, k = 0, . . . , N − 1. (5.6)

In the case of upper and lower bounds on the controls, umin ≤ uk ≤ umax, the function h would just be

h(x, u) =

[
u− umax

umin − u

]
.

5.1 Optimal Control Problem (OCP) Formulations
Two major approaches can be distinguished to formulate and numerically solve a discrete time optimal control
problem, the simultaneous and the sequential approach, which we will outline after having formulated the optimal
control problem in its standard form.

43
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5.1.1 Original Problem Formulation
Given the system model and constraints, a quite generic discrete time optimal control problem can be formulated
as the following constrained NLP:

minimize
x0, u0, x1, . . . , uN−1, xN

N−1∑
k=0

L(xk, uk) + E(xN ) (5.7a)

subject to xk+1 − f(xk, uk) = 0, for k = 0, . . . , N−1, (5.7b)
h(xk, uk) ≤ 0, for k = 0, . . . , N−1, (5.7c)
r(x0, xN ) = 0. (5.7d)

We remark that other optimization variables could be present as well, such as a free parameter p that can be chosen
but is constant over time, like e.g. the size of a vessel in a chemical reactor or the length of a robot arm. Such
parameters could be added to the optimisation formulation above by defining dummy states {pk}Nk=1 that satisfy
the dummy dynamic model equations

pk+1 = pk, k = 0, . . . , N − 1. (5.8)

Note that the initial value of p0 is not fixed by these constraints and thus we would have obtained our aim of having
a time constant parameter vector that is free for optimization.

5.1.2 The Simultaneous Approach
The nonlinear program (5.7) is large and structured and can thus in principle be solved by any NLP solver. This
is called the simultaneous approach to optimal control and requires the use of a structure exploiting NLP solver in
order to be efficient. Note that in this approach, all original variables, i.e. uk and xk remain optimization variables
of the NLP. Its name stems from the fact that the NLP solver has to simultaneously solve both, the simulation and
the optimization problem. It is interesting to remark that the model equations (5.7b) will for most NLP solvers only
be satisfied once the NLP iterations are converged. The simultaneous approach is therefore sometimes referred to
as an infeasible path approach. The methods direct multiple shooting and direct collocation that we explain in the
third part of this script are simultaneous approaches.

5.1.3 The Reduced Formulation and the Sequential Approach
On the other hand, we know that we could eliminate nearly all states by a forward simulation, and in this way we
could reduce the variable space of the NLP. The idea is to keep only x0 and U = [uT0 , . . . , u

T
N−1]T as variables.

The states x1, . . . , xN are eleminated recursively by

x̄0(x0, U) = x0 (5.9a)
x̄k+1(x0, U) = f(x̄k(x0, U), uk), k = 0, . . . , N − 1. (5.9b)

Then the optimal control problem is equivalent to a reduced problem with much less variables, namely the follow-
ing nonlinear program:

minimize
x0, U

N−1∑
k=0

L(x̄k(x0, U), uk) + E(x̄k(x0, U)) (5.10a)

subject to h(x̄k(x0, U), uk) ≤ 0, for k = 0, . . . , N − 1, (5.10b)
r(x0, x̄N (x0, U)) = 0. (5.10c)

Note that the model Equation (5.9b) is implicitly satisfied by definition, but is not anymore a constraint of the
optimization problem. This reduced problem can now be addressed again by Newton-type methods, but the ex-
ploitation of sparsity in the problem is less important. This is called the sequential approach, because the simula-
tion problem and optimization problem are solved sequentially, one after the other. Note that the user can observe
during all iterations of the optimization procedure what is the resulting state trajectory for the current iterate, as
the model equations are satisfied by definition.

If the initial value is fixed, i.e. if r(x0, xN ) = x0 − x̄0, one can also eliminate x0 ≡ x̄0, which reduces the
variables of the NLP further.
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5.2 Analysis of a Simplified Optimal Control Problem
In order to learn more about the structure of optimal control problems and the relation between the simultaneous
and the sequential approach, we regard in this section a simplified optimal control problem in discrete time:

minimize
x0, u0, x1, . . . , uN−1, xN

N−1∑
k=0

L(xk, uk) + E(xN ) (5.11a)

subject to f(xk, uk)−xk+1 = 0 for k = 0, . . . , N−1 (5.11b)
r(x0, xN ) = 0 (5.11c)

5.2.1 KKT Conditions of the Simplified Problem
We first summarize the variables as w = (x0, u0, x1, u1, . . . , uN−1, xN ) and summarize the multipliers as λ =
(λ1, . . . , λN , λr). Then the above optimal control problem can be summarized as

minimize
w

F (w) (5.12a)

subject to G(w) = 0. (5.12b)

Here, the objective F (w) is just copied from (5.11a) while G(w) collects all constraints:

G(w) =


f(x0, u0)− x1

f(x1, u1)− x2

...
f(xN−1, uN−1)− xN

r(x0, xN )

 . (5.12c)

The Lagrangian function has the form

L(w, λ) = F (w) + λTG(w)

=

N−1∑
k=0

L(xk, uk) + E(xN ) +

N−1∑
k=0

λTk+1(f(xk, uk)− xk+1)

+λTr r(x0, xN ), (5.13)

and the summarized KKT-conditions of the problem are

∇wL(w, λ) = 0 (5.14a)
G(w) = 0. (5.14b)

But let us look at these KKT-conditions in more detail. First, we evaluate the derivative of L with respect to all
state variables xk, one after the other. We have to treat k = 0 and k = N as special cases. For k = 0 we obtain:

∇x0L(w, λ) = ∇x0L(x0, u0) +
∂f

∂x0
(x0, u0)Tλ1 +

∂r

∂x0
(x0, xN )Tλr = 0. (5.15a)

Then the case for k = 1, . . . , N − 1 is treated

∇xk
L(w, λ) = ∇xk

L(xk, uk)− λk +
∂f

∂xk
(xk, uk)Tλk+1 = 0. (5.15b)

Last, the special case k = N

∇xN
L(w, λ) = ∇xN

E(xN )− λN +
∂r

∂xN
(x0, xN )Tλr = 0. (5.15c)

Second, let us calculate the derivative of the Lagrangian with respect to all controls uk, for k = 0, . . . , N − 1.
Here, no special cases need to be considered, and we obtain the general formula

∇uk
L(w, λ) = ∇uk

L(xk, uk) +
∂f

∂uk
(xk, uk)Tλk+1 = 0. (5.15d)
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Until now, we have computed in detail the components of the first part of the KKT-condition (5.14a), i.e. ∇wL(w, λ) =
0. The other part of the KKT-condition, G(w) = 0, is trivially given by

f(xk, uk)− xk+1 = 0, k = 0, . . . , N − 1 (5.15e)
r(x0, xN ) = 0 (5.15f)

Thus, collecting all equations (5.15a) to (5.15f), we have stated the KKT-conditions of the OCP. They can be
treated by Newton-type methods in different ways. The simultaneous approach addresses equations (5.15a) to
(5.15f) directly by a Newton-type method in the space of all variables (w, λ). In contrast to this, the sequential
approach approach eliminates all the states x1, . . . , xN in (5.15e) by a forward simulation, and if it is implemented
efficiently, it also uses Eqs. (5.15c) and (5.15b) to eliminate all multipliers λN , . . . , λ1 in a backward simulation,
as discussed in the following subsection.

5.2.2 Computing Gradients in the Sequential Approach
A naive implementation of the sequential approach would start by coding routines that evaluate the objective and
constraint functions, and then passing these routines as black-box codes to a generic NLP solver, like fmincon
in MATLAB. But this would not be the most efficient way to implement the sequential approach. The reason is
the generation of derivatives, which a generic NLP solver will compute by finite differences. On the other hand,
many generic NLP solvers allow the user to deliver explicit functions for the derivatives as well. This allows us to
compute the derivatives of the reduced problem functions more efficiently. The key technology here is algorithmic
differentiation in the backward mode, as explained in Chapter 4.

To see how this relates to the optimality conditions (5.15a) to (5.15f) of the optimal control problem, let
us simplify the setting even more by assuming a fixed initial value and no constraint on the terminal state, i.e.
r(x0, xN ) = x̄0 − x0. In this case, the KKT conditions simplify to the following set of equations, which we bring
already into a specific order:

x0 = x̄0 (5.16a)
xk+1 = f(xk, uk), k = 0, . . . , N − 1, (5.16b)
λN = ∇xN

E(xN ) (5.16c)

λk = ∇xk
L(xk, uk) +

∂f

∂xk
(xk, uk)Tλk+1,

k = N − 1, . . . , 1, (5.16d)

∇uk
L(xk, uk) +

∂f

∂uk
(xk, uk)Tλk+1 = 0, k = 0, . . . , N − 1. (5.16e)

It can easily be seen that the first four equations can trivially be satisfied, by a forward sweep to obtain all xk and
a backward sweep to obtain all λk. Thus, xk and λk can be made explicit functions of u0, . . . , uN−1. The only
equation that is non-trivial to satisfy is the last one, the partial derivatives of the Lagrangian w.r.t. the controls
u0, . . . , uN−1. Thus we could decide to eliminate xk and λk and only search with a Newton-type scheme for
the variables U = (u0, . . . , uN−1) such that these last equations are satisfied. It turns out that the left hand side
residuals (5.16e) are nothing else than the derivative of the reduced problem’s objective (5.10a), and the forward-
backward sweep algorithm described above is nothing else than the reverse mode of algorithmic differentiation. It
is much more efficient than the computation of the gradient by finite differences.

The forward-backward sweep is well known in the optimal control literature and often introduced without
reference to the reverse mode of AD. On the other hand, it is good to know the general principles of AD in forward
or backward mode, because AD can also be beneficial in other contexts, e.g. for the evaluation of derivatives of
the other problem functions in (5.10a)-(5.10c). Also, when second order derivatives are needed, AD can be used
and more structure can be exploited, but this is most easily derived in the context of the simultaneous approach,
which we do in the following chapter.
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Chapter 6

Sparsity Structure of the Optimal Control
Problem

Let us in this chapter regard a very general optimal control problem in the original formulation, i.e. the NLP that
would be treated by the simultaneous approach.

minimize
x0, u0, x1, . . . , uN−1, xN

N−1∑
k=0

Lk(xk, uk) + E(xN ) (6.1a)

subject to fk(xk, uk)− xk+1 = 0, for k = 0, . . . , N − 1, (6.1b)
N−1∑
k=0

rk(xk, uk) + rN (xN ) = 0, (6.1c)

hk(xk, uk) ≤ 0, for k = 0, . . . , N − 1, (6.1d)
hN (xN ) ≤ 0. (6.1e)

Compared to the OCP (5.7) in the previous chapter, we now allow indices on all problem functions making the
system time dependent; also, we added terminal inequality constraints (6.1e), and as boundary conditions we now
allow now very general coupled multipoint constraints (6.1c) that include the cases of fixed initial or terminal
values or periodicity, but are much more general. Note that in these boundary constraints terms arising from
different time points are only coupled by addition, because this allows us to maintain the sparsity structure we
want to exploit in this chapter.

Collecting all variables in a vector w, the objective in a function F (w), all equalities in a function G(w) and
all inequalities in a function H(w), the optimal control problem could be summarized as

minimize
w

F (w) (6.2a)

subject to G(w) = 0, (6.2b)
H(w) ≤ 0. (6.2c)

Its Lagrangian function is given by

L(w, λ, µ) = F (w) + λTG(w) + µTH(w).

But this summarized form does not reveal any of the structure that is present in the problem.

6.1 Partial Separability of the Lagrangian
In fact, the above optimal control problem is a very sparse problem because each of its functions depends only on
very few of its variables. This means for example that the Jacobian matrix of the equality constraints has many zero
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entries. But not only first order derivatives are sparse, also the second order derivative that we need in Newton-type
optimization algorithms, namely the Hessian of the Lagrangian, is a very sparse matrix. This is due to the fact that
the Lagrangian is a partially separable function [GT82].

Definition 14 (Partial Separability) A function f : Rn → R is called partially separable if it can be decomposed
as a sum of m functions fj : Rnj → R with nj < n for all j = 1, . . . ,m. This means that for each j exists a
subset Ij of indices from {1, . . . , n} and subvectors xIj of x such that

f(x) =

m∑
j=1

fj(xIj ).

The Lagrangian function of the above optimization problem can explicitly be decomposed into subfunctions that
each depend on some of the multipliers and only on the variables (xk, uk) with the same index k. Let us collect
again all variables in a vectorw but decompose it as1 w = (w1, . . . , wN ) withwk = (xk, uk) for k = 0, . . . , N−1
and wN = xN . Collecting all equality multipliers in a vector λ = (λ1, . . . , λN , λr) and the inequality multipliers
in a vector µ = (µ0, . . . , µN ) we obtain for the Lagrangian

L(w, λ, µ) =

N∑
k=0

Lk(wk, λ, µ)

with the local Lagrangian subfunctions defined as follows. The first subfunction is given as

L0(w0, λ, µ) = L0(x0, u0) + λT1 f0(x0, u0) + µT0 h0(x0, u0) + λTr r0(x0, u0)

and for k = 1, . . . , N − 1 we have the subfunctions

Lk(wk, λ, µ) = Lk(xk, uk) + λTk+1fk(xk, uk)− λTk xk + µTk hk(xk, uk) + λTr rk(xk, uk)

while the last subfunction is given as

LN (wN , λ, µ) = E(xN )− λTNxN + µTNhN (xN ) + λTr rN (xN ).

In fact, while each of the equality multipliers appears in several (λ1, . . . , λN ) or even all problem functions (λr),
the primal variables of the problem do not have any overlap in the subfunctions. This leads to the remarkable
observation that the Hessian matrix ∇2

wL is block diagonal, i.e. it consists only of small symmetric matrices that
are located on its diagonal. All other second derivatives are zero, i.e.

∂2L
∂wi∂wj

(w, λ, µ) = 0, for any i 6= j.

This block diagonality of the Hessian leads to several very favourable facts, namely that (i) the Hessian can be
approximated by high-rank or block updates within a BFGS method [GT82, BP84], and (ii) that the QP subproblem
in all Newton-type methods has the same decomposable objective function as the original optimal control problem
itself.

6.2 The Sparse QP Subproblem
In order to analyse the sparsity structure of the optimal control problem, let us regard the quadratic subproblem that
needs to be solved in one iteration of an exact Hessian SQP method. In order not to get lost in too many indices,
we disregard the SQP iteration index completely. We regard the QP that is formulated at a current iterate (x, λ, µ)
and use the SQP step ∆w = (∆x0,∆u0, . . . ,∆xN ) as the QP variable. This means that in the summarized
formulation we would have the QP subproblem

minimize
∆w

∇F (w)T∆w +
1

2
∆wT ∇2

w L(w, λ, µ)∆w (6.3a)

subject to G(w) +∇G(w)T∆w = 0, (6.3b)
H(w) +∇H(w)T∆w ≤ 0. (6.3c)

1Note that for notational beauty we omit here and in many other occasions the transpose signs that would be necessary to make sure that
the collection of column vectors is again a column vector, when this is clear from the context.
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Let us now look at this QP subproblem in the detailed formulation. It is remarkably similar to the original OCP.
To reduce notational overhead, let us define a few abbreviations: first, the diagonal blocks of the Hessian of the
Lagrangian

Qk = ∇2
wk
L(w, λ, µ), k = 0, . . . , N,

second, the objective gradients

gk = ∇(x,u)L(xk, uk), k = 0, . . . , N − 1, and gN = ∇xE(xN ),

third the system discontinuities (that can be non-zero in the simultaneous approach)

ak = fk(xk, uk)− xk+1, k = 0, . . . , N − 1,

and fourth the transition matrices

Ak =
∂fk
∂xk

(xk, uk), Bk =
∂Bk
∂uk

(xk, uk), k = 0, . . . , N − 1,

fifth the residual of the coupled constraints

r =

N−1∑
k=0

rk(xk, uk) + rN (xN ),

as well as its derivatives

Rk =
∂rk

∂(xk, uk)
(xk, uk), k = 0, . . . , N − 1, and RN =

∂rN
∂x

(xN ),

and last the inequality constraint residuals and their derivatives

hk = hk(xk, uk), Hk =
∂hk

∂(xk, uk)
(xk, uk) and hN = hN (xN ), HN =

∂hN
∂x

(xN ).

With all the above abbreviations, the detailed form of the QP subproblem is finally given as follows.

minimize
∆x0,∆u0, . . . ,∆xN

1

2

N−1∑
k=0

[
∆xk
∆uk

]T
Qk

[
∆xk
∆uk

]
+

1

2
∆xTNQN∆xN +

N∑
k=0

[
∆xN
∆uN

]T
gk + ∆xTNgN

(6.4)
subject to ak +Ak∆xk +Bk∆uk−∆xk+1 = 0, for k = 0, . . . , N − 1, (6.5)

r +

N−1∑
k=0

Rk

[
∆xk
∆uk

]
+RN∆xN = 0,

hk +Hk

[
∆xk
∆uk

]
≤ 0, for k = 0, . . . , N − 1,

hN +HN∆xN ≤ 0. (6.6)

This is again an optimal control problem, but a linear-quadratic one. It is a convex QP if the Hessian blocks Qk
are positive definite, and can be solved by a variety of sparsity exploiting QP solvers.

6.3 Sparsity Exploitation in QP Solvers

When regarding the QP (6.4) one way would be to apply a sparse interior point QP solver like OOQP to it, or
a sparse active set method. This can be very efficient. Another way would be to first reduce, or condense, the
variable space of the QP, and then apply a standard dense QP solver to the reduced problem. Let us treat this way
first.
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6.3.1 Condensing
When we regard the linearized dynamic system equations (6.5) they correspond to an affine time variant system in
the steps ∆xk, namely

∆xk+1 = ak +Ak∆xk +Bk∆uk. (6.7)

If the values for ∆x0 as well as for all {∆uk}N−1
k=0 would be known, then also the values for {∆xk}Nk=1 can be

obtained by a forward simulation of this linear system. Due to its linearity, the resulting map will be linear, i.e. we
can write  ∆x1

...
∆xN

 = v + M


∆x0

∆u0

...
∆uN−1

 , (6.8)

⇔
∆wdep = v +M∆wind (6.9)

with a vector v ∈ RN ·nx and a matrix M ∈ R(N ·nx)×(nx+N ·nu), and dividing the variables into a dependent and
an independent part, ∆w = (∆wdep,∆wind).

The vector v can be generated recursively by simulating the affine dynamic system (6.7) with all inputs set to
zero, i.e. ∆wind = 0. This yields the forward recursion

v1 = a0, vk+1 = ak +Akvk, k = 1, . . . , N − 1

for the components of the vector v = (v1, . . . , vN ). The subblocks of the matrix M can be obtained recursively
as well in a straightforward way. Note that the matrix is lower triangular because the states ∆xj do not depend on
∆uk if k ≥ j. On the other hand, if k < j, the corresponding matrix blocks are Aj−1 · · ·Ak+1Bk. Finally, the
dependence of ∆xj on ∆x0 is Aj−1 · · ·A0. In this way, all blocks of the matrix M are defined.

To get a notationally different, but equivalent view on condensing, note that the linear dynamic system equa-
tions (6.5) are nothing else than the linear system


A0 B0 −I

A1 B1 −I
. . .

AN−1 BN−1 −I





∆x0

∆u0

∆x1

∆u1

∆x2

...
∆xN−1

∆uN−1

∆xN


= −


a0

a1

...
aN

 (6.10)

After reordering the variables into dependent and independent ones, this system can be written as


A0 B0 −I

B1 A1 −I
. . . . . . . . .

BN−1 AN−1 −I





∆x0

∆u0

...
∆uN−1

∆x1

...
∆xN


= −


a0

a1

...
aN

 (6.11)

which we can summarize as

[X|Y ]

[
∆wind

∆wdep

]
= −a

so that we get the explicit solution

∆wdep = (−Y −1a)︸ ︷︷ ︸
=v

+ (−Y −1X)︸ ︷︷ ︸
=M

∆wind.
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Note that the submatrix Y is always invertible due the fact that it is lower triangular and has (negative) unit matrices
on its diagonal.

Once the vector v and matrix M are computed, we can formulate a condensed QP which has only the indepen-
dent variables ∆wind as degrees of freedom. This condensed QP can be solved by a dense QP solver, and the re-
sulting solution ∆w∗ind can be expanded again to yield also the QP solution forw∗dep = v+M∆w∗ind. The QP mul-
tipliers λdep = (λ1, . . . , λN ) for the constraints (6.5) can be obtained from the dense QP solution in a slightly more
complex way. The trick is to regard the Lagrangian of the original QP (6.5), LQP(∆wind,∆wdep, λdep, λr, µ) and
note that the condensed QP yields also the multipliers λ∗r , µ

∗, which turn out to be the correct multipliers also for
the uncondensed QP. Thus, the only missing quantity is λ∗dep. It can be obtained by using the follwing two obser-
vations: first, for the true QP solution must hold that the Lagrange gradient is zero, also with respect to ∆wdep.
Second, this Lagrange gradient depends linearly on the unknown multipliers λdep which contribute to it via the
term Y Tλdep, i.e. we have

0 = ∇∆wdep
LQP(∆w∗ind,∆w

∗
dep, λ

∗
dep, λ

∗
r , µ
∗) = ∇∆wdep

LQP(∆w∗ind,∆w
∗
dep, 0, λ

∗
r , µ
∗) + Y Tλ∗dep.

It is a favourable fact that the Lagrange gradient depends on the missing multipliers via the matrix Y T , because
this matrix is invertible. Thus, we obtain an explicit equation for obtaining the missing multipliers, namely

λ∗dep = −Y −T∇∆wdep
LQP(∆w∗ind,∆w

∗
dep, 0, λ

∗
r , µ
∗).

Note that the multipliers would not be needed within a Gauss-Newton method.
Summarizing, condensing reduces the original QP to a QP that has the size of the QP in the sequential approach.

Nearly all sparsity is lost, but the dimension of the QP is much reduced. Condensing is favourable if the horizon
length N and the control dimension nu are relatively small compared to the state dimension nx. If the initial value
is fixed, then also ∆x0 can be eliminated from the condensed QP before passing it to a dense QP solver, further
reducing the dimension.

On the other hand, if the state dimension nx is very small compared to N · nu, condensing is not favourable
due to the fact that it destroys sparsity. This is most easily seen in the Hessian. In the original sparse QP, the block
sparse Hessian has N(nx + nu)2 + n2

x nonzero elements. This is linear in N . In contrast to this, the condensed
Hessian is dense and has (nx +Nnu)2 elements, which is quadratic in N . Thus, if N is large, not only might the
condensed Hessian need more (!) storage than the original one, also the solution time of the QP becomes cubic in
N (factorization costs of the Hessian).

6.3.2 Sparse KKT System

A different way to exploit the sparsity present in the QP (6.4) is to keep all variables in the problem and use within
the QP solver linear algebra routines that exploit sparsity of matrices. This can be realized within both, interior
point (IP) methods as well as in active set methods, but is much easier to illustrate at the example of IP methods.
For illustration, let us assume a problem without coupled constraints (6.6) and assume that all inequalities have
been transformed into primal barrier terms that are added to the objective. Then, in each interior point iteration, an
equality constrained QP of the following simple form needs to be solved.

minimize
∆x0,∆u0, . . . ,∆xN

1

2

N−1∑
k=0

[
∆xk
∆uk

]T[
Qxk Qxuk

(Qxuk )T Quk

][
∆xk
∆uk

]
+

1

2
∆xTNQN∆xN

+

N∑
k=0

[
∆xN
∆uN

]T
gk + ∆xTNgN (6.12)

subject to ak +Ak∆xk +Bk∆uk−∆xk+1 = 0, for k = 0, . . . , N − 1. (6.13)

Formulating the Lagrangian of this QP and differentiating it with respect to all its primal and dual variables y =
(∆x0,∆u0, λ1,∆x1,∆u1, . . . λN ,∆xN ) in this order we obtain a linear system of the following block tridiagonal
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form 

Qx0 Qxu0 AT0
(Qxu0 )T Qu0 BT0
A0 B0 0 −I

−I Qx1 Qxu1 AT1
(Qxu1 )T Qu1 BT1
A1 B1 0 −I

−I
. . . . . .

AN−1 BN−1 0 −I
−I QN





∆x0

∆u0

λ1

∆x1

∆u1

λ2

...
λN

∆xN


=



∗
∗
∗
∗
∗
∗
∗
∗
∗


(6.14)

This linear system can be solved with a banded direct factorization routine, whose runtime is proportional to
N(nx + nu)3. We will see in the next chapter that a particularly efficient way to solve the above linear system
can be obtained by applying the principle of dynamic programming to the equality constrained quadratic subprob-
lem (6.12).

Summarizing, the approach to directly solve the sparse QP without condensing is advantageous ifNnu is large
compared to nx. It needs, however, sparse linear algebra routines within the QP solver. This is easier to implement
in the case of IP methods than for active set methods.
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Chapter 7

Dynamic Programming

”In view of all that we have said in the foregoing sections, the many obstacles we appear to have surmounted.
What casts the pall over our victory celebration? It is the curse of dimensionality, a malediction that has plagued
the scientist from earliest days.”
Richard E. Bellman

Dynamic programming (DP) is a very different approach to solve optimal control problems than the ones pre-
sented previously. The methodology was developed in the fifties and sixties of the 19th century, most prominently
by Richard Bellman [Bel57] who also coined the term dynamic programming. Interestingly, dynamic program-
ming is easiest to apply to systems with discrete state and control spaces, so that we will introduce this case first.
When DP is applied to discrete time systems with continuous state spaces, some approximations have to be made,
usually by discretization. Generally, this discretization leads to exponential growth of computational cost with
respect to the dimension nx of the state space, what Bellman called the “curse of dimensionality”. It is the only
but major drawback of DP and limits its practical applicability to systems with nx ≈ 6. In the continuous time
case, DP is formulated as a partial differential equation in the state space, the Hamilton-Jacobi-Bellman (HJB)
equation, suffering from the same limitation. On the positive side, DP can easily deal with all kinds of hybrid
systems or non-differentiable dynamics, and it even allows us to treat stochastic optimal control with recourse,
or minimax games, without much additional effort. An excellent textbook on discrete time optimal control and
dynamic programming is [Ber05]. Let us now start with discrete control and state spaces.

7.1 Dynamic Programming in Discrete State Space
Let us regard a dynamic system

xk+1 = f(xk, uk)

with f : X × U → X, i.e. xk ∈ X and uk ∈ U, where we do not have to specify the sets X and U yet. We note,
however, that we need to assume they are finite for a practical implementation of DP. Thus, let us in this section
assume they are finite with nX and nU elements, respectively. Let us also define a stage cost L(x, u) and terminal
cost E(x) that take values from R∞ = R ∪ {∞}, where infinity denotes infeasible pairs (x, u) or x. The optimal
control problem that we first address can be stated as

minimize
x0, u0, x1, . . . , uN−1, xN

N−1∑
k=0

L(xk, uk) + E(xN ) (7.1a)

subject to f(xk, uk)− xk+1 = 0, for k = 0, . . . , N − 1, (7.1b)
x̄0 − x0 = 0. (7.1c)

Given the fact that the initial value is fixed and the controls {uk}N−1
k=0 are the only true degrees of freedom, and

given that each uk ∈ U takes one of the nU elements of U, there exist exactly nNU different trajectories, each
with a specific value of the objective function, where infinity denotes an infeasible trajectory. Assuming that the
evaluation of f and of L takes one computational unit, and noting that each trajectory needs N such evaluations,
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the overall complexity of simple enumeration is O(NnNU ). Simple enumeration of all possible trajectories thus
has a complexity that grows exponentially with the horizon length N .

Dynamic programming is just a more intelligent way to enumerate all possible trajectories. It starts from the
principle of optimality, i.e. the observation that each subtrajectory of an optimal trajectory is an optimal trajectory
as well. More specifically, in DP we define the value function or cost-to-go function as the optimal cost that would
be obtained if at time k ∈ {0, . . . , N} and at state x̄k we solve the optimal control problem on a shortened horizon:

Jk(x̄k) = min
xk, uk, . . . , uN−1, xN

N−1∑
i=k

L(xi, ui) + E(xN ) (7.2a)

subject to f(xi, ui)− xi+1 = 0, for i = k, . . . , N − 1, (7.2b)
x̄k − xk = 0. (7.2c)

Thus, each function Jk : X→ R∞ summarizes the cost-to-go to the end when starting at a given state. For the case
k = N we trivially have JN (x) = E(x). The principle of optimality states now that for any k ∈ {0, . . . , N − 1}
holds

Jk(x̄k) = min
u
L(x̄k, u) + Jk+1(f(x̄k, u)). (7.3)

This immediately allows us to perform a recursion to compute all functions Jk one after the other, starting with
k = N − 1 and then reducing k in each recursion step by one, until we have obtained J0. This recursion is called
the dynamic programming recursion. Once all the value functions Jk are computed, the optimal feedback control
for a given state xk at time k is given by

u∗k(xk) = arg min
u
L(xk, u) + Jk+1(f(xk, u))

This allows us to reconstruct the optimal trajectory by a forward simulation that starts at x0 = x̄0 and then proceeds
as follows:

xk+1 = f(xk, u
∗
k(xk)), k = 0, . . . , N − 1.

In this way, DP allows us to solve the optimal control problem up to global optimality, but with a different com-
plexity than simple enumeration. To assess its complexity, let us remark that the most cost intensive step is the
generation of the N cost-to-go functions Jk. Each recursion step (7.3) needs to go through all nX states x. For
each state it needs to test nU controls u by evaluating once the system f(x, u) and stage cost L(x, u), which by
definition costs one computational unit. Thus, the overall computational complexity is O(NnXnU). Compared
with simple enumeration, where we had O(NnNU ), DP is often much better even for moderately sized horizons
N . Let us for example assume an optimal control problem with nU = 10, nX = 1000, N = 100. Then simple
enumeration has a cost of 10102 while DP has a cost of 106.

One of the main advantages of dynamic programming, that can likewise be defined for continuous state spaces,
is that we do not need to make any assumptions (such as differentiability or convexity) on the functions f, L,E
defining the problem, and still it solves the problem up to global optimality. On the other hand, if it shall be applied
to a continuous state space, we have to represent the functions Jk on the computer, e.g. by tabulation on a grid in
state space. If the continuous state space Xcont is a box in dimension nx, and if we use a rectangular grid with m
intervals in each dimension, then the total number of grid points is mnx . If we perform DP on this grid, then the
above complexity estimate is still valid, but with nX = mnx . Thus, when DP is applied to systems with continuous
state spaces, it has exponential complexity in the dimension of the state space; it suffers from what Bellman called
the curse of dimensionality. There exist many ways to approximate the value function, e.g. by neural networks
or other functional representations [BT96], but the global optimality guarantee of dynamic programming is lost in
these cases. On the other hand, there exists one special case where DP can be performed exactly in continuous
state spaces, that we treat next.

7.2 Linear Quadratic Problems
Let us regard now linear quadratic optimal control problems of the form

minimize
x, u

N−1∑
i=0

[
xi
ui

]T [
Qi STi
Si Ri

] [
xi
ui

]
+ xTNPNxN (7.4)
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subject to
x0 − x̄0 = 0,

xi+1 −Aixi −Biui = 0, i = 0, . . . , N − 1.

Let us apply dynamic programming to this case. In each recursion step, we have to solve, for a time varying stage

cost Lk(x, u) =

[
xk
uk

]T [
Qk STk
Sk Rk

] [
xk
uk

]
and a dynamic system fk(x, u) = Akx+Bku the recursion step

Jk(x) = min
u
Lk(x, u) + Jk+1(fk(x, u)),

where we start with JN (x) = xTPNx. Fortunately, it can be shown that under these circumstances, each Jk is
quadratic, i.e. it again has the form Jk(x) = xTPkx. More specifically, the following theorem holds, where we
drop the index k for simplicity.

Theorem 10 (Quadratic Representation of Value Function) If R + BTPB is positive definite, then the mini-
mum Jnew(x) of one step of the DP recursion

Jnew(x) = min
u

[
x
u

]T ([
Q ST

S R

]
+ [A |B]TP [A |B]

)[
x
u

]
is a quadratic function explicity given by Jnew(x) = xTPnew x with

Pnew = Q+ATPA− (ST +ATPB)(R+BTPB)−1(S +BTPA). (7.5)

The proof starts by noting that the optimization problem for a specific x is given by

Jnew(x) = min
u

[
x
u

]T [
Q+ATPA ST +ATPB
S +BTPA R+BTPB

] [
x
u

]
.

Then it uses the fact that for invertible R̄ = R+BTPB this problem can be solved explicitly, yielding the formula
(7.5), by a direct application of the Schur complement lemma, that can easily be verified by direct calculation.

Lemma 1 (Schur Complement Lemma) If R̄ is positive definite then

min
u

[
x
u

]T [
Q̄ S̄T

S̄ R̄

] [
x
u

]
= xT

(
Q̄− S̄T R̄−1S̄

)
x (7.6)

and the minimizer u∗(x) is given by u∗(x) = −R̄−1S̄x.

The above theorem allows us to solve the optimal control problem by first computing explicitly all matrices
Pk, and then performing the forward closed loop simulation. More explicitly, starting with PN , we iterate for
k = N − 1, . . . , 0 backwards

Pk = Qk +ATk Pk+1Ak − (STk +ATk Pk+1Bk)(Rk +BTk Pk+1Bk)−1(Sk +BTk Pk+1Ak). (7.7)

This is sometimes called the Difference Riccati Equation. Then, we obtain the optimal feedback u∗k(xk) by

u∗k(xk) = −(Rk +BTk Pk+1Bk)−1(Sk +BTk Pk+1Ak)xk,

and finally, starting with x0 = x̄0 we perform the forward recursion

xk+1 = Akxk +Bku
∗
k(xk),

which delivers the complete optimal trajectory of the linear quadratic optimal control problem.
An important and more general case are problems with linear quadratic costs and affine linear systems, i.e.

problems of the form

minimize
x, u

N−1∑
i=0

 1
xi
ui

T  ∗ qTi sTi
qi Qi STi
si Si Ri

 1
xi
ui

 +

[
1
xN

]T [ ∗ pTN
pN PN

] [
1
xN

]
(7.8)
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subject to x0 − xfix
0 = 0,

xi+1 −Aixi −Biui − ci = 0, i = 0, . . . , N − 1.

These optimization problems appear at many occasions, for example as linearizations of nonlinear optimal control
problems, as in Chapter 6, in reference tracking problems with Li(xi, ui) = ‖xi − xref

i ‖2Q + ‖ui‖2R, or in moving
horizon estimation (MHE) with cost Li(xi, ui) = ‖Cxi − ymeas

i ‖2Q + ‖ui‖2R. They can be treated by exactly the
same recursion formulae as above, by augmenting the system states xk to

x̃k =

[
1
xk

]
and replacing the dynamics by

x̃k+1 =

[
1 0
ck Ak

]
x̃k +

[
0
Bk

]
uk

with initial value

x̃fix
0 =

[
1
xfix

0

]
Then the problem (7.8) can be reformulated in the form of problem (7.4) and can be solved using exactly the same
difference Riccati equation formula as before!

7.3 Infinite Horizon Problems
Dynamic programming can easily be generalized to infinite horizon problems of the form

minimize
x, u

∞∑
i=0

L(xi, ui)

subject to
x0 − x̄0 = 0,

xi+1 − f(xi, ui) = 0, i = 0, . . . ,∞.

Interestingly, the cost-to-go function Jk(xk) defined in Equation (7.2) becomes independent of the index k, i.e it
holds that Jk = Jk+1 for all k. This directly leads to the Bellman Equation:

J(x) = min
u
L(x, u) + J(f(x, u))︸ ︷︷ ︸

=J̃(x,u)

The optimal controls are obtained by the function

u∗(x) = arg min
u
J̃(x, u).

This feedback is called the stationary optimal feedback control. It is a static state feedback law.

7.4 The Linear Quadratic Regulator
An important special case is again the case of a linear system with quadratic cost. It is the solution to an infinite
horizon problem with a linear system f(x, u) = Ax+Bu and quadratic cost

L(x, u) =

[
x
u

]T [
Q ST

S R

] [
x
u

]
.

For its solution, we just require a stationary solution of the Riccati recursion (7.7), setting Pk = Pk+1, which
yields the so called algebraic Riccati equation in discrete time

P = Q+ATPA− (ST +ATPB)(R+BTPB)−1(S +BTPA).

This is a nonlinear matrix equation in the symmetric matrix P , i.e. with nx(nx + 1)/2 unknowns. It can either be
solved by an iterative application of the difference Riccati recursion (7.7) starting with e.g. a zero matrix P = 0,
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or by faster converging procedures such as Newton-type methods, where, however, care has to be taken to avoid
possible shadow solutions that are not positive definite. Once the solution matrix P is found, the optimal feedback
control u∗(x) is given by

u∗(x) = − (R+BTPB)−1(S +BTPA)︸ ︷︷ ︸
=K

x

This feedback is called the Linear Quadratic Regulator (LQR), and K is the LQR gain.

7.5 Robust and Stochastic Dynamic Programming
One of its most interesting characteristics is that DP can easily be applied to games like chess, or to robust optimal
control problems. Here, an adverse player choses counter-actions, or disturbances, wk against us. They influence
both the stage costs Lk as well as the system dynamics fk and while we want to minimize, our adversary wants to
maximize. The robust DP recursion for such a minimax game is simply:

Jk(x) = min
u

max
w

Lk(x, u, w) + Jk+1(fk(x, u, w))︸ ︷︷ ︸
=J̃k(x,u)

starting with
JN (x) = E(x).

The solution obtained by DP takes into account that we can react to the actions by the adversary, i.e. that we
can apply feedback, and in the model predictive control (MPC) literature such a feedback law is sometimes called
Closed-Loop Robust Optimal Control [BBM03].

Alternatively, we might have a stochastic system and the aim is to find the feedback law that gives us the best
expected value. Here, instead of the maximum, we take an expectation over the disturbances wk. The stochastic
DP recursion is simply given by

Jk(x) = min
u

Ew{Lk(x, u, w) + Jk+1(fk(x, u, w))}︸ ︷︷ ︸
=J̃k(x,u)

where Ew{·} is the expectation operator, i.e. the integral over w weighted with the probability density function
ρ(w|x, u) of w given x and u:

Ew{φ(x, u, w)} =

∫
φ(x, u, w)ρ(w|x, u)dw.

In case of finitely many disturbances, this is just a weighted sum. Note that DP avoids the combinatorial ex-
plosion of scenario trees that are often used in stochastic programming, but of course suffers from the curse of
dimensionality. It is the preferred option for long horizon problems with small state spaces.

7.6 Interesting Properties of the DP Operator
Let us define the dynamic programming operator Tk acting on one value function, Jk+1, and giving another one,
Jk, by

Tk[J ](x) = min
u
Lk(x, u) + J(fk(x, u)).

Note that the operator Tk maps from the space of functions X → R∞ into itself. With this operator, the dynamic
programming recursion is compactly written as Jk = Tk[Jk+1], and the stationary Bellman equation would just
be J = T [J ]. Let us for notational simplicity drop the index k in the following. An interesting property of the DP
operator T is its monotonicity, as follows.

Theorem 11 (Monotonicity of DP) Regard two value functions J and J ′. If J ≥ J ′ in the sense that for all
x ∈ X holds that J(x) ≥ J ′(x) then also

T [J ] ≥ T [J ′].
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The proof is

T [J ](x) = min
u
L(x, u) + J(f(x, u))︸ ︷︷ ︸

≥J′(f(x,u)))

≥ min
u
L(x, u) + J ′(f(x, u)) = T [J ′](x)

This monotonicity property holds also for robust or stochastic dynamic programming, and is for example used in
existence proofs for solutions of the stationary Bellman equation, or in stability proofs of model predictive control
(MPC) schemes [MRRS00].

Another interesting observation is that certain DP operators T preserve convexity of the value function J .

Theorem 12 (Convex dynamic programming) If the system is affine in (x, u), i.e. f(x, u, w) = A(w)x +
B(w)u+ c(w), and if the stage cost L(x, u, w) is convex in (x, u), then the DP, the robust DP, and the stochastic
DP operators T preserve convexity of J , i.e. if J is a convex function, then T [J ] is again a convex function.

Proof: It is interesting to note that no restrictions are given on how the functions depend on w. The proof of
the convexity preservation starts by noting that for fixed w, L(x, u, w) + J(f(x, u, w)) is a convex function in
(x, u). Because also the maximum over all w, or the positively weighted sum of an expectation value computation,
preserve convexity, the function J̃(x, u) is in all three cases convex in both x and u. Finally, the minimization of
a convex function over one of its arguments preserves convexity, i.e. the resulting value function T [J ] defined by

T [J ](x) = min
u
J̃(x, u)

is convex.
But why would convexity be important in the context of DP? First, convexity of J̃(x, u) implies that the

computation of the feedback law arg minu J̃(x, u) is a convex parametric program and could reliably be solved
by local optimization methods. Second, it might be possible to represent the value function J(x) more efficiently
than by tabulation on a grid, for example as the pointwise maximum of affine functions

J(x) = max
i
aTi

[
1
x

]
.

It is an interesting fact that that for piecewise linear convex costs and constraints and polyhedral uncertainty this
representation is exact and leads to an exact robust DP algorithm that might be called polyhedral DP [BBM03,
DB04]. The polyhedral convex representability of the cost-to-go for linear systems with piecewise linear cost
is indirectly exploited in some explicit MPC approaches [PDB+00, BBM02]. Polyhedral representations with a
limited number of facets can also be used to approximate a convex cost-to-go and still yield some guarantees on
the closed-loop system [BD06, BD08, JM10]. Finally, note that also the linear quadratic regulator is a special case
of convex dynamic programming.

7.7 The Gradient of the Value Function
The meaning of the cost-to-go, or the value function, Jk is that it is the cost incurred on the remainder of the
horizon for the best possible strategy. In order to make an interesting connection between the value function and
the multipliers λk that we encountered in derivative based optimization methods, let us now regard a discrete time
optimal control problem as in the previous chapters, but without coupled constraints, as these cannot directly be
treated with dynamic programming. We assume further that the initial value is fixed and that all inequality and
terminal constraints are subsumed in the stage cost L(x, u) and terminal cost E(xN ) by barrier functions that take
infinite values outside the feasible domain but are differentiable inside. For terminal equality constraints, e.g. a
fixed terminal state, assume for the moment that these are approximated by a terminal region of non-zero volume
on which again a barrier can be defined. Thus, we regard the following problem.

minimize
x0, u0, x1, . . . , uN−1, xN

N−1∑
k=0

L(xk, uk) + E(xN ) (7.9a)

subject to f(xk, uk)− xk+1 = 0, for k = 0, . . . , N − 1, (7.9b)
x̄0 − x0 = 0. (7.9c)
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The dynamic programming recursion for this problem is given by:

JN (x) = E(x), Jk(x) = min
u
L(x, u) + Jk+1(f(x, u)), k = N − 1, . . . , 0. (7.10)

We remember that we obtained the optimal solution by the forward recursion

x0 = x̄0, xk+1 = f(xk, uk), k = 0, . . . , N − 1,

where uk is defined by
uk = arg min

u
L(xk, u) + Jk+1(f(xk, u)). (7.11)

The solution of this optimization problem in u necessarily satisfies the first order necessary optimality condition

∇uL(xk, uk) +
∂f

∂u
(xk, uk)T∇Jk+1(f(xk, uk)) = 0 (7.12)

which defines uk locally if the problem is locally strictly convex, i.e., it objective has a positive definite Hessian
at (xk, uk). We now formulate simple conditions on xk and uk that follow necessarily from the DP recursion. For
this aim we first note that on the optimal trajectory holds xk+1 = f(xk, uk) and that we trivially obtain along the
optimal trajectory

JN (xN ) = E(xN ), Jk(xk) = L(xk, uk) + Jk+1(xk+1), k = N − 1, . . . , 0.

This implies for example that the value function remains constant on the whole trajectory for problems with zero
stage costs. However, it is even more interesting to regard the gradient∇Jk(xk) along the optimal state trajectory.
If we differentiate (7.10) at the point xk with respect to x we obtain

∇JN (xk) = ∇E(xk), ∇Jk(xk)T =
d

dx
L(xk, uk) + Jk+1(f(xk, uk))︸ ︷︷ ︸

=:J̃k(xk,uk)

k = N − 1, . . . , 0. (7.13)

In the evaluation of the total derivative it is needed to observe that the optimal uk is via (7.12) an implicit function
of xk. However, it turns out that the derivative does not depend on duk

dxk
because of

d

dx
J̃k(xk, uk) =

∂J̃k
∂x

(xk, uk) +
∂J̃k
∂u

(xk, uk)︸ ︷︷ ︸
=0

duk
dxk

, (7.14)

where the partial derivative with respect to u is zero because of (7.12). Thus, the gradients of the value function at
the optimal trajectory have to satisfy the recursion

∇Jk(xk) = ∇xL(xk, uk) +
∂f

∂x
(xk, uk)T∇Jk+1(xk+1) k = N − 1, . . . , 0. (7.15)

This recursive condition on the gradients ∇Jk(xk) is equivalent to the first order necessary condition (FONC) for
optimality that we obtained previously for differentiable optimal control problems, if we identify the gradients
with the multipliers, i.e. set

λk = ∇Jk(xk). (7.16)

This is a very important interpretation of the multipliers λk: they are nothing else than the gradients of the value
function along the optimal trajectory!

7.8 A Discrete Time Minimum Principle
Collecting all necessary conditions of optimality that we just derived, but substituting ∇Jk(xk) by λk we arrive
indeed exactly to the same conditions (5.16) that we derived in Chapter 5 in a completely different way.

x0 = x̄0 (7.17a)
xk+1 = f(xk, uk), k = 0, . . . , N − 1, (7.17b)
λN = ∇xN

E(xN ) (7.17c)

λk = ∇xL(xk, uk) +
∂f

∂x
(xk, uk)Tλk+1, k = N − 1, . . . , 1, (7.17d)

0 = ∇uL(xk, uk) +
∂f

∂u
(xk, uk)Tλk+1, k = 0, . . . , N − 1. (7.17e)
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In the context of continuous time problems, we will arrive at a very similar formulation, which has the inter-
esting features that the recursion for λ becomes a differential equation that can be integrated forward in time if
desired, and that the optimization problem in (7.11) does only depend on the gradient of J . This will facilitate the
formulation and numerical solution of the necessary optimality conditions as a boundary value problem.
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Chapter 8

Continuous Time Optimal Control
Problems

When we are confronted with a problem whose dynamic system lives in continuous time and whose control
inputs are a function, we speak of a continuous time optimal control problem. This type of problem is the focus
of this and the following chapter. We will encounter variations of the same concepts as in the discrete time
setting, such as Lagrange multipliers λ, the value function J , or the difference between sequential or simultaneous
methods. Some numerical methods and details, however, are only relevant in the continuous time setting, such
as Pontryagin’s Maximum Principle (not covered in this lecture) or the ODE solvers with sensitivity generation
described in Section 9.4.

8.1 Formulation of Continuous Time Optimal Control Problems
In an ODE setting, a continuous time optimal control problem can be stated as follows.

minimize
x(·), u(·)

∫ T

0

L(x(t), u(t)) dt + E (x(T )) (8.1)

subject to
x(0)− x0 = 0, (fixed initial value)

ẋ(t)−f(x(t), u(t)) = 0, t ∈ [0, T ], (ODE model)
h(x(t), u(t)) ≤ 0, t ∈ [0, T ], (path constraints)

r (x(T )) ≤ 0, (terminal constraints).

The problem and its variables are visualized in Figure 8.1.

terminal
constraint r(x(T )) ≤ 0

6
path constraints h(x, u) ≤ 0

initial value
x0 s

states x(t)

controls u(t)
-p

0 t
p
T

Figure 8.1: The variables and constraints of a continuous time optimal control problem.

The integral cost contribution L(x, u) is sometimes called the Lagrange term (which should not be confused
with the Lagrange function) and the terminal cost E(x(T )) is sometimes called a Mayer term. The combination
of both, like here, is called a Bolza objective.

61
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Note that any Lagrange objective term can be reformulated as a Mayer term, if we add an additional “cost state”
c that has to satisfy the differential equation ċ = L(x, u), and then simply take c(T ) as the terminal Mayer cost
term. Conversely, every differentiable Mayer term can be replaced by by a Lagrange term, namely by L(x, u) =

∇E(x)T f(x, u), as the cost integral then satisfies the equality
∫ T

0
L(x, u)dt =

∫ T
0

dE
dt dt = E(x(T )) − E(x0).

These two equivalences mean that it would be no restriction of generality to take only one of the two cost contri-
butions, Lagrange or Mayer term, in the above formulation; however, in this script we choose to use the full Bolza
objective.

So far, we wrote all functions L,E, f, h independent of time t or of parameters p, and we will leave both of
these generalizations away in the remainder of this script. However, all the methods presented in the following
chapters can easily be adapted to these two cases, using again state augmentation, as follows. If time dependence
occurs, we just introduce a “clock state” t with differential equation ṫ = 1, and work with the augmented system
˙̃x = f̃(x̃, u):

x̃ =

[
x
t

]
, f̃(x̃, u) =

[
f(x, u, t)

1

]
Likewise, in the case that time constant, but free optimization parameters p occur, they can be incorporated as
“parameter state” p with differential equation ṗ = 0 and free initial value.

Another interesting case that is specific to continuous time problems is when the duration T of the problem is
free. As an example, we might think of a robot arm that should move an object in minimal time from its current
state to some desired terminal position. In this case, we might rescale the time horizon to the interval [0, 1] by a
time constant but free variable T that is treated like an optimization parameter. Then we regard a scaled problem
˙̃x = f̃(x̃, u)

x̃ =

[
x
T

]
, f̃(x̃, u) =

[
T · f(x, u)

0

]
with pseudo time τ ∈ [0, 1], where the initial condition T (0) for the “state” T is free and T satisfies again Ṫ = 0.

We note that although all the above reformulations make it possible to transfer the methods in this script to
the respective special cases, an efficient numerical implementation should exploit the structures inherent in these
special cases.

8.2 Overview of Numerical Approaches
Generally speaking, there are three basic families of approaches to address continuous time optimal control prob-
lems, (a) state-space, (b) indirect, and (c) direct approaches, cf. the top row of Fig. 8.2. We follow here the outline
given in [DBDW06].

State-space approaches use the principle of optimality that states that each subarc of an optimal trajectory
must be optimal. While this was the basis of dynamic programming in discrete time, in the continuous time
case this leads to the so-called Hamilton-Jacobi-Bellman (HJB) equation, a partial differential equation (PDE) in
the state space. Methods to numerically compute solution approximations exist, but the approach, like dynamic
programming, suffers from Bellmans “curse of dimensionality” and is restricted to small state dimensions. This
approach is not treated in this script.

Indirect Methods use the necessary conditions of optimality of the infinite problem to derive a boundary value
problem (BVP) in ordinary differential equations (ODE). This BVP must numerically be solved, and the approach
is often sketched as “first optimize, then discretize”. The class of indirect methods encompasses also the well
known calculus of variations and the Euler-Lagrange differential equations, and the so-called Pontryagin Maximum
Principle. The numerical solution of the BVP is performed by shooting techniques or by collocation. The two
major drawbacks are that the underlying differential equations are often difficult to solve due to strong nonlinearity
and instability, and that changes in the control structure, i.e. the sequence of arcs where different constraints are
active, are difficult to handle: they usually require a completely new problem setup. Moreover, on so called singular
arcs, higher index differential-algebraic equations (DAE) arise which necessitate specialized solution techniques.
This approach is not explained in detail in this script.

Direct methods transform the original infinite optimal control problem into a finite dimensional nonlinear pro-
gramming problem (NLP) which is then solved by structure exploiting numerical optimization methods. Roughly
speaking, direct methods transform the continuous time dynamic system into a discrete time system and then
proceed as described in the preceding chapters of this script. The approach is therefore often sketched as “first dis-
cretize, then optimize”. One of the most important advantages of direct compared to indirect methods is that they
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Continuous Time Optimal Control
�����������
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Hamilton-Jacobi-
Bellman Equation:

Tabulation in
State Space

Indirect Methods,
Pontryagin:

Solve Boundary Value
Problem

Direct Methods:
Transform into

Nonlinear Program
(NLP)
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Direct Single Shooting:
Only discretized controls

in NLP
(sequential)

Direct Collocation:
Discretized controls and

states in NLP
(simultaneous)

Direct Multiple
Shooting:

Controls and node start
values in NLP
(simultaneous)

Figure 8.2: The optimal control family tree.

can easily treat inequality constraints, like the inequality path constraints in the formulation above. This is because
structural changes in the active constraints during the optimization procedure are treated by well developed NLP
methods that can deal with inequality constraints and active set changes. All direct methods are based on a finite
dimensional parameterization of the control trajectory, but differ in the way the state trajectory is handled, cf. the
bottom row of Fig. 8.2. For solution of constrained optimal control problems in real world applications, direct
methods are nowadays by far the most widespread and successfully used techniques, and are therefore the focus of
this script. Brief descriptions of three of the direct methods – single shooting, multiple shooting, and collocation –
and some algorithmic details are given in Chapter 9, while we point out that the first chapters of the script covering
finite dimensional optimization and discrete time dynamic systems have already covered most of the algorithmic
ideas relevant for direct approaches to optimal control.
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Chapter 9

Direct Approaches to Continuous Optimal
Control

Direct methods to continuous optimal control finitely parameterize the infinite dimensional decision variables,
notably the controls u(t), such that the original problem is approximated by a finite dimensional nonlinear program
(NLP). This NLP can then be addressed by structure exploiting numerical NLP solution methods. For this reason,
the approach is often characterized as “First discretize, then optimize.” The direct approach connects easily to
all optimization methods developed in the continuous optimization community, such as the methods described in
Chapters 2 and 3. Most successful direct methods even parameterize the problem such that the resulting NLP has
the structure of a discrete time optimal control problem, such that all the techniques and structures described in
Chapters 5 and 6 are applicable. For this reason, the current chapter is kept relatively short; its major aim is to
outline the major concepts and vocabulary in the field.

We start by describing direct single shooting, direct multiple shooting, and direct collocation and a variant
pseudospectral methods. We also discuss how sensitivities are computed in the context of shooting methods. The
optimization problem formulation we address in this chapter is the same as (8.1) in Chapter 8. The direct methods
differ in how they transcribe this problem into a finite NLP. The problem (8.1) has a fixed initial value which
simplifies in particular the single shooting method, but all concepts can in a straightforward way be generalized to
other OCP formulations with free initial values.

9.1 Direct Single Shooting
All shooting methods use an embedded ODE or DAE solver in order to eliminate the continuous time dynamic
system. They do so by first parameterizing the control function u(t), e.g. by polynomials, by piecewise constant
functions, or, more generally, by piecewise polynomials. We denote the finite control parameters by the vector
q, and the resulting control function by u(t; q). The most widespread parameterization are piecewise constant
controls, for which we choose a fixed grid 0 = t0 < t1 < . . . < tN = T, and N parameters qi ∈ Rnu ,
i = 0, . . . , N − 1, and then we set

u(t; q) = qi if t ∈ [ti, ti+1].

Thus, the dimension of the vector q = (q0, . . . , qN−1) is Nnu. In single shooting, which is a sequential approach
earliest presented in [HR71, SS78], we then regard the states x(t) on [0, T ] as dependent variables that are obtained
by a forward integration of the dynamic system, starting at x0 and using the controls u(t; q). We denote the
resulting trajectory as x(t; q). In order to discretize inequality path constraints, we choose a grid, typically the
same as for the control discretization, at which we check the inequalities. Thus, in single shooting, we transcribe
the OCP (8.1) into the following NLP, that is visualized in Figure 9.1.

minimize
q ∈ RNnu

∫ T

0

L(x(t; q), u(t; q)) dt + E (x(T ; q)) (9.1)

subject to

h(x(ti; q), u(ti; q)) ≤ 0, i = 0, . . . , N − 1, (discretized path constraints)
r (x(T ; q)) ≤ 0. (terminal constraints)

65
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6

x0 s
states x(t; q)

discretized controls u(t; q)

q0

q1

qN−1 -p
0 t

p
T

Figure 9.1: The NLP variables in the direct single shooting method.

As the only variable of this NLP is the vector q ∈ RNnu that influences nearly all problem functions, the above
problem can usually be solved by a dense NLP solver in a black-box fashion. As the problem functions and their
derivatives are expensive to compute, while a small QP is cheap to solve, often Sequential Quadratic Programming
(SQP) is used, e.g. the codes NPSOL or SNOPT. Let us first assume the Hessian needs not be computed but can
be obtained e.g. by BFGS updates.

The computation of the derivatives can be done in different ways with a different complexity: first, we can
use forward derivatives, using finite differences or algorithmic differentiation. Taking the computational cost of
integrating one time interval as one computational unit, this means that one complete forward integration costs
N units. Given that the vector q has Nnu components, this means that the computation of all derivatives costs
(Nnu + 1)N units when implemented in the most straightforward way. This number can still be reduced by one
half if we take into account that controls at the end of the horizon do not influence the first part of the trajectory. We
might call this way the reduced derivative computation as it computes directly only the reduced quantities needed
in each reduced QP.

Second, if the number of output quantities such as objective and inequality constraints is not big, we can use
the principle of reverse automatic differentiation in order to generate the derivatives. In the extreme case that
no inequality constraints are present and we only need the gradient of the objective, this gradient can cheaply
be computed by reverse AD, as done in the so called gradient methods. Note that in this case the same adjoint
differential equations of the indirect approach can be used for reverse computation of the gradient, but that in
contrast to the indirect method we do not eliminate the controls, and we integrate the adjoint equations backwards
in time. The complexity for one gradient computation is only 4N computational units. However, each additional
state constraint necessitates a further backward sweep.

Third, in the case that we have chosen piecewise controls, as here, we might use the fact that after the piecewise
control discretization we have basically transformed the continuous time OCP into a discrete time OCP (see next
section). Then we can compute the derivatives with respect to both si and qi on each interval separately, which
costs (nx + nu + 1) units. This means a total derivative computation cost of N(nx + nu + 1) units. In contrast
to the second (adjoint) approach, this approach can handle an arbitrary number of path inequality constraints, like
the first one. Note that it has the same complexity that we obtain in the standard implementation of the multiple
shooting approach, as explained next. We remark here already that both shooting methods can each implement all
the above ways of derivative generation, but differ in one respect only, namely that single shooting is a sequential
and multiple shooting a simultaneous approach.

9.2 Direct Multiple Shooting

The direct multiple shooting method that was originally developed by Bock and Plitt [BP84] performs first a
piecewise control discretization on a grid, exacly as we did in single shooting, i.e. we set

u(t) = qi for t ∈ [ti, ti+1].
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But then, it solves the ODE separately on each interval [ti, ti+1], starting with artificial initial values si:

ẋi(t; si, qi) = f(xi(t; si, qi), qi), t ∈ [ti, ti+1],
xi(ti; si, qi) = si.

Thus, we obtain trajectory pieces xi(t; si, qi). Likewise, we numerically compute the integrals

li(si, qi) :=

∫ ti+1

ti

L(xi(ti; si, qi), qi)dt.

Finally, we choose a grid at which we check the inquality path constraints; here we choose the same as for the
controls and states, but note that a much finer sampling would be possible as well, which, however, requires
continuous output from the integrator. Thus, the NLP that is solved in multiple shooting and that is visualized in
Figure 9.2 is given by

minimize
s, q

N−1∑
i=0

li(si, qi) + E (sN ) (9.2)

subject to
x0 − s0 = 0, (initial value)

xi(ti+1; si, qi)− si+1 = 0, i = 0, . . . , N − 1, (continuity)
h(si, qi) ≤ 0, i = 0, . . . , N, (discretized path constraints)
r (sN ) ≤ 0. (terminal constraints)

Note that by setting fi(si, qi) := xi(ti+1; si, qi) the continuity conditions can be interpreted a discrete time dy-
namic system si+1 = fi(si, qi) and the above optimal control problem has exactly the same structure as the
discrete time optimal control problem (6.1) discussed in detail in Chapter 6. Most important, we can and should
employ a sparsity exploiting NLP solver. Regarding the derivative computation, nearly all cost resides in the
derivatives of the discrete time dynamic system, i.e. the matrices Ai and Bi in (6.5). If again the simulation on
one interval, i.e. one evaluation of fi, costs one unit, then the computation of these matrices by finite differences
costs (nx + nu + 1), and as we need N of them, we have a total derivative computation cost of N(nx + nu + 1)
per Newton-type iteration.

Remark on Schlöder’s Reduction Trick: We point out here that the derivatives of the condensed QP could also
directly be computed, using the reduced way, as explained as first variant in the context of single shooting. It
exploits the fact that the initial value x0 is fixed in the NMPC problem, changing the complexity of the derivative
computations. It is only advantageous for large state but small control dimensions as it has a complexity of N2nu.
It was originally developed by Schlöder [Sch88] in the context of Gauss-Newton methods and generalized to
general SQP shooting methods by [Sch05]. A further generalization of this approach to solve a “lifted” (larger, but
equivalent) system with the same computational cost per iteration is the so called lifted Newton method [AD10]
where also an analysis of the benefits of lifting is made.

The main advantages of lifted Newton approaches such as multiple shooting compared with single shooting
are the facts that (a) we can also initialize the state trajectory, and (b), that they show superior local convergence
properties in particular for unstable systems. An interesting remark is that if the original system is linear, continuity
is perfectly satisfied in all SQP iterations, and single and multiple shooting would be identical. Also, it is interesting
to recall that the Lagrange multipliers λi for the continuity conditions are an approximation of the adjoint variables,
and that they indicate the costs of continuity.

Finally, it is interesting to note that a direct multiple shooting algorithm can be made a single shooting algo-
rithm easily: we only have to overwrite, before the derivative computation, the states s by the result of a forward
simulation using the controls q obtained in the last Newton-type iteration. From this perspective, we can regard
single shooting as a variant of multiple shooting where we perturb the result of each iteration by a “feasibility
improvement” that makes all continuity conditions feasible by the forward simulation, implicitly giving priority to
the control guess over the state guess [TWR04].

9.3 Direct Collocation
A third important class of direct methods are the direct transcription methods, most notably direct collocation. Here
we discretize the infinite OCP in both controls and states on a fixed and relatively fine grid {tk}Nk=0 ; recall that
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Figure 9.2: The NLP variables in the direct multiple shooting method.

each collocation interval corresponds to an integrator step. We denote the states on the grid points by sk ≈ x(tk).
We choose a parameterization of the controls on the same grid, e.g. piecewise constant or piecewise polynomials,
with control parameters qk that yield on each interval a function uk(t; q)

On each collocation interval [tk, tk+1] a set of m collocation points t(1)
k , . . . , t

(m)
k is chosen and the trajectory

is approximated by a polynomial pk(t; vk) with coefficient vector vk. As equalities of the optimization problem
we now require that the collocation conditions (9.3) are met at the collocation points.

sk = pk(tk; vk) (9.3a)

f(pk(t
(1)
k ; vk), uk(t

(1)
k ; qk)) = p′k(t

(1)
k ; v) (9.3b)

... (9.3c)

f(pk(t
(m)
k ; vk), uk(t

(m)
k ; qk)) = p′k(t

(m)
k ; v) (9.3d)

We summarize this system by the vector equation ck(sk, vk, qk) = 0 that has as many components as the vector
vi. Additionally, we also require continuity accross interval boundaries, i.e. we add the constraints pk(tk+1; vk)−
sk+1 = 0. We also approximate the integrals

∫ tk+1

tk
L(x, u)dt on the collocation intervals by a quadrature formula

using the same collocation points, which we denote by the a term lk(sk, vk, qk). Path constraints are enforced on
a grid, e.g. the interval boundaries, which we do here. We point out, that much finer sampling is possible as well,
e.g. on the collocation nodes or even more often. Thus, we obtain a large scale, but sparse NLP:

minimize
s, v, q

N−1∑
k=0

lk(sk, vk, qk) + E (sN ) (9.4)

subject to
s0 − x0 = 0, (fixed initial value)

ck(sk, vk, qk) = 0, k = 0, . . . , N − 1, (collocation conditions)
pk(tk+1; vk)− sk+1 = 0, k = 0, . . . , N − 1, (continuity conditions)

h(sk, qk) ≤ 0, k = 0, . . . , N − 1, (discretized path constraints)
r (sN ) ≤ 0. (terminal constraints)

This large sparse NLP needs to be solved by structure exploiting solvers, and due to the fact that the problem
functions are typically relatively cheap to evaluate compared with the cost of the linear algebra, nonlinear interior
point methods are often the most efficient approach here. A widespread combination is to use collocation with
IPOPT using the AMPL interface. It is interesting to note that, like in direct multiple shooting, the multipliers of
the continuity conditions are again an approximation of the adjoint variables.

An interesting variant of orthogonal collocation methods that is often called the pseudospectral optimal control
method uses only one collocation interval but on this interval it uses an extremly high order polynomial. State
constraints are then typically enforced at all collocation points.
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9.4 Sensitivity Computation in Shooting Methods
In all shooting methods we need to compute derivatives of the result of an ODE integration routine, or, in the more
general case, of a DAE solver, on a given time interval. Let us for notational simplicity regard just the autonomous
ODE case ẋ = f(x) on a time interval [0, T ]. The case of control or other parameters on which this ODE depends
as well as time dependence can conceptually be covered by state augmentation. Thus, we regard a starting point s
and the evolution of the ODE

ẋ = f(x), t ∈ [0, T ], x(0) = s. (9.5)

This gives a solution x(t; s), t ∈ [0, T ], and we are most interested in the terminal value x(T ; s) and in the
sensitivity matrix

G(t) =
∂x(t; s)

∂s
, t ∈ [0, T ],

and in particular its terminal value. This matrix G(T ) ∈ Rnx×nx can be computed in many different ways, five of
which we briefly sketch here.

1. External Numerical Differentiation (END)

2. Solution of the Variational Differential Equations

3. Algorithmic Differentiation (AD) of the Integrator

4. Internal Algorithmic Differentiation within the Integrator

5. Internal Numerical Differentiation (IND)

In all five methods we assume that the integrator to be differentiated is a state-of-the-art integrator with inbuilt
error control and adaptive step-size selection.

The first approach, External Numerical Differentiation (END), just treats the integrator as a black box function
and uses finite differences. We perturb s by some quantity ε > 0 in the direction of the unit vectors ei and call the
integrator several times in order to compute directional derivatives by finite differences:

G(T )ei ≈
x(T ; s+ εei)− x(T ; q)

ε
(9.6)

The cost of this approach to compute G(T ) is (nx + 1) times the cost of a forward simulation. The approach is
very easy to implement, but suffers from one serious problem: due to integrator adaptivity, each call might have
a different discretization grid. This error control of each trajectory does not only create an overhead, but worse,
it might result in discontinuous perturbations even for small ε. It is important to note that due to adaptivity, the
output x(T ; s) is not a differentiable function in s, but only guaranteed to be close to the true solution within the
integrator accuracy TOL, e.g. TOL = 10−4. Thus, we need to use, as a rule of thumb, ε =

√
TOL in order to

make large enough perturbations. As finite differences always mean that we loose half the digits of accuracy, we
might easily end e.g. with a derivative that has only two valid digits.

A completely different approach is to formulate and solve the variational differential equations along with the
nominal trajectory. This means that we solve, together with ẋ = f(x), the additional matrix differential equation

Ġ(t) =
∂f

∂x
(x(t))G(t), t ∈ [0, T ], G(0) = I.

This is much more accurate than the first approach at a similar computational cost, but we have to get analytic
expressions for ∂f

∂x (x(t)). Also, it is interesting to note that the computed sensitivity G(T ) might not be 100%
identical with the derivative of the (discretized) integrator result x(T ; s).

This last disadvantage is avoided in the third approach, Algorithmic Differentiation (AD) of the Integrator,
where we first freeze the discretization scheme at the current nominal trajectory and then apply an AD tool to the
whole integrator. This is up to machine precision 100% identical with the derivative of the numerical solution
x(T ; s) for a given fixed discretization grid. In a practical implementation, the integrator and right hand side
function f(x) need to be in the same or in compatible computer languages that are treated by the corresponding AD
tool (e.g. C++ when using ADOL-C). Also, if an implicit integrator is used, it should be noted that the underlying
Newton iterations will differentiated, which might create considerable and avoidable overhead compared to the
variational differential equation approach.
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A fourth approach, Internal Algorithmic Differentiation (AD) of the Integrator can be seen as a combination
of the variational differential equation and AD. Here, AD is applied to each step of the integrator in a custom
implementation of the integrator, but care is taken that no components of the algorithm are differentiated that
need not be differentiated, such as Newton matrices. The approach is illustrated for an Euler scheme (where it
is identical to both the variational differential equation and external AD). If the grid is given by {tk}Nk=0 and the
Euler iterates

xk+1 = xk + (tk+1 − tk)f(xk), k = 0, . . . , N − 1, x0 = s.

then this approach generates matrices

Gk+1 = Gk + (tk+1 − tk)
∂f

∂x
(xk) Gk, k = 0, . . . , N − 1, G0 = I.

This approach is usually the most computationally efficient of the exact differentiation approaches but requires a
custom implementation of an ODE/DAE solver that is explicitly designed for the generation of sensitivities. Note
that as in the previous two approaches, we cannot deal with black-box right hand side functions f(x) as we need
to compute their derivatives symbolically or algorithmically, though the matrix ∂f

∂x (xk) could of course also be
computed by finite differences.

This last idea can be generalized to the concept of Internal Numerical Differentiation (IND) [Boc87]. At first
sight it is similar to END, but needs a custom implementation and differs in several respects. First, all trajectories
are computed simultaneously; only the nominal trajectory is adaptive, while the perturbed trajectories use the
nominal, frozen grid. In implicit methods, also matrix factorizations etc. will be frozen. At the end of the interval,
we use the finite difference formula (9.6) but with a much smaller perturbation, namely ε =

√
PREC where

PREC is the machine precision, typically 10−16 The derivatives will have the accuracy
√

PREC, i.e. usually
10−8, which is much higher than for END.

Again, we illustrate IND at hand of the explicit Euler integration scheme, where each perturbed trajectory with
index i = 1, . . . , nx just satisfies

xik+1 = xik + (tk+1 − tk)f(xik), k = 0, . . . , N − 1, xi0 = s+ εei.

Note that due to the fact that adaptivity and possible matrix factorizations are switched off for the perturbed
trajectories, IND is not only more accurate, but also cheaper than END.

9.5 A Classification of Direct Optimal Control Methods
It is an interesting exercise to try to classify Newton type optimal control algorithms, where we follow the pre-
sentation given in [DFH09]. Let us have a look at how nonlinear optimal control algorithms perform their major
algorithmic components, each of which comes in several variants:

(a) Treatment of Inequalities: Nonlinear IP vs. SQP
(b) Nonlinear Iterations: Simultaneous vs. Sequential
(c) Derivative Computations: Full vs. Reduced
(d) Linear Algebra: Banded vs. Condensing

In the last two of these categories, we observe that the first variants each exploit the specific structures of the
simultaneous approach, while the second variant reduces the variable space to the one of the sequential approach.
Note that reduced derivatives imply condensed linear algebra, so the combination [Reduced,Banded] is excluded.
In the first category, we might sometimes distinguish two variants of SQP methods, depending on how they solve
their underlying QP problems, via active set QP solvers (SQP-AS) or via interior point methods (SQP-IP).

Based on these four categories, each with two alternatives, and one combination excluded, we obtain 12
possible combinations. In these categories, the classical single shooting method [SS78] could be classified as
[SQP,Sequential,Reduced] or as [SQP,Sequential,Full,Condensing] because some variants compute directly the
reduced derivatives, while others compute first the stagewise derivative matrices Ai and Bi and condense then.
Tenny’s feasibility perturbed SQP method [TWR04] could be classified as [SQP,Sequential,Full,Banded], and
Bock’s multiple shooting [BP84] as well as the classical reduced SQP collocation methods [THE75, Bie84, Bet01]
as [SQP,Simultaneous,Full,Condensing]. The band structure exploiting SQP variants from Steinbach [Ste94] and
Franke [Fra98] are classified as [SQP-IP,Simultaneous,Full,Banded], while the widely used interior point direct
collocation method in conjunction with IPOPT by Biegler and Wächter [Wae02] as [IP,Simultaneous,Full,Banded].
The reduced Gauss-Newton method of Schlöder [Sch88] would here be classified as [SQP,Simultaneous,Reduced].
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Chapter 10

Nonlinear Model Predictive Control

So far, we have regarded one single optimal control problem and focussed on ways to numerically solve this
problem. Once we have computed such a solution, we might try to control the corresponding real process with
the obtained control trajectory. This approach to use a precomputed control trajectory is called open-loop control.
Unfortunately, the result will most probably be very dissatisfying, as the real process will typically not coincide
completely with the model that we have used for optimization. If we wanted for example move a robot arm to a
terminal point, the robot arm might end at a very different location than the model predicted. This is due to the
difference of the model with the reality, sometimes called model-plant-mismatch. This mismatch might be due to
modelling errors or external, unforeseen disturbances.

On the other hand, we might be able to observe the real process during its time development, and notice, for
example, that the robot arm moves differently than predicted. This will allow us to correct the control inputs online
in order to get a better performance; this procedure is called feedback control or closed-loop control. Feedback
allows us to improve the practical performance of optimal control enormously. In its most basic form, we could
use ad-hoc implementations of feedback that react to deviations from the planned state trajectory by basic control
schemes such as a proportional-integral (PI) controller. On the other hand, we might use again optimal control
techniques in order to react to disturbances of the state, by using optimal feedback control, which we had outlined
in the Chapter 7 on dynamic programming (DP). In the case of the moving robot arm this would result in the
following behaviour: if during its motion the robot arm is strongly pushed by an external disturbance, it will not try
to come back to its planned trajectory but instead adapt to the new situation and follow the new optimal trajectory.
This is straightforward in the case of DP or HJB, where we have the optimal feedback control precomputed for all
possible states. But as said, these approaches are impossible to use for nontrivial state dimensions, i.e. systems
with more than, say, 3-8 states. Thus, typically we cannot precompute the optimal feedback control in advance.

A possible remedy is to compute the optimal feedback control in real-time, or online, during the runtime of
the process. In the case of the robot arm this means that after the disturbance, we would call our optimization
solver again in order to quickly compute the new optimal trajectory. If we could solve this problem exactly and
infinitely fast, we would get exactly the same feedback as in optimal feedback control. In reality, we have to work
with approximations: first, we might simplify the optimal control problem in order to allow faster computation,
e.g. by predicting only a limited amount of time into the future, and second, we might adapt our algorithms to
the new task, namely that we have to solve optimization problems again and again. This task is called real-time
optimization or embedded optimization, due to the fact that in many cases, the numerical optimization will be
carried out on embedded hardware, i.e. processors that reside not in a desktop computer but e.g. in a feedback
control system.

While this idea of optimal feedback control via real-time optimization sounds challenging or even impossible
for the fast motion of robot arms, it is since decades industrial practice in the process control industry under the
name of Model Predictive Control (MPC). There, time scales are often in the range of minutes and allow ample
time for each optimization. The main stream implementation of MPC can in discrete time roughly be formulated
as follows: (1) observe the current state of the system x̄0, (2) predict and optimize the future behaviour of the
process on a limited time window of N steps by solving an open-loop optimization problem starting at the state
x̄0, (3) implement the first control action u∗0 at the real process, (4) move the optimization horizon one time step
forward and repeat the procedure. MPC is sometimes also called receding horizon control due to this movement
of the prediction horizon. The name nonlinear MPC, short NMPC, is reserved for the special case of MPC with
underlying nonlinear dynamic systems, while linear MPC refers to MPC with linear system models. Note that

71
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NMPC leads typically to non-convex optimization problems while nearly all linear MPC formulations use convex
cost and constraints.

Note that in the case of a time-invariant system and cost, the subsequent optimization problems differ only by
the initial value x̄0 and nothing else, and thus, the MPC feedback is time-invariant as well. If we would be able
to solve the problem with an infinite prediction horizon, we would obtain the stationary optimal feedback control.
The limitation of the horizon to a finite length N allows us to solve the problem numerically. If we choose N large
enough, it will be a good approximation to the infinite horizon problem.

In this script, we do not focus on the different ways to formulate the MPC problem, but on its numerical
solution by suitable real-time optimization methods. This and the next chapter follows the presentation given in
[DFH09] and [Die02] and focusses on the MPC optimal control problem.

10.1 NMPC Optimization Problem
Let us in this chapter regard the following simplified optimal control problem in discrete time augmented with
algebraic equations.

minimize
x, z, u

N−1∑
i=0

L(xi, zi, ui) + E (xN ) (10.1a)

subject to x0 − x̄0 = 0, (10.1b)
xi+1 − f(xi, zi, ui) = 0, i = 0, . . . , N − 1, (10.1c)

g(xi, zi, ui) = 0, i = 0, . . . , N − 1, (10.1d)
h(xi, zi, ui) ≤ 0, i = 0, . . . , N − 1, (10.1e)

r (xN ) ≤ 0. (10.1f)

Here, xi ∈ Rnx is the differential state, zi ∈ Rnz the algebraic state, and ui ∈ Rnu is the control. Functions f
and g are assumed twice differentiable and map into Rnx and Rnz , respectively. The algebraic state zi is uniquely
determined by (10.1d) when xi and ui are fixed, as we assume that ∂g∂z is invertible everywhere.

We choose to regard this difference-algebraic system form because it covers several parametrization schemes
for continuous time dynamic systems in differential algebraic equation (DAE) form, in particular direct multiple
shooting with DAE relaxation [LBS+03] and direct collocation [THE75, Bie84]. Note that in the case of colloca-
tion, all collocation equations on a collocation interval would be collected within the function g and the collocation
node values in the variables zi, see the formulation in formula (9.4).

Here, the free variables are the differential state vector x = (xT0 , x
T
1 . . . , x

T
N−1, x

T
N )T at all considered time

points and the algebraic and control vector on all but the last time points: z = (zT0 , z
T
1 . . . , z

T
N−1)T and u =

(uT0 , u
T
1 . . . , u

T
N−1)T .

The task in real-time optimization for NMPC is now the following: for a given value of x̄0, we need to
approximately solve the above optimization problem as fast as possible, and of the obtained solution, it is the
optimal value u0 that we need fastest in order to provide the NMPC feedback. We might call the exact solution
u∗0(x̄0) in order to express its dependence on the initial value x̄0. The only reason why we formulate and optimize
the large optimization problem is because it delivers us this map u∗0 : Rnx → Rnu , which is an approximation to
the optimal feedback control.

Remark on fixed and free parameters: In most NMPC applications there are some constant parameters p̄ that
are assumed constant for the NMPC optimization, but that change for different problems, like x̄0. We do not
regard them here for notational convenience, but note that they can be treated by state augmentation, i.e. regarded
as constant system states with fixed initial value p̄.

10.2 Nominal Stability of NMPC
Very often, one is interested in stabilizing the nonlinear dynamic system at a given set point for states and con-
trols, which we might without loss of generality set to zero here. This steady state, that satisfies f(0, 0, 0) = 0,
g(0, 0, 0) = 0 must be assumed to be feasible, i.e. h(0, 0, 0) ≤ 0. One then often uses as stage cost the quadratic
deviation from this set point, i.e., L(x, u) = xTQx+uTRu with positive definite matrices Q,R. It is important to
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note that this function is positive definite, i.e., L(0, 0) = 0 and L(x, u) > 0 other wise. In this case, one would ide-
ally like to solve the infinite horizon problem with N =∞ in order to obtain the true stationary optimal feedback
control; this would automatically ensure stability, as the value function J(x) can be shown to decrease along the
trajectory of the nominal system in each time step by −L(x0, u

∗(x0)) and can thus serve as a Lyapunov function.
But as we have in practice to choose a finite N , the question arises how we can ensure nominal stability of NMPC
nevertheless. One way due to [KG88, MM90] is to impose a zero terminal constraint i.e. to require xN = 0 as
terminal boundary condition (10.1f) in the NMPC problem and to employ no terminal cost, i.e. E(xN ) = 0.

In this case of a zero terminal constraint, it can be shown that the value function J0 of the finite horizon problem
is a Lyapunov function that decreases by at least −L(x̄0, u

∗(x̄0)) in each time step. To prove this, let us assume
that (x∗0, z

∗
0 , u
∗
0, x
∗
1, z
∗
1 , u
∗
1, . . . , x

∗
N ) is the solution of the NMPC problem (10.1a)-(10.1f) starting with initial value

x̄0. After application of this feedback to the nominal system, i.e. without model-plant-mismatch, the system will
evolve exactly as predicted, and for the next NMPC problem the initial value x̄′0 will be given by x̄′0 = x∗1. For
this problem, the shifted version of the previous solution (x∗1, z

∗
1 , u
∗
1, . . . , x

∗
N , 0, 0, 0) is a feasible point, and due

to the zero values at the end, no additional cost arises at the end of the horizon. However, because the first stage
cost term moved out of the horizon, we have that the cost of this feasible point of the next NMPC problem is
reduced by exactly −L(x̄0, u

∗(x̄0)). After further optimization, the cost can only be further reduced. Thus, we
have proven that the value function J0 is reduced along the trajectory, i.e. J0(x̄′0) ≤ J0(x̄0) − L(x̄0, u

∗(x̄0)).
More generally, one can relax the zero terminal constraint and construct combinations of terminal cost E(xN ) and
terminal inequalities r(xN ) ≤ 0 that have the same property but are less restrictive, cf. e.g. [CA98, DNMS00,
MRRS00].

10.3 Online Initialization via Shift
For exploiting the fact that NMPC requires the solution of a whole sequence of neighboring NLPs and not just a
number of stand-alone problems, we have first the possibility to initialize subsequent problems efficiently based
on previous information.

A first and obvious way to transfer solution information from one solved NMPC problem to the initialization
of the next one is employing the shift that we used already in the proof of nominal stability above. It is motivated
by the principle of optimality of subarcs, which, in our context, states the following: Let us assume we have
computed an optimal solution (x∗0, z

∗
0 , u
∗
0, x
∗
1, z
∗
1 , u
∗
1, . . . , x

∗
N ) of the NMPC problem (10.1a)-(10.1f) starting with

initial value x̄0. If we regard a shortened NMPC problem without the first interval, which starts with the initial
value x̄1 chosen to be x∗1, then for this shortened problem the vector (x∗1, z

∗
1 , u
∗
1, . . . , x

∗
N ) is the optimal solution.

Based on the expectation that the measured or observed true initial value for the shortened NMPC problem
differs not much from x∗1 – i.e. we believe our prediction model and expect no disturbances – this “shrinking”
horizon initialization is canonical, and it is used in MPC of batch or finite time processes, see e.g. [HAM98,
DBS05].

However, in the case of moving horizon problems, the horizon is not only shortened by removing the first
interval, but also prolonged at the end by appending a new terminal interval – i.e. the horizon is moved forward in
time. In the moving horizon case, the principle of optimality is thus not strictly applicable, and we have to think
about how to initialize the appended new variables zN , uN , xN+1. Often, they are obtained by setting uN := uN−1

or setting uN as the steady state control. The states zN and xN+1 are then obtained by forward simulation. In the
case that zero is the steady state and we had a zero terminal constraint, this would just result in zero values to be
appended, as in the proof in the previous section. In any case, this transformation of the variables from one problem
to the next is called “shift initialization”. It is not as canonical as the “shrinking horizon” case, because the shifted
solution is not optimal for the new undisturbed problem. However, in the case of long horizon lengths N we can
expect the shifted solution to be a good initial guess for the new solution. Moreover, for most NMPC schemes
with stability guarantee (for an overview see e.g. [MRRS00]) there exists a canonical choice of uN that implies
feasibility (but not optimality) of the shifted solution for the new, undisturbed problem. The shift initialization is
very often used e.g. in [LB90, BR91, MHAM96, DMN04].

A comparison of shifted vs. non-shifted initializations was performed in [BDLS99] with the result that for
autonomous NMPC problems that shall regulate a system to steady state, there is usually no advantage of a shift
initialization compared to the “primitive” warm start initialization that leaves the variables at the previous solution.
In the extreme case of short horizon lengths, it turns out to be even advantageous NOT to shift the previous solution,
as subsequent solutions are less dominated by the initial values than by the terminal conditions. On the other hand,
shift initialization are a crucial prerequisite in periodic tracking applications [DMN04] and whenever the system
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or cost function are not autonomous.

10.4 Outline of Real-Time Optimization Strategies
In NMPC we would dream to have the solution to a new optimal control problem instantly, which is impossible
due to computational delays. Several ideas help us to deal with this issue.

Offline precomputations: As consecutive NMPC problems are similar, some computations can be done once
and for all before the controller starts. In the extreme case, this leads to an explict precomputation of the NMPC
control law that has raised much interest in the linear MPC community [BBM02], or a solution of the Hamilton-
Jacobi-Bellman Equation, both of which are prohibitive for state and parameter dimensions above ten. But also
when online optimization is used, code optimization for the model routines is often essential, and it is in some cases
even possible to precompute and factorize Hessians or even Jacobians in Newton type Optimization routines, in
particular in the case of neighboring feedback control along reference trajectories [KEB87, BM00]. Also, pre-
optimized compilable computer code can be auto-generated that is specific to the family of optimization problems,
which is e.g. in convex optimization pursued in [MWB10].

Delay compensation by prediction: When we know how long our computations for solving an NMPC problem
will take, it is a good idea not to address a problem starting at the current state but to simulate at which state the
system will be when we will have solved the problem. This can be done using the NMPC system model and the
open-loop control inputs that we will apply in the meantime [FA03]. This feature is used in many practical NMPC
schemes with non-negligible computation time.

Division into preparation and feedback phase: A third ingredient of several NMPC algorithms is to divide the
computations in each sampling time into a preparation phase and a feedback phase [DBS+02]. The more CPU
intensive preparation phase (a) is performed with an old predicted state x̄0 before the new state estimate, say x̄′0, is
available, while the feedback phase (b) then delivers quickly an approximate solution to the optimization problem
for x̄′0. Often, this approximation is based on one of the tangential predictors discussed in the next chapter.

Iterating while the problem changes: A fourth important ingredient of some NMPC algorithms is the idea to
work on the optimization problem while it changes, i.e., to never iterate the Newton type procedure to convergence
for an NMPC problem getting older and older during the iterations, but to rather work with the most current
information in each new iteration. This idea is used in [LB90, DBS+02, Oht04].

As a historical note, one of the first true online algorithms for nonlinear MPC was the Newton-Type Controller
of Li and Biegler [LB89]. It is based on a sequential optimal control formulation, thus it iterates in the space
of controls u = (u0, u1, . . . , uN−1) only. It uses an SQP type procedure with Gauss-Newton Hessian and line
search, and in each sampling time, only one SQP iteration is performed. The transition from one problem to the
next uses a shift of the controls unew = (u1, . . . , uN−1, u

new
N ). The result of each SQP iterate is used to give

an approximate feedback to the plant. As a sequential scheme without tangential predictor, it seems to have had
sometimes problems with nonlinear convergence, though closed-loop stability was proven for open-loop stable
processes [LB90].

In the next chapter, we will discuss several other real-time optimization algorithms in more detail that are all
based on ideas from the field of parametric nonlinear optimization.
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Chapter 11

* Parametric Nonlinear Optimization

In the shift initialization discussed in the previous chapter we did assume that the new initial value corresponds
to the model prediction. This is of course never the case, because exactly the fact that the initial state is subject
to disturbances motivates the use of NMPC. By far the most important changes from one optimization problem
to the next one are thus the unpredictable changes in the initial value x̄0. Is there anything we can do about this
in the initialization of a new problem? It turns out that the concept of parametric sensitivities helps us here. In
order to understand this concept, in this chapter we will regard the task of real-time optimization from a different
perspective than before, namely from the point of view of parametric optimization, which is a subfield of nonlinear
optimization [BGK+83, GVJ90].

11.1 Parametric Nonlinear Optimization
The NMPC problem as stated in Equations (10.1a)-(10.1f) in the previous chapter is a specially structured case of
a generic parametric nonlinear program (pNLP) with variables Y = (x, z, u) that depends on the parameter x̄0.
This pNLP has the form

pNLP(x̄0) : minimize
Y

F (Y ) s.t.
{
G(x̄0, Y ) = 0

H(Y ) ≤ 0
(11.1)

We recall that under mild assumptions, any locally optimal solution Y ∗ of this problem has to satisfy the Karush-
Kuhn-Tucker (KKT) conditions: there exist multiplier vectors λ∗ and µ∗ so that the following equations hold:

∇Y L(Y ∗, λ∗, µ∗) = 0 (11.2a)
G(x̄0, Y

∗) = 0 (11.2b)
0 ≥ H(Y ∗) ⊥ µ∗ ≥ 0. (11.2c)

Here we have used the definition of the Lagrange function

L(Y, λ, µ) = F (Y ) +G(x̄0, Y )Tλ+H(Y )Tµ (11.3)

and the symbol ⊥ between the two vector valued inequalities in Eq. (11.2c) states that also the complementarity
condition

Hi(Y
∗) µ∗i = 0, i = 1, . . . , nH , (11.4)

shall hold.

Remark on Initial Value Embedding: Due to the fact that the parameter x̄0 enters G linearly in our formu-
lation, the Jacobian of G and thus also the Lagrange gradient does not depend on x̄0. We can therefore identify
∇YG(x̄0, Y ) = ∇YG(Y ). The fact that all derivatives are independent of the parameter x̄0 will make the de-
scription of the path-following algorithms in the coming sections easier. Note that this particular formulation of
the parameter dependence can in all parametric optimization problems be achieved by introducing the parameter
x0 as a variable and constraining it by a constraint x̄0 − x0 = 0, as we have done in (10.1a)-(10.1f). We call

75
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this in the general case a parameter embedding. In the context of NMPC, like here, we speak of the initial value
embedding [Die02].

The primal-dual points W = (Y, λ, µ) that satisfy the KKT conditions for different values of x̄0 form the
solution manifold; due to the non-smoothness of the complementarity condition, this manifold is in general not
differentiable. However, if we would have no inequality constraints, the solution manifold is in general smooth,
and we treat this case first.

11.2 Predictor-Corrector Pathfollowing Methods
In the equality constrained case, we have W = (Y, λ), and the first two KKT conditions (11.2a)-(11.2b) form a
nonlinear equation system depending on the parameter x̄0 that we can summarize as R(x̄0,W ) = 0. The solution
W ∗(x̄0) that satisfies these conditions for a given x̄0 is in general a smooth map; more precisely, it is smooth at
all points at which the Jacobian ∂R

∂W is invertible. Note that this Jacobian is nothing else than the matrix that we
called the KKT matrix in Chapter 2, and that the KKT matrix is invertible whenever the second order sufficient
optimality conditions of Theorem 7 hold, which we can assume here. The derivative of the solution map W ∗(x̄0)
is by the implicit function theorem given by

∂W ∗

∂x̄0
(x̄0) = −

(
∂R

∂W
(x̄0,W

∗(x̄0))

)−1
∂R

∂x̄0
(x̄0,W

∗(x̄0)). (11.5)

In the real-time optimization context, we might have solved a problem with parameter x̄0 with solution W =
W ∗(x̄0) and want to solve next the problem for a new parameter x̄′0. The tangential predictor W ′ for this new
solution W ∗(x̄′0) is given by

W ′ = W +
∂W ∗

∂x̄0
(x̄0)(x̄′0 − x̄0) = W −

(
∂R

∂W
(x̄0,W )

)−1
∂R

∂x̄0
(x̄0,W )(x̄′0 − x̄0).

Note the similarity with one step of a Newton method. In fact, a combination of the tangential predictor and the
corrector due to a Newton method proves to be useful in the case thatW was not the exact solution ofR(x̄0,W ) =
0, but only an approximation. In this case, linearization at (x̄0,W ) yields a formula that one step of a predictor-
corrector pathfollowing method needs to satisfy:

R(x̄0,W ) +
∂R

∂x̄0
(x̄0,W )(x̄′0 − x̄0) +

∂R

∂W
(x̄0,W )(W ′ −W ) = 0. (11.6)

Written explicitly, it delivers the solution guess W ′ for the next parameter x̄′0 as

W ′ = W −
(
∂R

∂W
(x̄0,W )

)−1
∂R

∂x̄0
(x̄0,W )(x̄′0 − x̄0)︸ ︷︷ ︸

=∆Wpredictor

−
(
∂R

∂W
(x̄0,W )

)−1

R(x̄0,W )︸ ︷︷ ︸
=∆Wcorrector

.

Structure due to Initial Value Embedding: We can use the fact that x̄0 enters R linearly due to the initial
value embedding in order to simplify the formulae. First, we can omit the dependence of the derivatives on x̄0 and
second, we can write ∂R

∂x̄0
(W )(x̄′0 − x̄0) = R(x̄′0,W ) − R(x̄0,W ). Thus, the Equation (11.6) that the predictor-

corrector step needs to satisfy simplifies to

R(x̄′0,W ) +
∂R

∂W
(W )(W ′ −W ) = 0. (11.7)

It follows that the predictor-corrector step can be easily obtained by just applying one standard Newton step to the
new problem pNLP(x̄′0) initialized at the past solution guess W , if we employed the initial value embedding in
the problem formulation. This is convenient in particular in the context of inequality constrained optimization.

In order to devise pathfollowing methods for the case of inequality constraints, there exist two different ap-
proaches. The first and easier one is closely related to nonlinear interior point (IP) methods and approximates the
KKT system by a smooth equation, while the second one is related to sequential quadratic programming (SQP)
methods and treats the non-smooth complementarity conditions in a different way.
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11.3 Interior Point Pathfollowing Methods

Let us first recall that a nonlinear interior point method addresses the solution of the KKT system by replacing the
last nonsmooth KKT condition in Eq. (11.2c) by a smooth nonlinear approximation, with τ > 0:

∇Y L(Y ∗, λ∗, µ∗) = 0 (11.8a)
G(x̄0, Y

∗) = 0 (11.8b)
Hi(Y

∗) µ∗i + τ = 0, i = 1, . . . , nH . (11.8c)

If we regard this system for a fixed parameter τ , it is just a nonlinear equation that determines the unknowns
W = (Y, λ, µ) and depends on the parameter x̄0, and which we summarize again as

R(x̄0,W ) = 0. (11.9)

This equation system implicitly defines the smooth interior point (IP) solution manifold W ∗(x̄0) in which we
are interested in the real-time optimization context. As it is a smooth equation, we can in principle apply the
pathfollowing predictor-corrector method of the previous section. For decreasing τ , this IP solution manifold
approximates closer and closer the true solution manifold of the parametric NLP.

Remark on IP Sensitivities at Active Set Changes: Unfortunately, for small τ , the interior point solution
manifold is strongly nonlinear at points where the active set changes, and the tangential predictor is not a good
approximation when we linearize at such points, as visualized in Fig. 11.1(b). One remedy would be to increase the
path parameter τ , which decreases the nonlinearity, but comes at the expense of generally less accurate solutions.
This is illustrated in Figs. 11.2(a) and 11.2(b) for the same two linearization points as before. In Fig. 11.2(b) we
see that the tangent is approximating the IP solution manifold well in a larger area around the linearization point,
but that the IP solution itself is more distant to the true NLP solution. Thus, the tangential predictor is of limited
use across active set changes.

xopt

xnull

(a) Linearizing at approximate solution

xopt

xnull

(b) Linearizing at active set change

Figure 11.1: Tangential predictors for interior point method using a small τ .

xopt

xnull

(a) Linearizing at approximate solution

xopt

xnull

(b) Linearizing at active set change

Figure 11.2: Tangential predictors for interior point method using a larger τ .
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The Continuation/GMRES Method of Ohtsuka [Oht04]: The Continuation/GMRES method performs one
predictor-corrector Newton type iteration in each sampling time, and is based on a sequential formulation. It is
based on an IP treatment of the inequalities with fixed path parameter τ > 0 it uses an exact Hessian, andmit uses
the iterative GMRES method for linear system solution in each Newton step. Most important, it makes use of the
tangential predictor described in Eq. (11.7). This features seems to allow it to follow the nonlinear IP solution
manifold well – which is strongly curved at active set changes. For a visualization, see Fig. 11.3(a). In each
sampling time, only one linear system is built and solved by the GMRES method, leading to a predictor-corrector
pathfollowing method. The closed-loop stability of the method is in principle covered by the stability analysis
for the real-time iterations without shift given in [DFA07]. A variant of the method is given in [SOD09], which
uses a simultanous approach and condensing and leads to improved accuracy and lower computational cost in each
Newton type iteration.

xopt

xnull

1

2

3

(a) Ohtsuka’s C/GMRES method

xopt

xnull

1

2

3

(b) Advanced Step Controller

Figure 11.3: Subsequent solution approximations.

Advanced Step Controller by Zavala and Biegler [ZB09]: In order to avoid the convergence issues of
predictor-corrector pathfollowing methods, in the “advanced step controller” of Zavala and Biegler a more con-
servative choice is made: in each sampling time, a complete Newton type IP procedure is iterated to convergence
(with τ → 0). In this respect, it is just like offline optimal control – IP, simultaneous, full derivatives with exact
Hessian, structure exploiting linear algebra. However, two features qualify it as an online algorithm: first, it takes
computational delay into account by solving an “advanced” problem with the expected state x̄0 as initial value –
similar as in the real-time iterations with shift – and (b), it applies the obtained solution not directly, but computes
first the tangential predictor which is correcting for the differences between expected state x̄0 and the actual state
x̄′0, as described in Eq. (11.7) with R(W, x̄0) = 0. Note that in contrast to the other online algorithms, several
Newton iterations are performed in part (a) of each sampling time, the “preparation phase”. The tangential predic-
tor (b) is computed in the “feedback phase” by only one linear system solve based on the last Newton iteration’s
matrix factorization. As in the C/GMRES method, the IP predictor cannot “jump over” active set changes as easily
as the SQP based predictor of the real-time iteration. Roughly speaking, the advanced step controller gives lower
priority to sudden active set changes than to system nonlinearity. As the advanced step controller solves each
expected problem exactly, classical NMPC stability theory [MRRS00] can relatively easily be extended to this
scheme [ZB09].

11.4 SQP Pathfollowing Methods
In fact, if inequalities are present, the true NLP solution is not determined by a smooth root finding prob-
lem (11.8a)–(11.8c), but by the KKT conditions (11.2a)–(11.2c). It is a well-known fact from parametric op-
timization, cf. [GVJ90], that the solution manifold has smooth parts when the active set does not change (and
bifurcations are excluded), but that non-differentiable points occur whenever the active set changes. Is there any-
thing we can do in order to “jump” over these non-smooth points in a way that delivers better predictors than the
IP predictors discussed before?

At points with weakly active constraints, we have to regard directional derivatives of the solution manifold, or
“generalized tangential predictors”. These can be computed by suitable quadratic programs [GVJ90, Thm 3.3.4]
and are visualized in Fig. 11.4(b). The theoretical results can be made a practical algorithm by the procedure
proposed in [Die02]: first, we have to make sure that the parameter x̄0 enters the NLP linearly, via the initial value
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embedding, cf. Eq. (10.1b). Second, we address the problem with an exact Hessian SQP method. Third, we just
take our current solution guess W k for a problem x̄0, and then solve a parametric QP subproblem

pQP(x̄′0,W
k) : minimize

Y
F kQP(Y ) s.t.

{
G(x̄′0, Y

k) +∇G(Y k)T (Y − Y k) = 0
H(Y k) +∇H(Y k)T (Y − Y k) ≤ 0

(11.10)

with objective function

F kQP(Y ) = ∇F (Y k)TY +
1

2
(Y − Y k)T∇2

Y L(Y k, λk, µk)(Y − Y k). (11.11)

for the new parameter value x̄′0, but initialized at W k. It can be shown [Die02, Thm. 3.6] that this “initial value
embedding” procedure delivers exactly the generalized tangential predictor when started at a solution W k =
W ∗(x̄0), as in Fig. 11.4(b). It is important to remark that the predictor becomes approximately tangential when
(a) we do not start on the solution manifold, see Fig. 11.4(a), or (b) we do not use an exact Hessian or Jacobian
matrix. In practical NMPC applications, very often a Gauss-Newton Hessian provides an excellent positive definite
approximation of the Hessian.

Condensing: Let us recall that the states can be eliminated from the above parametric QP, resulting in a smaller,
condensed quadratic program of the form

pQPcond(x̄′0,W
k) : minimize

u
fcondQP,k(x̄′0, u) (11.12a)

subject to r̄k + R̄x0

k x̄0 + R̄uku ≤ 0. (11.12b)

If the dimension of the vector u = (uT0 , u
T
1 , . . . , u

T
N−1)T is not too large, this QP can be solved fast using dense

general purpose QP solvers. The importance of the condensed QP in the real-time optimization context is that it
can very quickly be solved but still contains the explicit dependence on the parameter x̄0 as well as the controls,
in particular the first one, u0, which we need for the next MPC feedback.

xopt

xnull

(a) Linearizing at approximate solution

xopt

xnull

(b) Linearizing at active set change

Figure 11.4: Generalized tangential predictors for SQP method.

The Real-Time Iteration Scheme [DBS+02]: Based on the above ideas, the real-time iteration scheme pre-
sented in [Die02, DBS+02] performs one SQP type iteration with Gauss-Newton Hessian per sampling time.
However, it employs a simultaneous NLP parameterization, Bock’s direct multiple shooting method, with full
derivatives and condensing. Moreover, it uses the generalized tangential predictor of the “initial value embedding”
to correct for the mismatch between the expected state x̄0 and the actual state x̄′0. In contrast to the C/GMRES
method by Ohtsuka, where the predictor is based on one linear system solve from Eq. (11.7), here an inequality
constrained QP is solved. The computations in each iteration are divided into a long “preparation phase” (a), in
which the system linearization and condensing are performed, and a much shorter “feedback phase” (b), see the
visualization in Fig. 11.5. The feedback phase solves just one condensed QP (11.12a)–(11.12b). Depending on the
application, the feedback phase can be several orders of magnitude shorter than the feedback phase. The iterates
of the scheme are visualized in Fig. 11.6(a). The same iterates are obtained with a variant of the scheme that uses
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Schlöder’s trick for reducing the costs of the preparation phase in the case of large state dimensions [SKD+07].
Note that only one system linearization and one QP solution are performed in each sampling time, and that the QP
corresponds to a linear MPC feedback along a time varying trajectory. In contrast to IP formulations, the real-time
iteration scheme gives priority to active set changes and works well when the active set changes faster than the
linearized system matrices. In the limiting case of a linear system model it gives the same feedback as linear
MPC. Error bounds and closed loop stability of the scheme have been established for shrinking horizon problems
in [DBS05] and for NMPC with shifted and non-shifted initializations in [DFA+05] and [DFA07].

- time

preparation

feedback

u

tk−1

preparation

feedback

ux0(tk)

u0 (x0(tk))

tk

u

tk+1

u

Figure 11.5: Division of one real-time iteration into preparation and feedback phase.
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(a) Real-Time Iteration scheme
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(b) Critical regions of a parametric NLP

Figure 11.6: Subsequent solution approximations (left), and critical regions (right).

Adjoint-Based Multi-Level Real-Time Iterations [BDKS07]: A variant of real-time iterations was presented
in [BDKS07], where even cheaper calculations are performed in each sampling time than one Newton or Gauss-
Newton step usually requires. Within the Adjoint-Based Multi-Level Real-Time Iterations, at the lowest level (A),
only one condensed QP (11.12a)–(11.12b) is solved, for the most current initial value x̄0. This provides a form of
linear MPC at the base level, taking at least active set changes into account with a very high sampling frequency.
On the next two intermediate levels, that are performed less often than every sampling time, only the nonlinear
constraint residuals are evaluated (B), allowing for feasibility improvement, cf. also [BM00], or the Lagrange
gradient is evaluated (C), allowing for optimality improvement. This level C is based on the following QP with
inexact matrices

minimize
Y

F kadjQP(Y ) s.t.
{
G(x̄′0, Y

k) +BTk (Y − Y k) = 0
H(Y k) + CTk (Y − Y k) ≤ 0.

(11.13)

with the QP objective

F kadjQP(Y ) = Y T
(
∇Y L(Y k, λk, µk)−Bkλk − Ckµk

)︸ ︷︷ ︸
”modified gradient”

+
1

2
(Y − Y k)TAk(Y − Y k). (11.14)
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A crucial ingredient of this level is the fact that the Lagrange gradient can be evaluated efficiently by the reverse
mode of automatic differentiation. Note that in all three levels A, B, and C mentioned so far, no new QP matrices
are computed and that even system factorizations can be reused again and again. Level C iterations are still
considerably cheaper than one full SQP iteration [Wir06], but also for them optimality and NMPC closed-loop
stability can be guaranteed by the results in [DFA07] – as long as the system matrices are accurate enough to
guarantee Newton type contraction. Only when this is not the case anymore, an iteration on the highest level, D,
has to be performed, which includes a full system linearization and is as costly as a usual Newton type iteration.

11.5 Critical Regions and Online Active Set Strategies
It is interesting to have a look at the parameter space x̄0 visualized in Fig.11.6(b). The picture shows the “critical
regions” on each of which the active set in the solution is stable. It also shows three consecutive problems on a
line that correspond to the scenario used in Figures 11.3(a), 11.6(a), and 11.3(b). Between problem 1 and 2 there
is one active set change, while problems 2 and 3 have the same active set, i.e., are in the same critical region. The
C/GMRES method and Advanced Step Controller exploit the smoothness on each critical region in order to obtain
the conventional Newton predictor that, however, looses validity when a region boundary is crossed. The real-time
iteration basically “linearizes” the critical regions which then become polytopic, by using the more accurate, but
also more expensive QP predictor.

As the QP cost can become non-negligible for fast MPC applications, a so-called online active set strategy was
proposed in [FBD08]. This strategy goes on a straight line in the space of linearized regions from the old to the
new QP problem. As long as one stays within one critical region, the QP solution depends affinely on x̄0 – exactly
as the conventional Newton predictor. Only if the homotopy crosses boundaries of critical regions, the active set is
updated accordingly. The online active set strategy is available in the open-source QP package qpOASES [Fer11],
and is particularly suitable in combination with real-time iterations of level A, B, and C, where the QP matrices do
not change, see [WFBD07].
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Chapter 12

Moving Horizon Estimation

In order to predict and optimize the future behaviour of a dynamic system, one needs to know the state and possibly
some unknown parameters of the system. Aim of this chapter is to present methods that estimate the current state
and system parameters from a series of measurements in the past. It turns out that many estimation formulations
naturally lead to optimization problems that have nearly the same structure as the optimal control problems treated
earlier in this course. One powerful method for online state and parameter estimation uses the measurements on
a moving time window in the past, and is called moving horizon estimation. It is the main topic of this chapter,
and a technology often combined with nonlinear model predictive control (NMPC), with which its optimization
problems share many characteristics.

12.1 State and Parameter Estimation Problem Formulation

Throughout this chapter we regard a dynamic system of the following form

xk+1 = fk(xk, wk), (12.1a)
yk = gk(xk, wk) + vk, k = 0, . . . , N − 1. (12.1b)

Here, fk describes the time varying system dynamics, gk models the measurement process, xk are the unknown
system states, and wk are unknown disturbances. The measurement noise is also unknown and given by vk, while
the only quantities that we know are the measurements yk. We assume that we have some important other piece of
information, namely some knowledge - or an educated guess - on the probability density functions (PDF) for the
noises vk and disturbances wk for k = 0, . . . , N − 1, as well as for the initial state x0.

For ease of notation, we sloppily denote by P (x) the PDF of a random variable X at the point x, i.e. we have
P (x) ≥ 0,

∫
P (x)dx = 1, and the expectation of variable X is computed as E{X} =

∫
xP (x)dx. Without loss

of generality, we assume the following form of PDFs:

P (vk) = exp(−Φk(vk)) · const, k = 0, . . . , N − 1, (12.2a)
P (wk) = exp(−βk(wk)) · const, k = 0, . . . , N − 1, and (12.2b)
P (x0) = exp(−α0(x0)) · const, (12.2c)

where the constants are just for normalization and will later not be of further interest. Note that any PDF can be
brought into this form by taking the negative logarithm, and that a zero value of the PDF corresponds to a value
+∞ for the negative logarithm.

Remark: Note that if (x0, w0, w1, . . . , wN−1) would be known, they would uniquely determine all states
(x1, . . . , xN ). The reason why we like to give a-priori PDFs for all variables (x0, w0, w1, . . . , wN−1) is that
this helps us to ensure that a unique optimal solution exists for the resulting estimation problems, independent of
the observability properties of the system. If additional a-priori information would be known, e.g. for some of the
states (x1, . . . , xN ), it could be added easily to the estimation problem formulations that follow.

83
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12.1.1 Generality of the Considered Dynamic System Class
Though the dynamic system setting in Eqs. (12.1) is a rather compact formulation, it comprises many estimation
settings of practical interest. We discuss a few of them.

Systems with known inputs

If we would have a system described by xk+1 = f̃(xk, uk, wk) with known inputs uk, we can bring it into the
form (12.1) by defining

fk(xk, wk) := f̃(xk, uk, wk),

i.e. the dependence of the system on the known controls makes the system time variant.

Systems with measured inputs

How could we deal with a system described by xk+1 = f̃(xk, uk, w̃k) with inputs uk that we do not know exactly,
but for which we have measurements ũk? If the measurement noise on the input measurements is denoted by ṽk,
we define a disturbance vector wk = (w̃k, ṽk) and bring the system into the form (12.1) by setting

fk(xk, wk) := f̃(xk, ũk + ṽk, w̃k).

Systems with unknown parameters

Very often we do not only want to know the system states but also some parameters that are unknown, but constant
in time. If the original system state would be given by x̃k and the original dynamics by x̃k+1 = f̃(x̃k, p), we
can proceed as follows to bring the system into the form (12.1). First, we introduce an individual parameter value
pk for each time interval. Second, we define the augmented system state xk = (x̃k, pk). Third, we define the
augmented dynamical system (12.1) as

fk(xk, wk) :=

[
f̃(x̃k, pk)

pk

]
,

such that the second part of the system dynamics equation, pk+1 = pk, ensures that the “parameter state” pk
remains constant over time.

12.2 The Trajectory Estimation Problem
A first question one might want to answer is the following: given the measurements y = (y0, . . . , yN−1), what are
the most probable state and disturbance trajectories x = (x0, . . . , xN ) and w = (w0, . . . , wN−1)? We decide to
work in a Bayesian estimation framework, and our aim is to find the maximum a-posteriori (MAP) estimate that
maximizes the conditional PDF P (x,w|y) of the trajectory, given the measurements. Using Bayes’ formula, this
PDF is given by

P (x,w|y) =
P (x,w, y)

P (y)
(12.3a)

=
P (y|x,w) · P (x,w)

P (y)
(12.3b)

= P (y|x,w) · P (x,w) · const. (12.3c)

Instead of maximizing the conditional PDF, one can equivalently minimize the negative logarithm of the PDF.
Thus, the MAP estimate is given by

arg min
x,w
− logP (x,w)− logP (y|x,w).

Fortunately, we can find explicit expressions for both terms. First, we note that

P (x,w) = P (x0, . . . , xN , w0, . . . , wN−1)

=

{
0, if not xk+1 = fk(xk, wk) for all k = 0, . . . , N − 1,
P (x0)P (w0) · · ·P (wN−1), else.
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This means that

− logP (x,w) =

{
∞, if not xk+1 = fk(xk, wk) for all k = 0, . . . , N − 1,

α0(x0) +
∑N−1
k=0 βk(wk) + const, else.

For the other term, we use the fact that the conditional probability P (yk|x,w) to obtain a measurement yk only
depends on the state xk and disturbance wk at the same time time point. Because of yk = gk(xk, wk) + vk, it is
given by P (yk|xk, wk) = P (vk), with vk = yk − gk(xk, wk). Thus, the following identities hold:

P (y|x,w) = P (y0, . . . , yN−1|x0, . . . , xN , w0, . . . , wN−1)

=

N−1∏
k=0

P (yk|xk, wk)

=

N−1∏
k=0

P (vk), with vk = yk − gk(xk, wk) for k = 0, . . . , N − 1,

=

N−1∏
k=0

exp (−Φk(yk − gk(xk, wk))) · const.

Therefore, we obtain the compact expression

− logP (y|x,w) =

N−1∑
k=0

Φk(yk − gk(xk, wk)).

Taking both expressions together, we obtain the MAP estimate as solution of the following minimization problem,
where we exclude the infinite objective values by the corresponding constraints:

minimize
x,w

α0(x0) +

N−1∑
k=0

[Φk(yk − gk(xk, wk)) + βk(wk)] (12.4a)

subject to xk+1 − fk(xk, wk) = 0, for k = 0, . . . , N−1. (12.4b)

We will often call the term α0(x0) the “arrival cost”, as it measures the “cost” for arriving at x0. For notational
convenience, we also define the shorthand

ϕk(xk, wk) := Φk(yk − gk(xk, wk)) + βk(wk)

and call this term, as in the previous chapters, the “stage cost”. Note that the optimization problem (12.4) is of
exactly the same form as the optimal control problems discussed previously in this lecture.

12.2.1 Examples for the stage and arrival costs
Very often the cost terms α0(x0), βk(wk) and Φk(vk) are chosen as quadratic penalties. For notational convenience
we define ‖x‖2P := x>Px for positive definite matrices P � 0. Note that quadratic penalties correspond to
weighted `2-norms, as ‖x‖2P = ‖P 1

2x‖22, where P
1
2 is the unique symmetric matrix square root such that P

1
2 ·

P
1
2 = P . A typical choice for the arrival cost is α0(x0) = ‖x0− x̄0‖2P , where x̄0 is an a-priori guess for the initial

state, and P an inverse covariance matrix expressing the confidence we have for this guess. For the disturbances, a
penalty βk(wk) = ‖wk‖2R expresses how unlikely we expect them to be. For the measurement errors, the quadratic
penalty Φk(vk) = ‖vk‖2Q is often used, whereQ−1 is the covariance matrix we expect for the measurement errors.

Instead of quadratic penalties, that correspond to the assumption of Gaussian distributions, other choices are
possible as well. Mostly, one uses convex functions, because of their beneficial properties for optimization. Two
other popular convex penalty functions are the (possibly weighted) `1-norm ‖v‖1 =

∑nv

i=1 |vi|, which corresponds
to a Laplace distribution, and the Huber penalty, that is for a scalar input v ∈ R defined as

ΦHuber,σ(v) =

{
v2 if |v| < σ,
2σ|v| − σ2 else.

The Huber penalty corresponds to a distribution that looks like a Gaussian in the neighborhood of zero, but which
has “fatter tails” than a Gaussian. These fat tails can express our expectation that outliers might appear, i.e.
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that we expect that large residuals have a higher probability than a normal distribution would suggest. From the
penalty function perspective, both the `1- and the Huber-penalty have the property that they penalize large error
residuals less than a quadratic penalty would do. Thus, using `1- or Huber-penalties for the measurement error
functions Φk(vk) allows one to design estimators that are more robust against outliers than the usual `2-norm based
estimators.

Remark on parameter jumps: An interesting other application of the `1-norm arises in the case when we want
to detect jumps in some parameter p, but we expect these jumps to occur only rarely. In addition to the usual
system dynamics and measurement equation, one can then model the parameter dynamics by pk+1 = pk + wk
and penalize the parameter jumps with an `1-norm, i.e. choose βk(wk) := ‖wk‖1. This discourages changes in
pk, and nonzero values for wk, i.e. changes in pk, will only occur in the optimal solution if there is a significant
benefit in terms of the other optimization objective terms.

12.3 Dynamic Programming for the Trajectory Estimation Problem
Because the trajectory estimation problem is an optimal control problem, it can also be solved by dynamic pro-
gramming. In this context, it is interesting to observe that dynamic programming can in principle be performed in
forward as well as in backwards direction. In estimation problems, in contrast to standard optimal control prob-
lems, one usually chooses to go in forward direction. The reason is that dynamic programming then allows us to
“forget the past” and to just summarize the contribution of the past in one function, which we call the “arrival cost”.
The arrival cost is the equivalent to the “cost-to-go” in the usual backwards dynamic programming recursion. We
define the arrival cost αn(xn) for any n ≤ N as the cost to arrive after n steps at state xn:

αn(xn) := min
x0,w0,...,xn−1,wn−1

α0(x0)+

n−1∑
k=0

ϕk(xk, wk) s.t. xk+1 =fk(xk, wk), for k = 0, . . . , n−1. (12.5)

Note that xn is not a variable, but a fixed parameter for the optimization problem. By the dynamic programming
principle, one can compute the arrival cost recursively, using the fact that the only connection between time n and
n+ 1 is via the state xn+1. The dynamic programming recursion proceeds as follows, for n = 0, . . . , N − 1:

αn+1(xn+1) = min
xn,wn

αn(xn) + ϕn(xn, wn) s.t. xn+1 =fn(xn, wn). (12.6)

Again, note that xn+1 is a fixed parameter to the optimization problem. To use dynamic programming to solve the
trajectory estimation problem, one proceeds as follows:

1. Start with the given arrival cost α0(·).

2. Compute α1(·) up to αN (·), using the dynamic programming recursion (12.6)

3. Compute x∗N = arg min
xN

αN (xN ).

4. For n = N−1, . . . , 0, compute (x∗n, w
∗
n) = arg min

xn,wn

αn(xn) + ϕn(xn, wn) s.t. x∗n+1 =fn(xn, wn).

Note that very often one is only interested in the estimate for the last state, x∗N , which is already obtained after Step
3. Thus, Step 4 is optional, and only needed if one wants to know an estimate of the complete trajectory. However,
if one is really only interested in the last state xN , why should one first try to maximize the MAP P (x,w|y) of the
complete trajectory? In this case, one should rather maximize directly the PDF P (xN |y) of the last state, as we
will do in Section 12.5. It will later turn out that both estimation formulations, the trajectory estimation and the
direct estimation of the last state, lead to the same results for linear quadratic estimation problems.

12.4 Linear Quadratic Trajectory Estimation
Let us specialize the trajectory estimation problem to the special case of linear dynamic systems with quadratic
costs, i.e. with underlying Gaussian PDFs for disturbances and measurement errors. In this case we deal with the
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following quantities.

fk(xk, wk) = Akxk + bk + wk, (12.7a)
gk(xk, wk) = Ckxk, (12.7b)

βk(wk) =
1

2
‖wk‖2R, (12.7c)

Φk(vk) =
1

2
‖vk‖2Q, for k = 0, . . . , N − 1, and (12.7d)

α0(x0) =
1

2
‖x0 − x̄0‖2P0

. (12.7e)

Note that we have chosen a formulation for the system dynamics in which the disturbances affect every state
directly. This will allow us to simplify some later expressions. The optimal control problem resulting from this
linear quadratic estimation setup is the following.

minimize
x,w

1

2
‖x0 − x̄0‖2P0

+

N−1∑
k=0

[
1

2
‖yk − Ckxk‖2Q +

1

2
‖wk‖2R

]
(12.8a)

subject to xk+1 −Akxk − bk − wk = 0, for k = 0, . . . , N−1. (12.8b)

One can easily eliminate all wk using the equality constraints, and then one obtains the following unconstrained
quadratic optimization problem.

minimize
x

1

2
‖x0 − x̄0‖2P0

+

N−1∑
k=0

[
1

2
‖yk − Ckxk‖2Q +

1

2
‖xk+1 −Akxk − bk‖2R

]
(12.9a)

To solve it, one might just differentiate the objective function with respect to x and set the gradient to zero, which
results in a sparse linear equation system for the optimal state trajectory x∗. On the other hand, one could also use
dynamic programming to solve it. To formulate the dynamic programming recursion, we first state a useful lemma
and corollary.

Lemma 2 (Schur Complement Lemma) If R � 0, the following identity holds[
x
u

]> [
Q S>

S R

] [
x
u

]
= x>(Q− S>R−1S) x + ‖R−1Sx+ u‖2R. (12.10)

In particular,

min
u

[
x
u

]> [
Q S>

S R

] [
x
u

]
= x>(Q− S>R−1S) x.

If in addition
[
Q S>

S R

]
� 0, then also Q− S>R−1S � 0.

The proof of the lemma uses the matrix decomposition[
Q S>

S R

]
=

[
Q− S>R−1S 0

0 0

]
+

[
S>R−1S S>

S R

]
and the fact that the second term can be expressed as[

x
u

]> [
S>R−1S S>

S R

] [
x
u

]
= x>S>R−1Sx+ 2u>Sx+ u>Ru = ‖R−1Sx+ u‖2R.

From this we also obtain the following corollary.

Corollary 3 (Summarizing Linear Quadratic Costs) If R � 0 then 1
x
u

> c q> s>

q Q S>

s S R

 1
x
u

 = c− s>R−1s+ 2x>(q−S>R−1s) +x>(Q−S>R−1S)x+‖R−1(s+Sx) +u‖2R.
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The proof of the corollary uses the previous lemma with S̃ = [s|S], Q̃ =

[
c q>

q Q

]
and x̃ =

[
1
x

]
, and the fact

that

Q̃− S̃>R−1S̃ =

[
c q>

q Q

]
−
[
s>R−1s s>R−1S
S>R−1s S>R−1S

]
.

To formulate the dynamic programming recursion, we assume that αk(xk) = 1
2‖xk − x̄k‖

2
Pk

and eliminate wk,
which results in the following formula.

αk+1(xk+1) = min
xk

1

2
‖xk − x̄k‖2Pk

+
1

2
‖yk − Ckxk‖2Q +

1

2
‖xk+1 −Akxk − bk‖2R (12.11)

Using the above corollary, we know that the solution is a quadratic function. We use the identity

‖xk − x̄k‖2Pk
+ ‖yk − Ckxk‖2Q + ‖xk+1 −Akxk − bk‖2R

= const +

 1
xk+1

xk

>  const (−Rbk)> (Pkx̄k − C>k Qyk +A>k Rbk)>

(−Rbk) R (−A>k R)>

(Pkx̄k − C>k Qyk +A>k Rbk) (−A>k R) (Pk + C>k QCk +A>k RAk)

 1
xk+1

xk


Based on the corollary, with ũ = xk, R̃ := Pk +C>k QCk +A>k RAk and s̃ := (Pkx̄k −C>k Qyk +A>k Rbk) , the
quadratic function is explicitly given by

αk+1(xk+1) = const +
1

2
x>k+1

(
R− (A>k R)>R̃−1A>k R

)
xk+1 + x>k+1

(
−Rbk + (A>k R)>R̃−1s̃

)
.

We define the matrix Pk+1 :=
(
R− (A>k R)>R̃−1A>k R

)
, which is positive definite due to the fact that the original

quadratic function was positive definite in (xk, xk+1). To bring αk+1(xk+1) into a more compact form, we define
x̄k+1 = −P−1

k+1

(
−Rbk + (A>k R)>R̃−1s̃

)
. We can then show that

αk+1(xk+1) =
1

2
‖xk+1−x̄k+1

‖2Pk+1
+ const

as an immediate consequence of the following basic lemma.

Lemma 3 If P � 0 and x̄ = −P−1g then 1
2x
>Px+ g>x = ‖x− x̄‖2P + const.

Disregarding the constants, we have described an algorithm to generate the data Pk+1 and x̄k+1 that are necessary
to represent the negative logarithm of the PDF P (xn|y), i.e. αk+1(xk+1). The only inputs to the algorithm are the
data describing the negative logarithm of the PDF of the prior information, Pk and x̄k, as well as the measurement
yk.

12.5 Recursive Bayesian Estimation of the Last State

Very often, one is only interested in estimating the last state xN , not in the whole trajectory. For this aim, a
technique that is very similar to dynamic programming can be used that is called Recursive Bayesian Estimation.
The idea is to recursively compute the conditional PDF of the state xn+1 given all measurements y0, . . . , yn. We
note that the only memory of the system is the state xn, and that the latest measurement yn helps us to learn more
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about the PDF of xn. For these reasons, one can derive the following identity.

P (xn+1|y0, . . . , yn) =

∫
P (xn+1|xn)P (xn|y0, . . . , yn) dxn (12.12a)

=

∫
P (xn+1|xn, wn)P (xn, wn|y0, . . . , yn) dxndwn (12.12b)

=

∫
fn(xn,wn)=xn+1

P (xn, wn|y0, . . . , yn) dxndwn (12.12c)

=

∫
fn(xn,wn)=xn+1

P (xn, wn|y0, . . . , yn−1)P (yn|xn, wn)

P (yn|y0, . . . , yn−1)
dxndwn (12.12d)

= const ·
∫
fn(xn,wn)=xn+1

P (xn, wn|y0, . . . , yn−1)P (yn|xn, wn) dxndwn (12.12e)

= const ·
∫
fn(xn,wn)=xn+1

P (wn)P (xn|y0, . . . , yn−1)P (yn|xn, wn) dxndwn (12.12f)

= const ·
∫
fn(xn,wn)=xn+1

e−βn(wn)P (xn|y0, . . . , yn−1)e−Φ(yn−gn(xn,wn)) dxndwn (12.12g)

The result is a recursive formula to compute P (xn+1|y0, . . . , yn) from the last measurement yn and from
P (xn|y0, . . . , yn−1). There are many ways to represent the probability density P (xn|y0, . . . , yn−1). One way
would be to use a fine grid in state space which creates many rectangular volumes, each of which represents a con-
stant probability density. Another way would be to use “Gaussian-Mixtures”, i.e. to represent P (xn|y0, . . . , yn−1)
by a sum of Gaussian PDFs. Yet another way would be to sample the PDFs of xn and wn by using “particles”
each possibly with some weight, and then propagate the particles through the system dynamics and to modify their
weights according to the factor e−Φ(yn−gn(xn,wn)) that depends on how compatible each particle is to the actual
measurement. Particle resampling allows one to let very unprobable particles “die” and save computation speed.

The problem of all approaches mentioned above is that they suffer, like dynamic programming, from the “curse
of dimensionality”, i.e. they are difficult to apply for state spaces of nontrivial dimensions (not higher than e.g.
nx = 6). For this reason, very often one chooses to approximate the conditional PDF with a single Gaussian, and
to use some form of linearization to propagate the PDF through the system dynamics. This approach leads to the
Extended Kalman Filter (EKF), that is a generalization of the Kalman Filter equations to nonlinear systems. An
approach that is very closely related to the EKF, but which uses a very specific form of sampling instead of the
system linearization, is called the Unscented Kalman Filter (UKF).

12.6 Estimation of Last State for Linear Systems with Gaussian Noises

One interesting special case is, again, the linear system with Gaussian measurement and state noises. We regard the
same setup as before in Eqs. (12.7), but instead of solving the trajectory estimation problem given all measurements
y, which was equivalent to the QP (12.8), we now want to propagate the PDFs P (xn|y0, . . . , yn−1) for the current
state given only the previous measurements. For this we use the Bayesian estimation framework (12.12), and apply
it to the special case where we start with a Gaussian distribution, i.e. we assume that

P (xn|y0, . . . , yn−1) = const · exp

(
−1

2
‖xn − x̄n‖2Pn

)
where the two data items x̄n and Pn describe the Gaussian PDF completely, up to a constant. We deliberately use
the same names for these two quantities like before in the dynamic programming solution of the linear quadratic
trajectory estimation problem, because they will turn out to obey the same propagation rule, i.e. they are identical.
The recursion formula

P (xn+1|y0, . . . , yn) = const ·
∫
fn(xn,wn)=xn+1

P (wn)P (xn|y0, . . . , yn−1)P (yn|xn, wn) dxndwn
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becomes in this special case the following expression:

P (xn+1|y0, . . . , yn) = const ·
∫
Anxn+bn+wn=xn+1

e−
1
2‖wn‖2Re−

1
2‖xn−x̄n‖2Pn e−

1
2‖yn−Cxn‖2Q dxndwn (12.13a)

= const ·
∫
e−

1
2‖Anxn+bn−xn+1‖2Re−

1
2‖xn−x̄n‖2Pn e−

1
2‖yn−Cxn‖2Q dxn (12.13b)

= const ·
∫
e−

1
2 (‖Anxn+bn−xn+1‖2R+‖xn−x̄n‖2Pn

+‖yn−Cxn‖2Q) dxn (12.13c)

The exponent in the last line is the same expression as we had before in Eq. (12.11), and can therefore, following
Corollary 3, be written as

‖Anxn+bn − xn+1‖2R + ‖xn − x̄n‖2Pn
+ ‖yn −Cxn‖2Q = const + ‖xn+1 − x̄n+1‖2Pn+1

+ ‖m+Mxn+1 + xn‖2R̃

using the same definitions of Pn+1 and x̄n+1 and R̃ as before, and wherem andM are a constant vector and matrix
of suitable dimensions that we could, but do not want to write down in detail here, as their values are not relevant.
Using this identity and the fact that a sum of exponentials translates into a product, we can further simplify the
integral above to obtain the following expressions.

P (xn+1|y0, . . . , yn) = const · e−
1
2‖xn+1−x̄n+1‖2Pn+1

∫
e−

1
2‖m+Mxn+1+xn‖2R̃ dxn︸ ︷︷ ︸

=const

(12.14a)

= const · e−
1
2‖xn+1−x̄n+1‖2Pn+1 . (12.14b)

Here, we have used the fact that the integral is constant because it is the integral over a Gaussian distribution with
variable mean value but constant covariance matrix. The value of such an integral is indeed independent of the
location of the mean, and therefore independent of xn+1. This simple fact is the reason why the recursive Bayesian
estimation of the last state gives exactly the same result – up to a constant – as the arrival-cost computation via
dynamic programming. We remark that this identity is only true for linear systems with Gaussian measurement
noise and state disturbances. An interesting subject for future research is to investigate the general nonlinear or
non-Gaussian case and to compare the PDF that is implied by the dynamic programming computation of the arrival
cost with the PDF resulting from the recursive Bayesian estimation of the last state.

12.7 The Kalman Filter and the Extended Kalman Filter Equations
Let us summarize again, from a user perspective, the recursive algorithm to compute the arrival cost – or, equiv-
alently, the negative logarithm of the conditional PDF – for linear systems with Gaussian noises. This algorithm
was first derived by Rudolf E. Kalman and is therefore called the Kalman filter.

Input data: An initial mean x̄n and inverse covariance Pn, a measurement yn with inverse measurement noise
covariance Q of noise vk and matrix Cn in the measurement model yn = Cnxn + vn, the matrix An and drift
term bn in the propagation model xn+1 = Anxn + bn + wn, and an inverse covariance R of the state noise wk.
We note that we might have chosen Q and R to depend on n without changing the algorithm. The following set of
real valued vectors and matrices forms thus the input of the algorithm:

(x̄n, Pn, Q,Cn, An, bn, R).

Computational steps: Compute the intermediate quantities

R̃ := Pn + C>n QCn +A>nRAn and s̃ := (Pnx̄n − C>n Qyn +A>nRbn),

as well as the result

Pn+1 :=
(
R− (A>nR)>R̃−1A>nR

)
and x̄n+1 = −P−1

n+1

(
−Rbn + (A>nR)>R̃−1s̃

)
.
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Output data: A mean x̄n+1 and inverse covariance Pn+1 that represent the conditional PDF
P (xn+1|y0, . . . , yn), or, alternatively, the arrival-cost αn+1(xn+1).

The Extended Kalman Filter
The Extended Kalman Filter (EKF) applies the same algorithm to nonlinear systems of the form

xn+1 = f(xn) + wn and y′n = g(xn) + vn

by linearizing the nonlinear functions f and g at the currently most probable value, namely at x̄n. This means that
we use the following linear models:

xn+1 = f(x̄n) +
∂f

∂x
(x̄n)(xn − x̄n) + wn

and
y′n = g(x̄n) +

∂g

∂x
(x̄n)(xn − x̄n) + vn.

To bring the data into exactly the same format as the above Kalman filter equations require, we define the corre-
sponding Kalman filter input data as follows:

An :=
∂f

∂x
(x̄n) and bn := f(x̄n)−Anx̄n

as well as
Cn :=

∂g

∂x
(x̄n) and yn := y′n − g(x̄n) + Cnx̄n.

After the Kalman filter computations, the new mean value x̄n+1 is obtained, and can be used as the linearization
point for the next step of the EKF.
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Wärmespeicherung. PhD thesis, Technische Universität Ilmenau, Germany, 1998.

[GMS97] P.E. Gill, W. Murray, and M.A. Saunders. SNOPT: An SQP algorithm for large-scale constrained
optimization. Technical report, Numerical Analysis Report 97-2, Department of Mathematics, Uni-
versity of California, San Diego, La Jolla, CA, 1997.

[GT82] A. Griewank and Ph.L. Toint. Partitioned variable metric updates for large structured optimization
problems. Numerische Mathematik, 39:119–137, 1982.

[GVJ90] J. Guddat, F. Guerra Vasquez, and H.T. Jongen. Parametric Optimization: Singularities, Pathfollow-
ing and Jumps. Teubner, Stuttgart, 1990.

[GW08] A. Griewank and A. Walther. Evaluating Derivatives. SIAM, 2 edition, 2008.

[HAM98] A. Helbig, O. Abel, and W. Marquardt. Model Predictive Control for On-line Optimization of Semi-
batch Reactors. In Proc. Amer. Contr. Conf., pages 1695–1699, Philadelphia, 1998.

[HFD11] B. Houska, H.J. Ferreau, and M. Diehl. ACADO Toolkit – An Open Source Framework for Auto-
matic Control and Dynamic Optimization. Optimal Control Applications and Methods, 32(3):298–
312, 2011.

[HR71] G.A. Hicks and W.H. Ray. Approximation methods for optimal control systems. Can. J. Chem.
Engng., 49:522–528, 1971.

[JM10] C.N. Jones and M. Morari. Polytopic approximation of explicit model predictive controllers. IEEE
Transactions on Automatic Control, 55(11):2542–2553, 2010.

[Kar39] W. Karush. Minima of Functions of Several Variables with Inequalities as Side Conditions. Master’s
thesis, Department of Mathematics, University of Chicago, 1939.
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[KG88] S.S. Keerthi and E.G. Gilbert. Optimal infinite-horizon feedback laws for a general class of con-
strained discrete-time systems: Stability and moving-horizon approximations. Journal of Optimiza-
tion Theory and Applications, 57(2):265–293, 1988.

[KT51] H.W. Kuhn and A.W. Tucker. Nonlinear programming. In J. Neyman, editor, Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, 1951. University
of California Press.

[LB89] W.C. Li and L.T. Biegler. Multistep, Newton-Type Control Strategies for Constrained Nonlinear
Processes. Chem. Eng. Res. Des., 67:562–577, 1989.

[LB90] W.C. Li and L.T. Biegler. Newton-Type Controllers for Constrained Nonlinear Processes with Un-
certainty. Industrial and Engineering Chemistry Research, 29:1647–1657, 1990.

[LBS+03] D.B. Leineweber, I. Bauer, A.A.S. Schäfer, H.G. Bock, and J.P. Schlöder. An Efficient Multiple
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[Sch05] A.A.S. Schäfer. Efficient reduced Newton-type methods for solution of large-scale structured opti-
mization problems with application to biological and chemical processes. PhD thesis, Universität
Heidelberg, 2005.
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