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The goal of this postface is to point out and comment upon recent MPC papers
and issues pertaining to topics covered in the first printing of the monograph by
Rawlings and Mayne (2009). We have tried to group the recent MPC literature by the
relevant chapter in that reference. This compilation is selective and not intended
to be a comprehensive summary of the current MPC research literature, but we
welcome hearing about other papers that the reader feels should be included here.1

Chapter 1. Getting Started with Model Predictive Control

Offset-free control. In Section 1.5.2, Disturbances and Zero Offset, conditions
are given that ensure zero offset in chosen control variables in the presence of
plant/model mismatch under any choices of stabilizing regulator and stable esti-
mator. In particular, choosing the number of integrating disturbances equal to the
number of measurements, nd = p, achieves zero offset independently of estimator
and regulator tuning. A recent contribution by Maeder, Borrelli, and Morari (2009)
tackles the issue of achieving offset free performance when choosing nd < p. As
pointed out by Pannocchia and Rawlings (2003), however, choosing nd < p also
means that the gain of the estimator depends on the regulator tuning. Therefore,
to maintain offset free performance, the estimator tuning must be changed if the
regulator tuning is changed. Maeder et al. (2009) give design procedures for choos-
ing estimator and regulator parameters simultaneously to achieve zero offset in
this situation.

Chapter 2. Model Predictive Control — Regulation

MPC stability results with the KL definition of asymptotic stability. Since Lya-
punov’s foundational work, asymptotic stability traditionally has been defined with
two fundamental conditions: (i) local stability and (ii) attractivity. Control and sys-
tems texts using this classical definition include Khalil (2002, p. 112) and Vidyasagar
(1993, p. 141). The classical definition was used mainly in stating and proving the
stability theorems appearing in the Appendix B corresponding to the first printing
of the text. Recently, however, a stronger definition of asymptotic stability, which
we refer to here as the “KL” definition, has started to become popular. These two
definitions are compared and contrasted in a later section of this postface (see Ap-
pendix B – Stability Theory). We used the KL definition of asymptotic stability to

1rawlings@engr.wisc.edu, d.mayne@imperial.ac.uk
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define state estimator stability in Chapter 4 (see Definition 4.6, for example). We
outline here how to extend the main MPC stability results of Chapter 2 to apply
under this stronger definition of asymptotic stability.2

In many MPC applications using nonlinear models, it is straightforward to obtain
an upper bound on the MPC value function on a small set Xf containing the origin
in its interior. For example, this bound can be established when the linearization of
the system is stabilizable at the origin. But it may be difficult to extend this upper
bound to cover the entire stabilizable set XN . But we require this upper bound to
apply standard Lyapunov stability theory to the MPC controller. Therefore, we next
wish to extend the upper bounding K∞ function α2(·) from the local set Xf to all
of XN , including the case when XN is unbounded. Given the local upper bounding
K∞ function on Xf , the necessary and sufficient condition for function V(·) to have
an upper boundingK∞ function on all ofXN is that V(·) is locally bounded onXN ,
i.e., V(·) is bounded on every compact subset of XN . See Appendix B of this note
for a statement and proof of this result. So we first establish that V0

N(·) is locally
bounded on XN .

Proposition 1 (MPC value function is locally bounded). Suppose Assumptions 2.2
and 2.3 hold. Then V0

N(·) is locally bounded on XN .

Proof. Let X be an arbitrary compact subset of XN . The function VN : Rn ×RNm →
R≥0 is defined and continuous and therefore has an upper bound on the compact
set X × UN . Since UN(x) ⊂ UN for all x ∈ XN , V0

N : XN → R≥0 has the same upper
bound on X. Since X is arbitrary, we have established that V0

N(·) is locally bounded
on XN . �

We next extend Proposition 2.18 by removing the assumption that XN is com-
pact.

Proposition 2 (Extension of upper bound toXN ). Suppose that Assumptions 2.2, 2.3,
2.12, and 2.13 hold and that Xf contains the origin in its interior. If there exists a
K∞ function α(·) such that V0

N(x) ≤ α(|x|) for all x ∈ Xf , then there exists another
K∞ function β(·) such that V0

N(x) ≤ β(|x|) for all x ∈ XN .

Proof. From the definition of XN and Assumptions 2.12 and 2.13, we have that
Xf ⊆ XN . From Proposition 2.11, we have that the set XN is closed, and this
proposition therefore follows directly from Proposition 11 in Appendix B of this
note. �

Remark 3. The extension of Proposition 2.18 to unbounded XN also removes the
need to assume XN is bounded in Proposition 2.19.

Finally, we can establish Theorem 2.22 under the stronger “KL” definition of
asymptotic stability.

Theorem 4 (Asymptotic stability with unbounded region of attraction). Suppose
XN ⊂ Rn and Xf ⊂ XN are positive invariant for the system x+ = f(x), that
Xf ⊂ XN is closed and contains the origin in its interior, and that there exist a
function V : Rn → R≥0 and twoK∞ functions α1(·) and α2(·) such that

V(x) ≥ α1(|x|) ∀x ∈ XN (1)

V(x) ≤ α2(|x|) ∀x ∈ Xf (2)

V(f(x))− V(x) ≤ −α1(|x|) ∀x ∈ XN (3)

2The authors would like to thank Andy Teel of UCSB for helpful discussion of these issues.
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Text Postface Summary of change

Proposition 2.18 Proposition 2 Removes boundedness of XN
Proposition 2.19 Remark 3 Removes boundedness of XN
Theorem 2.22 Theorem 4 Asymptotic stability with stronger KL definition
Definition B.6 Definition 9 Classical to KL definition of asymptotic stability
Theorem B.11 Theorem 12 Lyapunov function and KL definition
Definition B.9 (e) Definition 13 Asymptotic stability with KL definition (constrained)
Theorem B.13 Theorem 14 Lyapunov function and KL definition (constrained)

Table 1: Extensions of MPC stability results in Chapter 2 and Appendix B.

Then the origin is asymptotically stable under Definition 9 with a region of attraction
XN for the system x+ = f(x).

Proof. Proposition 2 extends the local upper bound in (2) to all of XN and Theo-
rem 14 then gives asymptotic stability under Definition 13. Both Theorem 14 and
Definition 13 appear in Appendix B of this note. �

A summary of these extensions to the results of Chapter 2 and Appendix B is
provided in Table 1.

Positive invariance under control law κN(·). Proposition 2.11 correctly states
that the set XN is positive invariant for the closed-loop system x+ = f(x, κN(x)).
The proof follows from (2.11), and is stated in the text as:

That XN is positive invariant for x+ = f(x, κN(x)) follows from (2.11),
which shows that κN(·) steers every x ∈ XN into XN−1 ⊆ XN .

But notice that this same argument establishes that XN−1 is also positive invariant
for the closed-loop system, a fact that does not seem to have been noticed previ-
ously. Since XN−1 ⊆ XN , this statement is a tighter characterization of the positive
invariance property. This tighter characterization is sometimes useful when estab-
lishing robust stability for systems with discontinuous V0

N(·), such as Example 2.8.
Among the feasibility sets, Xj , j = 0,1, . . . ,N, the set XN is the largest positive
invariant set and XN−1 is the smallest positive invariant set for x+ = f(x, κN(x));
none of the other feasibility sets, Xj , j = 0,1, . . . ,N − 2, are necessarily positive
invariant for x+ = f(x, κN(x)) for all systems satisfying the given assumptions. A
modified Proposition 2.11 reads as follows.

Proposition 2.11’ (Existence of solutions to DP recursion). Suppose Assumptions
2.2 and 2.3 hold. Then

(a) For all j ∈ I≥0, the cost function Vj(·) is continuous in Zj , and, for each x ∈ Xj ,
the control constraint set Uj(x) is compact and a solution u0(x) ∈ Uj(x) to Pj(x)
exists.

(b) If X0 := Xf is control invariant for x+ = f(x,u), u ∈ U, then, for each j ∈ I≥0,
the set Xj is also control invariant, Xj ⊇ Xj−1, 0 ∈ Xj , and Xj is closed.

(c) In addition, the sets Xj and Xj−1 are positive invariant for x+ = f(x, κj(x)) for
all j ∈ I≥1.
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Unreachable setpoints, strong duality, and dissipativity. Unreachable setpoints
are discussed in Section 2.9.3. It is known that the optimal MPC value function in
this case is not decreasing and is therefore not a Lyapunov function for the closed-
loop system. A recent paper by Diehl, Amrit, and Rawlings (2011) has shown that
a modified MPC cost function, termed rotated cost, is a Lyapunov function for the
unreachable setpoint case and other more general cost functions required for op-
timizing process economics. A strong duality condition is shown to be a sufficient
condition for asymptotic stability of economic MPC with nonlinear models.

This result is further generalized in the recent paper Angeli, Amrit, and Rawl-
ings (2011). Here a dissipation inequality is shown to be sufficient for asymptotic
stability of economic MPC with nonlinear models. This paper also shows that MPC
is better than optimal periodic control for systems that are not optimally operated
at steady state.

Unbounded input constraint sets. Assumption 2.3 includes the restriction that
the input constraint set U is compact (bounded and closed). This basic assumption
is used to ensure existence of the solution to the optimal control problem through-
out Chapter 2. If one is interested in an MPC theory that handles an unbounded
input constraint set U, then one can proceed as follows. First modify Assumption
2.3 by removing the boundedness assumption on U.

Assumption 5 (Properties of constraint sets – unbounded case). The sets X, Xf ,
and U are closed, Xf ⊆ X; each set contains the origin.

Then, to ensure existence of the solution to the optimal control problem, con-
sider the cost assumption on page 154 in the section on nonpositive definite stage
costs, slightly restated here.

Assumption 6 (Stage cost lower bound). Consider the following two lower bounds
for the stage cost.

(a)

`(y,u) ≥ α1(
∣∣(y,u)∣∣) for all y ∈ Rp, u ∈ Rm

Vf (x) ≤ α2(|x|) for all x ∈ Xf

in which α1(·) is aK∞ function.

(b)

`(y,u) ≥ c1
∣∣(y,u)∣∣a for all y ∈ Rp, u ∈ Rm

Vf (x) ≤ c2 |x|a for all x ∈ Xf

in which c1, c2, a > 0.

Finally, assume that the system is input/output-to-state stable (IOSS). This prop-
erty is given in Definition 2.40 (or Definition B.42). We can then state an MPC sta-
bility theorem that applies to the case of unbounded constraint sets.

Theorem 7 (MPC stability – unbounded constraint sets).

(a) Suppose that Assumptions 2.2, 5, 2.12, 2.13, and 6(a) hold and that the system
x+ = f(x,u),y = h(x) is IOSS. Then the origin is asymptotically stable (under
Definition 9) with a region of attraction XN for the system x+ = f(x, κN(x)).
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(b) Suppose that Assumptions 2.2, 5, 2.12, 2.13, and 6(b) hold and that the system
x+ = f(x,u),y = h(x) is IOSS. Then the origin is exponentially stable with a region
of attraction XN for the system x+ = f(x, κN(x)).

In particular, setting up the MPC theory with these assumptions subsumes the
LQR problem as a special case.

Example 1: The case of the linear quadratic regulator

Consider the linear, time invariant model x+ = Ax + Bu,y = Cx with quadratic
penalties `(y,u) = (1/2)(y ′Qy + u′Ru) for both the finite and infinite horizon
cases. What do the assumptions of Theorem 7(b) imply in this case? Compare these
assumptions to the standard LQR assumptions listed in Exercise 1.20 (b).

Assumption 2.2 is satisfied for f(x,u) = Ax + Bu for all A ∈ Rn×n, B ∈ Rn×m;
we have X = Rn, and U = Rm. Assumption 6(b) implies that Q > 0 and R > 0.
The system being IOSS implies that (A,C) is detectable (see Exercise 4.5). We can
chooseXf to be the stabilizable subspace of (A, B) and Assumption 2.13 is satisfied.
The set XN contains the system controllability information. The set XN is the
stabilizable subspace of (A, B), and we can satisfy Assumption 6(a) by choosing
Vf (x) = x′Πx in which Π is the solution to the steady-state Riccati equation for
the stabilizable modes of (A, B).

In particular, if (A, B) is stabilizable, then Xf = Rn, XN = Rn for all N ∈ I0:∞,
and Vf can be chosen to be Vf (x) = x′Πx in which Π is the solution to the
steady-state Riccati equation (1.19). The horizon N can be finite or infinite with
this choice of Vf (·) and the control law is invariant with respect to the horizon
length, κN(x) = Kx in which K is the steady-state linear quadratic regulator gain
given in (1.19). Theorem 7(b) then gives that the origin of the closed-loop system
x+ = f(x, κN(x)) = (A+ BK)x is globally, exponentially stable.

The standard assumptions for the LQR with stage cost l(y,u) = (1/2)(y ′Qy +
u′Ru) are

Q > 0 R > 0 (A,C) detectable (A, B) stabilizable

and we see that this case is subsumed by Theorem 7(b). �

Chapter 6. Distributed Model Predictive Control

The recent paper (Stewart, Venkat, Rawlings, Wright, and Pannocchia, 2010) pro-
vides a compact treatment of many of the issues and results discussed in Chapter
6. Also, for plants with sparsely coupled input constraints, it provides an extension
that achieves centralized optimality on convergence of the controllers’ iterations.

Suboptimal MPC and inherent robustness. The recent paper (Pannocchia, Rawl-
ings, and Wright, 2011) takes the suboptimal MPC formulation in Section 6.1.2,
also discussed in Section 2.8, and establishes its inherent robustness to bounded
process and measurement disturbances. See also the paper by Lazar and Heemels
(2009), which first addressed inherent robustness of suboptimal MPC to process
disturbances by (i) specifying a degree of suboptimality and (ii) using the time-
varying state constraint tightening approach of Limón Marruedo, Álamo, and Ca-
macho (2002) to achieve recursive feasibility under disturbances.

The key assumption in (Pannocchia et al., 2011) is the following.
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Assumption 8. For any x,x′ ∈ XN and u ∈ UN(x), there exists u′ ∈ UN(x′) such
that |u− u′| ≤ σ(|x − x′|) for someK-function σ(·).

This assumption also implies thatV0
N(·) is continuous by applying Theorem C.28

in Rawlings and Mayne (2009). If state constraints are softened and the terminal
stability constrained is removed by choosing a suitably increased terminal penalty,
then this assumption is automatically satisfied. The conclusion of (Pannocchia
et al., 2011) is that suboptimal MPC has the same inherent robustness properties as
optimal MPC.

Nonlinear distributed MPC. A recent paper (Stewart, Wright, and Rawlings, 2011)
proposes a method for handling the nonconvex optimization resulting from non-
linear plant models. The basic difficulty is that taking the convex step of the local
controllers’ optimizations may not decrease the plantwide cost. To overcome this
problem, the following procedure is proposed.

After all suboptimizers finish an iteration, they exchange steps. Each
suboptimizer forms a candidate step

up+1
i = upi +wiα

p
i υ
p
i ∀i ∈ I1:M (4)

and checks the following inequality, which tests if V(up) is convex-like

V(up+1) ≤
∑
i∈I1:M

wiV(u
p
i +α

p
i υ
p
i , u

p
−i) (5)

in which
∑
i∈I1:M wi = 1 and wi > 0 for all i ∈ I1:M . If condition (5) is

not satisfied, then we find the direction with the worst cost improve-
ment imax = arg maxi{V(upi +α

p
i υ
p
i , u

p
−i)}, and eliminate this direction

by settingwimax to zero and repartitioning the remainingwi so that they
sum to 1. We then reform the candidate step (4) and check condition (5)
again. We repeat until (5) is satisfied. At worst, condition (5) is satisfied
with only one direction.

Notice that the test of inequality (5) does not require a coordinator. Each subsystem
has a copy of the plantwide model and can evaluate the objection function inde-
pendently. Therefore, the set of comparisons can be run on each controller. This
computation represents a small overhead compared to a coordinating optimization.

Appendix B. Stability Theory

Asymptotic stability. For several of the stability theorems appearing in the first
printing’s Appendix B,3 we used the classical definition of global asymptotic sta-
bility (GAS), given in Definition B.6. The following stronger definition of GAS has
recently started to become popular.

Definition 9 (Global asymptotic stability (KL version)). The (closed, positive invari-
ant) setA is globally asymptotically stable (GAS) for x+ = f(x) if there exists aKL
function β(·) such that, for each x ∈ Rn∣∣φ(i;x)∣∣A ≤ β(|x|A , i) ∀i ∈ I≥0 (B.1)

3See the website www.che.wisc.edu/~jbraw/mpc for the Appendices A–C corresponding to the
first printing of the text.
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Notice that this inequality appears as (B.1) in Appendix B.

Teel and Zaccarian (2006) provide further discussion of these definitional issues.
It is also interesting to note that although the KL definitions may have become
popular only recently, Hahn (1967, p. 8) used K and L comparison functions as
early as 1967 to define asymptotic stability.4 For continuous f(·), we show in
Proposition B.8 that these two definitions are equivalent. But we should bear in
mind that for nonlinear models, the function f(·) defining the closed-loop system
evolution under MPC, x+ = f(x, κN(x)), may be discontinuous because the control
law κN(·) may be discontinuous (see Example 2.8 in Chapter 2 for an example).
Also, when using suboptimal MPC, the control law is a point to set map and is not a
continuous function (Rawlings and Mayne, 2009, pp. 156, 417). For discontinuous
f(·), the two definitions are not equivalent. Consider the following example to
make this clear.

Example 2: Difference between asymptotic stability definitions (Teel)

Consider the discontinuous nonlinear scalar example x+ = f(x) with

f(x) =


1
2
x |x| ∈ [0,1]
2x

2− |x| |x| ∈ (1,2)
0 |x| ∈ [2,∞)

The origin is attractive for all x(0) ∈ R, which can be demonstrated as follows.
For |x(0)| ∈ [0,1], |x(k)| ≤ (1/2)k |x(0)|. For |x(0)| ∈ (1,2), |x(1)| ≥ 2 which
implies that |x(2)| = 0; and for |x(0)| ∈ [2,∞), |x(1)| = 0. The origin is Lyapunov
stable, because if δ ≤ 1, then |x(0)| ≤ δ implies |x(k)| ≤ δ for all k. Therefore, the
origin is asymptotically stable according to the classical definition.

But there is no KL function β(·) such that the system meets the bound for all
x(0) ∈ R

|x(k)| ≤ β(|x(0)| , k) ∀k ∈ I≥0

Indeed, for initial conditions |x(0)| slightly less than 2, the trajectory x(k) becomes
arbitrarily large (at k = 1) before converging to the origin. Therefore, the origin is
not asymptotically stable according to the KL definition. �

Remark 10. Note that because of Proposition B.8, the function f(·)must be chosen
to be discontinuous in this example to demonstrate this difference.

Proposition 11 (Extending local upper bounding function). Suppose the function
V(·) is defined on X, a closed subset of Rn, and that V(x) ≤ α(|x|A) for all x ∈ Xf
where Xf ⊆ X and contains the set A in its interior. A necessary and sufficient
condition for the existence of a K∞ function β(·) satisfying V(x) ≤ β(|x|A) for all
x ∈ X is that V(·) is locally bounded on X, i.e., V(·) is bounded on every compact
subset of X.

Proof.

4The authors would like to thank Mircea Lazar of Eindhoven University for helpful discussion of
this history.
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Sufficiency. We assume that V(·) is locally bounded and construct the function
β(·). BecauseA lies in the interior of Xf , there exists an a > 0 such that |x|A ≤ a
implies x ∈ Xf . For each i ∈ I≥1, let Si = {x | |x|A ≤ ia}. We define a sequence of
numbers {αi} as follows

αi := sup
Si∩X

V(x)+α(a)+ i

Since Si is compact for each i and X is closed, their intersection is a compact subset
of X and the values αi exist for all i ∈ I≥1 because V(·) is bounded on every
compact subset of X. The sequence {αi} is strictly increasing. For each i ∈ I≥1, let
the interpolating function φi(·) be defined by

φi(s) := (s − ia)/a s ∈ [ia, (i+ 1)a]

Note that φi(ia) = 0, φi((i+ 1)a) = 1, and that φ(·) is affine in [ia, (i+ 1)a]. We
can now define the function β(·) as follows

β(s) :=
{
(α2/α(a))α(s) s ∈ [0, a]
αi+1 +φi(s)(αi+2 −αi+1) s ∈ [ia, (i+ 1)a] for all i ∈ I≥1

It can be seen that β(0) = 0, β(s) ≥ α(s) for s ∈ [0, a], that β(·) is continuous,
strictly increasing, and unbounded, and that V(x) ≤ β(|x|A) for all x ∈ X. Hence
we have established the existence of aK∞ function β(·) such that V(x) ≤ β(|x|A)
for all x ∈ X.

Necessity. If we assume that V(·) is not locally bounded, i.e., not bounded on
some compact set C ⊆ X, it follows immediately that there is no (continuous and,
hence, locally bounded) K∞ function β(·) such that such that V(x) ≤ β(x) for all
x ∈ C . �

Note, however, that most of the Lyapunov function theorems appearing in Ap-
pendix B also hold under the stronger KL definition of GAS. As an example, we
provide a modified proof required for establishing Theorem B.11.

Theorem 12 (Lyapunov function and GAS). Suppose V(·) is a Lyapunov function for
x+ = f(x) and set A with α3(·) a K∞ function. Then A is globally asymptotically
stable under Definition 9.

Proof. From (B.4) of Definition B.10, we have that

V(φ(i+ 1;x)) ≤ V(φ(i;x))−α3(
∣∣φ(i;x)∣∣A) ∀x ∈ Rn i ∈ I≥0

Using (B.3) we have that

α3(|x|A) ≥ α3 ◦α−1
2 (V(x)) ∀x ∈ Rn

Combining these we have that

V(φ(i+ 1;x)) ≤ σ1(V(φ(i;x))) ∀x ∈ Rn i ∈ I≥0

in which
σ1(·) := (·)−α3 ◦α−1

2 (·)
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We have that σ1(·) is continuous on R≥0, σ1(0) = 0, and 0 < σ1(s) < s for s > 0.
But σ1(·) may not be increasing. We modify σ1 to achieve this property in two
steps. First define

σ2(s) := max
s′∈[0,s]

σ1(s′) s ∈ R≥0

in which the maximum exists for each s ∈ R≥0 because σ1(·) is continuous. By
its definition, σ2(·) is nondecreasing, and we next show that σ2(·) is continuous
on R≥0. Assume that σ2(·) is discontinuous at a point c ∈ R≥0. Because it is a
nondecreasing function, there is a positive jump in the function σ2(·) at c (Bartle
and Sherbert, 2000, p. 150). Define 5

a1 := lim
s↗c
σ2(s) a2 := lim

s↘c
σ2(s)

We have that σ1(c) ≤ a1 < a2 or we violate the limit of σ2 from below. Since
σ1(c) < a2, σ1(s)must achieve value a2 for some s < c or we violate the limit from
above. But σ1(s) = a2 for s < c also violates the limit from below, and we have a
contradiction and σ2(·) is continuous. Finally, define

σ(s) := (1/2)(s + σ2(s)) s ∈ R≥0

and we have that σ(·) is a continuous, strictly increasing, and unbounded function
satisfying σ(0) = 0. Therefore, σ(·) ∈ K∞, σ1(s) < σ(s) < s for s > 0 and
therefore

V(φ(i+ 1;x)) ≤ σ(V(φ(i;x))) ∀x ∈ Rn i ∈ I≥0 (6)

Repeated use of (6) and then (B.3) gives

V(φ(i;x)) ≤ σ i(α2(|x|A)) ∀x ∈ Rn i ∈ I≥0

in which σ i represents the composition of σ with itself i times. Using (B.2) we have
that ∣∣φ(i;x)∣∣A ≤ β(|x|A , i) ∀x ∈ Rn i ∈ I≥0

in which
β(s, i) := α−1

1 (σ
i(α2(s))) ∀s ∈ R≥0 i ∈ I≥0

For all s ≥ 0, the sequencewi := σ i(α2(s)) is nonincreasing with i, bounded below
(by zero), and therefore converges to a, say, as i→∞. Therefore, both wi → a and
σ(wi) → a as i → ∞. Since σ(·) is continuous we also have that σ(wi) → σ(a)
so σ(a) = a, which implies that a = 0, and we have shown that for all s ≥ 0,
α−1

1 (σ i(α2(s)))→ 0 as i→∞. Since α−1
1 (·) also is aK function, we also have that

for all s ≥ 0, α−1
1 (σ i(α2(s))) is nonincreasing with i. We have from the properties

ofK functions that for all i ≥ 0, α−1
1 (σ i(α2(s))) is aK function, and can therefore

conclude that β(·) is aKL function and the proof is complete. �

Constrained case. Definition B.9 lists the various forms of stability for the con-
strained case in which we consider X ⊂ Rn to be positive invariant for x+ = f(x).
In the classical definition, setA is asymptotically stable with region of attraction X
if it is locally stable in X and attractive in X. The KL version of asymptotic stability
for the constrained case is the following.

5The limits from above and below exist because σ2(·) is nondecreasing (Bartle and Sherbert, 2000,
p. 149). If the point c = 0, replace the limit from below by σ2(0).
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Definition 13 (Asymptotic stability (constrained – KL version)). Suppose X ⊂ Rn

is positive invariant for x+ = f(x), that A is closed and positive invariant for
x+ = f(x), and that A lies in the interior of X. The set A is asymptotically stable
with a region of attraction X for x+ = f(x) if there exists aKL function β(·) such
that, for each x ∈ X ∣∣φ(i;x)∣∣A ≤ β(|x|A , i) ∀i ∈ I≥0 (7)

Notice that we simply replace Rn with the set X in Definition 9 to obtain Defini-
tion 13. We then have the following result, analogous to Theorem B.13, connecting
a Lyapunov function to the KL version of asymptotic stability for the constrained
case.

Theorem 14 (Lyapunov function for asymptotic stability (constrained case – KL
version)). Suppose X ⊂ Rn is positive invariant for x+ = f(x), thatA is closed and
positive invariant for x+ = f(x), and that A lies in the interior of X. If there exists
a Lyapunov function in X for the system x+ = f(x) and set A with α3(·) a K∞
function, then A is asymptotically stable for x+ = f(x) with a region of attraction
X under Definition 13.

The proof of this result is similar to that of Theorem 12 with Rn replaced by X.
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Preface

Our goal in this text is to provide a comprehensive and foundational
treatment of the theory and design of model predictive control (MPC).
By now several excellent monographs emphasizing various aspects of
MPC have appeared (a list appears at the beginning of Chapter 1), and
the reader may naturally wonder what is offered here that is new and
different. By providing a comprehensive treatment of the MPC foun-
dation, we hope that this text enables researchers to learn and teach
the fundamentals of MPC without continuously searching the diverse
control research literature for omitted arguments and requisite back-
ground material. When teaching the subject, it is essential to have a
collection of exercises that enables the students to assess their level of
comprehension and mastery of the topics. To support the teaching and
learning of MPC, we have included more than 200 end-of-chapter exer-
cises. A complete solution manual (more than 300 pages) is available
for course instructors.

Chapter 1 is introductory. It is intended for graduate students in en-
gineering who have not yet had a systems course. But it serves a second
purpose for those who have already taken the first graduate systems
course. It derives all the results of the linear quadratic regulator and
optimal Kalman filter using only those arguments that extend to the
nonlinear and constrained cases to be covered in the later chapters.
Instructors may find that this tailored treatment of the introductory
systems material serves both as a review and a preview of arguments
to come in the later chapters.

Chapters 2–4 are foundational and should probably be covered in
any graduate level MPC course. Chapter 2 covers regulation to the ori-
gin for nonlinear and constrained systems. This material presents in a
unified fashion many of the major research advances in MPC that took
place during the last 20 years. It also includes more recent topics such
as regulation to an unreachable setpoint that are only now appearing in
the research literature. Chapter 3 addresses MPC design for robustness,
with a focus on MPC using tubes or bundles of trajectories in place of
the single nominal trajectory. This chapter again unifies a large body of
research literature concerned with robust MPC. Chapter 4 covers state
estimation with an emphasis on moving horizon estimation, but also
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covers extended and unscented Kalman filtering, and particle filtering.
Chapters 5–7 present more specialized topics. Chapter 5 addresses

the special requirements of MPC based on output measurement instead
of state measurement. Chapter 6 discusses how to design distributed
MPC controllers for large-scale systems that are decomposed into many
smaller, interacting subsystems. Chapter 7 covers the explicit optimal
control of constrained linear systems. The choice of coverage of these
three chapters may vary depending on the instructor’s or student’s own
research interests.

Three appendices are included, again, so that the reader is not sent
off to search a large research literature for the fundamental arguments
used in the text. Appendix A covers the required mathematical back-
ground. Appendix B summarizes the results used for stability analysis
including the various types of stability and Lyapunov function theory.
Since MPC is an optimization-based controller, Appendix C covers the
relevant results from optimization theory. In order to reduce the size
and expense of the text, the three appendices are available on the web:
www.che.wisc.edu/~jbraw/mpc. Note, however, that all material in
the appendices is included in the book’s printed table of contents, and
subject and author indices. The website also includes sample exams,
and homework assignments for a one-semester graduate course in MPC.
All of the examples and exercises in the text were solved with Octave.
Octave is freely available from www.octave.org.

JBR DQM
Madison, Wisconsin, USA London, England
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Badgwell, Bhavik Bakshi, Don Bartusiak, Larry Biegler, Moritz Diehl,
Jim Downs, Tom Edgar, Brian Froisy, Ravi Gudi, Sten Bay Jørgensen,
Jay Lee, Fernando Lima, Wolfgang Marquardt, Gabriele Pannocchia, Joe
Qin, Harmon Ray, Pierre Scokaert, Sigurd Skogestad, Tyler Soderstrom,
Steve Wright, and Robert Young.

DQM would like to thank his colleagues at Imperial College, espe-
cially Richard Vinter and Martin Clark, for providing a stimulating and
congenial research environment. He is very grateful to Lucien Polak
and Graham Goodwin with whom he has collaborated extensively and
fruitfully over many years; he would also like to thank many other col-
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F(x,u) difference inclusion, x+ ∈ F(x,u), F is set valued

G input noise-shaping matrix

Gij steady-state gain of player i to player j
H controlled variable matrix

I(x,u) index set of constraints active at (x,u)
I0(x) index set of constraints active at (x,u0(x))
k sample time

K optimal controller gain

`(x,u) stage cost

`N(x,u) final stage cost

L optimal estimator gain

m input dimension

M cross-term penalty matrix x′Mu
M number of players, Chapter 6

M class of admissible input policies, µ ∈M
n state dimension

N horizon length

O observability matrix, Chapters 1 and 4

O compact robust control invariant set containing the origin, Chap-
ter 3

p output dimension



xl List of Examples and Statements

p optimization iterate, Chapter 6

pξ probability density of random variable ξ
ps(x) sampled probability density, ps(x) =

∑
iwiδ(x − xi)

P covariance matrix in the estimator

Pf terminal penalty matrix

P polytopic partition

PN(x) MPC optimization problem; horizon N and initial state x
q importance function in importance sampling

Q state penalty matrix

r controlled variable, r = Hy
R input penalty matrix

s number of samples in a sampled probability density

S input rate of change penalty matrix

S(x,u) index set of active polytopes at (x,u)
S0(x) index set of active polytopes at (x,u0(x))
t time

T current time in estimation problem

u input (manipulated variable) vector

ũ
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Getting Started with Model Predictive

Control

1.1 Introduction

The main purpose of this chapter is to provide a compact and acces-
sible overview of the essential elements of model predictive control
(MPC). We introduce deterministic and stochastic models, regulation,
state estimation, dynamic programming (DP), tracking, disturbances,
and some important performance properties such as closed-loop sta-
bility and zero offset to disturbances. The reader with background in
MPC and linear systems theory may wish to skim this chapter briefly
and proceed to Chapter 2. Other introductory texts covering the ba-
sics of MPC include Maciejowski (2002); Camacho and Bordons (2004);
Rossiter (2004); Goodwin, Seron, and De Doná (2005); Kwon (2005);
Wang (2009).

1.2 Models and Modeling

Model predictive control has its roots in optimal control. The basic
concept of MPC is to use a dynamic model to forecast system behavior,
and optimize the forecast to produce the best decision — the control
move at the current time. Models are therefore central to every form of
MPC. Because the optimal control move depends on the initial state of
the dynamic system, a second basic concept in MPC is to use the past
record of measurements to determine the most likely initial state of the
system. The state estimation problem is to examine the record of past
data, and reconcile these measurements with the model to determine
the most likely value of the state at the current time. Both the regulation
problem, in which a model forecast is used to produce the optimal
control action, and the estimation problem, in which the past record

1
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of measurements is used to produce an optimal state estimate, involve
dynamic models and optimization.

We first discuss the dynamic models used in this text. We start with
the familiar differential equation models

dx
dt
= f(x,u, t)

y = h(x,u, t)
x(t0) = x0

in which x ∈ Rn is the state, u ∈ Rm is the input, y ∈ Rp is the
output, and t ∈ R is time. We use Rn to denote the set of real-valued
n-vectors. The initial condition specifies the value of the state x at
time t = t0, and we seek a solution to the differential equation for time
greater than t0, t ∈ R≥t0 . Often we define the initial time to be zero,
with a corresponding initial condition, in which case t ∈ R≥0.

1.2.1 Linear Dynamic Models

Time-varying model. The most general linear state space model is
the time-varying model

dx
dt
= A(t)x + B(t)u

y = C(t)x +D(t)u
x(0) = x0

in which A(t) ∈ Rn×n is the state transition matrix, B(t) ∈ Rn×m is
the input matrix, C(t) ∈ Rp×n is the output matrix, and D(t) ∈ Rp×m

allows a direct coupling between u and y . In many applications D = 0.

Time-invariant model. If A, B, C , and D are time invariant, the linear
model reduces to

dx
dt
= Ax + Bu

y = Cx +Du (1.1)

x(0) = x0

One of the main motivations for using linear models to approximate
physical systems is the ease of solution and analysis of linear models.
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Equation (1.1) can be solved to yield

x(t) = eAtx0 +
∫ t

0
eA(t−τ)Bu(τ)dτ (1.2)

in which eAt ∈ Rn×n is the matrix exponential.1 Notice the solution
is a convolution integral of the entire u(t) behavior weighted by the
matrix exponential of At. We will see later that the eigenvalues of A
determine whether the past u(t) has more effect or less effect on the
current x(t) as time increases.

1.2.2 Input-Output Models

If we know little about the internal structure of a system, it may be
convenient to take another approach in which we suppress the state
variable, and focus attention only on the manipulatable inputs and mea-
surable outputs. As shown in Figure 1.1, we consider the system to be
the connection between u and y . In this viewpoint, we usually perform
system identification experiments in which we manipulate u and mea-
sure y , and develop simple linear models for G. To take advantage of
the usual block diagram manipulation of simple series and feedback
connections, it is convenient to consider the Laplace transform of the
signals rather than the time functions,

y(s) :=
∫∞

0
e−sty(t)dt

in which s ∈ C is the complex-valued Laplace transform variable, in con-
trast to t, which is the real-valued time variable. The symbol := means
“equal by definition” or “is defined by.” The transfer function matrix
is then identified from the data, and the block diagram represents the
following mathematical relationship between input and output

y(s) = G(s)u(s)

G(s) ∈ Cp×m is the transfer function matrix. Notice the state does
not appear in this input-output description. If we are obtaining G(s)
instead from a state space model, then G(s) = C(sI − A)−1B, and we
assume x(0) = 0 as the system initial condition.

1We can define the exponential of matrix X in terms of its Taylor series,

eX := 1
0!
I + 1

1!
X + 1

2!
X2 + 1

3!
X3 + · · ·

This series converges for all X.
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u(s) y(s)
G(s)

Figure 1.1: System with input u, output y and transfer function ma-
trix G connecting them; the model is y = Gu.

1.2.3 Distributed Models

Distributed models arise whenever we consider systems that are not
spatially uniform. Consider, for example, a multicomponent, chemi-
cal mixture undergoing convection and chemical reaction. The micro-
scopic mass balance for species A is

∂cA
∂t
+∇ · (cAvA)− RA = 0

in which cA is the molar concentration of species A, vA is the velocity
of speciesA, and RA is the production rate of speciesA due to chemical
reaction, in which

∇ := δx
∂
∂x
+ δy

∂
∂y
+ δz

∂
∂z

and the δx,y,z are the respective unit vectors in the (x,y, z) spatial
coordinates.

We also should note that the distribution does not have to be “spa-
tial.” Consider a particle size distribution f(r , t) in which f(r , t)dr
represents the number of particles of size r to r +dr in a particle reac-
tor at time t. The reactor volume is considered well mixed and spatially
homogeneous. If the particles nucleate at zero size with nucleation rate
B(t) and grow with growth rate, G(t), the evolution of the particle size
distribution is given by

∂f
∂t
= −G∂f

∂r
f(r , t) = B/G r = 0 t ≥ 0

f(r , t) = f0(r) r ≥ 0 t = 0

Again we have partial differential equation descriptions even though
the particle reactor is well mixed and spatially uniform.
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1.2.4 Discrete Time Models

Discrete time models are often convenient if the system of interest is
sampled at discrete times. If the sampling rate is chosen appropriately,
the behavior between the samples can be safely ignored and the model
describes exclusively the behavior at the sample times. The finite di-
mensional, linear, time-invariant, discrete time model is

x(k+ 1) = Ax(k)+ Bu(k)
y(k) = Cx(k)+Du(k) (1.3)

x(0) = x0

in which k ∈ I≥0 is a nonnegative integer denoting the sample number,
which is connected to time by t = k∆ in which ∆ is the sample time.
We use I to denote the set of integers and I≥0 to denote the set of non-
negative integers. The linear discrete time model is a linear difference
equation.

It is sometimes convenient to write the time index with a subscript

xk+1 = Axk + Buk
yk = Cxk +Duk
x0 given

but we avoid this notation in this text. To reduce the notational com-
plexity we usually express (1.3) as

x+ = Ax + Bu
y = Cx +Du

x(0) = x0

in which the superscript + means the state at the next sample time.
The linear discrete time model is convenient for presenting the ideas
and concepts of MPC in the simplest possible mathematical setting.
Because the model is linear, analytical solutions are readily derived.
The solution to (1.3) is

x(k) = Akx0 +
k−1∑
j=0

Ak−j−1Bu(j) (1.4)

Notice that a convolution sum corresponds to the convolution integral
of (1.2) and powers of A correspond to the matrix exponential. Be-
cause (1.4) involves only multiplication and addition, it is convenient
to program for computation.
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The discrete time analog of the continuous time input-output model
is obtained by defining the Z-transform of the signals

y(z) :=
∞∑
k=0

zky(k)

The discrete transfer function matrix G(z) then represents the discrete
input-output model

y(z) = G(z)u(z)
and G(z) ∈ Cp×m is the transfer function matrix. Notice the state does
not appear in this input-output description. We make only passing
reference to transfer function models in this text.

1.2.5 Constraints

The manipulated inputs (valve positions, voltages, torques, etc.) to
most physical systems are bounded. We include these constraints by
linear inequalities

Eu(k) ≤ e k ∈ I≥0

in which

E =
[
I
−I

]
e =

[
u
−u

]
are chosen to describe simple bounds such as

u ≤ u(k) ≤ u k ∈ I≥0

We sometimes wish to impose constraints on states or outputs for rea-
sons of safety, operability, product quality, etc. These can be stated
as

Fx(k) ≤ f k ∈ I≥0

Practitioners find it convenient in some applications to limit the rate of
change of the input, u(k)−u(k−1). To maintain the state space form
of the model, we may augment the state as

x̃(k) =
[
x(k)

u(k− 1)

]

and the augmented system model becomes

x̃+ = Ãx̃ + B̃u

y = C̃x̃
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in which

Ã =
[
A 0
0 0

]
B̃ =

[
B
I

]
C̃ =

[
C 0

]
A rate of change constraint such as

∆ ≤ u(k)−u(k− 1) ≤ ∆ k ∈ I≥0

is then stated as

Fx̃(k)+ Eu(k) ≤ e F =
[

0 −I
0 I

]
E =

[
I
−I

]
e =

[
∆
−∆

]

To simplify analysis, it pays to maintain linear constraints when us-
ing linear dynamic models. So if we want to consider fairly general
constraints for a linear system, we choose the form

Fx(k)+ Eu(k) ≤ e k ∈ I≥0

which subsumes all the forms listed previously.
When we consider nonlinear systems, analysis of the controller is

not significantly simplified by maintaining linear inequalities, and we
generalize the constraints to set membership

x(k) ∈ X u(k) ∈ U k ∈ I≥0

or, more generally,

(x(k),u(k)) ∈ Z k ∈ I≥0

We should bear in mind one general distinction between input con-
straints, and output or state constraints. The input constraints often
represent physical limits. In these cases, if the controller does not
respect the input constraints, the physical system enforces them. In
contrast, the output or state constraints are usually desirables. They
may not be achievable depending on the disturbances affecting the sys-
tem. It is often the function of an MPC controller to determine in real
time that the output or state constraints are not achievable, and relax
them in some satisfactory manner. As we discuss in Chapter 2, these
considerations lead implementers of MPC often to set up the optimiza-
tion problem using hard constraints for the input constraints and some
form of soft constraints for the output or state constraints.
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Figure 1.2: Output of a stochastic system versus time.

1.2.6 Deterministic and Stochastic

If one examines measurements coming from any complex, physical pro-
cess, fluctuations in the data as depicted in Figure 1.2 are invariably
present. For applications at small length scales, the fluctuations may
be caused by the random behavior of small numbers of molecules. This
type of application is becoming increasingly prevalent as scientists and
engineers study applications in nanotechnology. This type of system
also arises in life science applications when modeling the interactions
of a few virus particles or protein molecules with living cells. In these
applications there is no deterministic simulation model; the only sys-
tem model available is stochastic.

Linear time-invariant models. In mainstream, classical process con-
trol problems, we are usually concerned with modeling, monitoring and
controlling macroscopic systems, i.e., we are not considering systems
composed of small numbers of molecules. So one may naturally ask
(many do) what is the motivation for stochastic models in this arena?
The motivation for stochastic models is to account for the unmodeled
effects of the environment (disturbances) on the system under study. If
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we examine the measurement from any process control system of inter-
est, no matter how “macroscopic,” we are confronted with the physical
reality that the measurement still looks a lot like Figure 1.2. If it is im-
portant to model the observed measurement fluctuations, we turn to
stochastic models.

Some of the observed fluctuation in the data is assignable to the
measurement device. This source of fluctuation is known as measure-
ment “noise.” Some of the observed fluctuation in the data is assignable
to unmodeled disturbances from the environment affecting the state of
the system. The simplest stochastic model for representing these two
possible sources of disturbances is a linear model with added random
variables

x+ = Ax + Bu+Gw
y = Cx +Du+ v

with initial condition x(0) = x0. The variable w ∈ Rg is the random
variable acting on the state transition, v ∈ Rp is a random variable act-
ing on the measured output, and x0 is a random variable specifying the
initial state. The random variable v is used to model the measurement
noise and w models the process disturbance. The matrix G ∈ Rn×g

allows further refinement of the modeling between the source of the
disturbance and its effect on the state. Often G is chosen to be the
identity matrix with g = n.

1.3 Introductory MPC Regulator

1.3.1 Linear Quadratic Problem

We start by designing a controller to take the state of a deterministic,
linear system to the origin. If the setpoint is not the origin, or we wish
to track a time-varying setpoint trajectory, we will subsequently make
modifications of the zero setpoint problem to account for that. The
system model is

x+ = Ax + Bu
y = Cx (1.5)

In this first problem, we assume that the state is measured, orC = I. We
will handle the output measurement problem with state estimation in
the next section. Using the model we can predict how the state evolves
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given any set of inputs we are considering. Consider N time steps into
the future and collect the input sequence into u,

u = {u(0),u(1), . . . , u(N − 1)}

Constraints on the u sequence (i.e., valve saturations, etc.) are covered
extensively in Chapter 2. The constraints are the main feature that
distinguishes MPC from the standard linear quadratic (LQ) control.

We first define an objective function V(·) to measure the deviation
of the trajectory of x(k),u(k) from zero by summing the weighted
squares

V(x(0),u) = 1
2

N−1∑
k=0

[
x(k)′Qx(k)+u(k)′Ru(k)

]
+ 1

2
x(N)′Pfx(N)

subject to
x+ = Ax + Bu

The objective function depends on the input sequence and state se-
quence. The initial state is available from the measurement. The re-
mainder of the state trajectory, x(k), k = 1, . . . ,N, is determined by the
model and the input sequence u. So we show the objective function’s
explicit dependence on the input sequence and initial state. The tuning
parameters in the controller are the matrices Q and R. We allow the
final state penalty to have a different weighting matrix, Pf , for general-
ity. Large values of Q in comparison to R reflect the designer’s intent
to drive the state to the origin quickly at the expense of large control
action. Penalizing the control action through large values of R relative
to Q is the way to reduce the control action and slow down the rate at
which the state approaches the origin. Choosing appropriate values of
Q and R (i.e., tuning) is not always obvious, and this difficulty is one of
the challenges faced by industrial practitioners of LQ control. Notice
that MPC inherits this tuning challenge.

We then formulate the following optimal LQ control problem

min
u
V(x(0),u) (1.6)

The Q, Pf and R matrices often are chosen to be diagonal, but we do
not assume that here. We assume, however, that Q, Pf , and R are real
and symmetric ; Q and Pf are positive semidefinite; and R is positive
definite. These assumptions guarantee that the solution to the optimal
control problem exists and is unique.
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1.3.2 Optimizing Multistage Functions

We next provide a brief introduction to methods for solving multistage
optimization problems like (1.6). Consider the set of variablesw, x, y ,
and z, and the following function to be optimized

f(w,x)+ g(x,y)+ h(y, z)

Notice that the objective function has a special structure in which each
stage’s cost function in the sum depends only on adjacent variable
pairs. For the first version of this problem, we consider w to be a
fixed parameter, and we would like to solve the problem

min
x,y,z

f(w,x)+ g(x,y)+ h(y, z) w fixed

One option is to optimize simultaneously over all three decision vari-
ables. Because of the objective function’s special structure, however,
we can obtain the solution by optimizing a sequence of three single-
variable problems defined as follows

min
x

[
f(w,x)+min

y

[
g(x,y)+min

z
h(y, z)

]]
We solve the inner problem over z first, and denote the optimal value
and solution as follows

h0(y) =min
z
h(y, z) z0(y) = arg min

z
h(y, z)

Notice that the optimal z and value function for this problem are both
expressed as a function of the y variable. We then move to the next
optimization problem and solve for the y variable

min
y
g(x,y)+ h0(y)

and denote the solution and value function as

g0(x) =min
y
g(x,y)+ h0(y) y0(x) = arg min

y
g(x,y)+ h0(y)

The optimal solution for y is a function of x, the remaining variable to
be optimized. The third and final optimization is

min
x
f(w,x)+ g0(x)



12 Getting Started with Model Predictive Control

with solution and value function

f 0(w) =min
x
f(w,x)+ g0(x) x0(w) = arg min

x
f(w,x)+ g0(x)

We summarize the recursion with the following annotated equation

min
x

[
f(w,x)+

g0(x), y0(x)︷ ︸︸ ︷
min
y

[
g(x,y)+min

z
h(y, z)︸ ︷︷ ︸

h0(y), z0(y)

] ]
︸ ︷︷ ︸

f 0(w), x0(w)

If we are mainly interested in the first variable x, then the function
x0(w) is of primary interest and we have obtained this function quite
efficiently. This nested solution approach is an example of a class of
techniques known as dynamic programming (DP). DP was developed
by Bellman (Bellman, 1957; Bellman and Dreyfus, 1962) as an efficient
means for solving these kinds of multistage optimization problems.
Bertsekas (1987) provides an overview of DP.

The version of the method we just used is called backward DP be-
cause we find the variables in reverse order: first z, then y , and finally
x. Notice we find the optimal solutions as functions of the variables to
be optimized at the next stage. If we wish to find the other variables
y and z as a function of the known parameter w, then we nest the
optimal solutions found by the backward DP recursion

y˜ 0(w) = y0(x0(w)) z˜ 0(w) = z0( y˜ 0(w)) = z0(y0(x0(w)))

As we see shortly, backward DP is the method of choice for the regulator
problem.

In the state estimation problem to be considered later in this chap-
ter, w becomes a variable to be optimized, and z plays the role of a
parameter. We wish to solve the problem

min
w,x,y

f(w,x)+ g(x,y)+ h(y, z) z fixed

We can still break the problem into three smaller nested problems, but
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the order is reversed

min
y

[
h(y, z)+

g0(y), x0(y)︷ ︸︸ ︷
min
x

[
g(x,y)+min

w
f(w,x)︸ ︷︷ ︸

f
0
(x), w0(x)

] ]

︸ ︷︷ ︸
h

0
(z), y0(z)

(1.7)

This form is called forward DP because we find the variables in the
order given: firstw, then x, and finally y . The optimal value functions
and optimal solutions at each of the three stages are shown in (1.7).
This version is preferable if we are primarily interested in finding the
final variable y as a function of the parameter z. As before, if we need
the other optimized variables x andw as a function of the parameter z,
we must insert the optimal functions found by the forward DP recursion

x̃0(z) = x0(y0(z)) w̃0(z) = w0(x̃0(z)) = w0(x0(y0(z)))

For the reader interested in trying some exercises to reinforce the con-
cepts of DP, Exercise 1.15 considers finding the function w̃0(z) with
backward DP instead of forward DP as we just did here. Exercise C.1
discusses showing that the nested optimizations indeed give the same
answer as simultaneous optimization over all decision variables.

Finally, if we optimize over all four variables, including the one con-
sidered as a fixed parameter in the two versions of DP we used, then
we have two equivalent ways to express the value of the complete op-
timization

min
w,x,y,z

f(w,x)+ g(x,y)+ h(y, z) =min
w
f 0(w) =min

z
h

0
(z)

The result in the next example proves useful in combining quadratic
functions to solve the LQ problem.

Example 1.1: Sum of quadratic functions

Consider the two quadratic functions given by

V1(x) = (1/2)(x − a)′A(x − a) V2(x) = (1/2)(x − b)′B(x − b)

in which A,B > 0 are positive definite matrices and a and b are n-
vectors locating the minimum of each function. Figure 1.3 displays the
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Figure 1.3: Two quadratic functions and their sum; V(x) = V1(x)+
V2(x).

ellipses defined by the level sets V1(x) = 1/4 and V2(x) = 1/4 for the
following data

A =
[

1.25 0.75
0.75 1.25

]
a =

[
−1
0

]

B =
[

1.5 −0.5
−0.5 1.5

]
b =

[
1
1

]

(a) Show that the sum V(x) = V1(x)+ V2(x) is also quadratic

V(x) = (1/2)(x − v)′H(x − v)+ constant

in which

H = A+ B v = H−1 (Aa+ Bb)

and verify the three ellipses given in Figure 1.3.
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(b) Consider a generalization useful in the discussion of the upcom-
ing state estimation problem. Let

V1(x) = (1/2)(x−a)′A(x−a) V2(x) = (1/2)(Cx−b)′B(Cx−b)

Derive the formulas for H and v for this case.

(c) Use the matrix inversion lemma (see Exercise 1.12) and show that
V(x) can be expressed also in an inverse form, which is useful in
state estimation problems

V(x) = (1/2)(x − v)′H̃
−1
(x − v)+ constant

H̃ = A−1 −A−1C′(CA−1C′ + B−1)−1CA−1

v = a+A−1C′(CA−1C′ + B−1)−1 (b − Ca)

Solution

(a) The sum of two quadratics is also quadratic, so we parameterize
the sum as

V(x) = (1/2)(x − v)′H(x − v)+ d

and solve for v , H, and d. Comparing zeroth, first and second
derivatives gives

V(v) = d = V1(v)+ V2(v)
Vx(x) = H(x − v) = A(x − a)+ B(x − b)
Vxx = H = A+ B

Solving these gives

H = A+ B
v = H−1(Aa+ Bb)
d = V1(v)+ V2(v) (1.8)

Notice that H is positive definite since A and B are positive defi-
nite. Substituting the values of a, A, b, and B, and setting d = 0
gives

V(x) = (1/2)(x − v)′H(x − v)

H =
[

2.75 0.25
0.25 2.75

]
v =

[
−0.1
0.1

]
V(x) = 1/4 is plotted for the choice of constant d = 0.
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(b) Comparing zeroth, first and second derivatives gives

V(v) = d = V1(v)+ V2(v)
Vx(x) = H(x − v) = A(x − a)+ C′B(Cx − b)
Vxx = H = A+ C′BC

Solving these gives

H = A+ C′BC
v = H−1(Aa+ C′Bb)
d = V1(v)+ V2(v)

Notice that H is positive definite since A is positive definite and
C′BC is positive semidefinite for any C .

(c) Define x = x − a and b = b − Ca, and express the problem as

V(x) = (1/2)x′Ax + (1/2)(C(x + a)− b)′B(C(x + a)− b)
= (1/2)x′Ax + (1/2)(Cx − b)′B(Cx − b)

Apply the solution of the previous part and set the constant to
zero to obtain

V(x) = (1/2)(x − v)′H(x − v)
H = A+ C′BC
v = H−1C′Bb

Use the matrix inversion lemma’s (1.55) on H and (1.56) on v to
obtain

H̃ = A−1 −A−1C′(CA−1C′ + B−1)−1CA−1

v = A−1C′(CA−1C′ + B−1)−1b

The function V is then given by

V = (1/2)(x − v)′H̃
−1
(x − v)

V = (1/2)(x − (a+ v))′H̃
−1
(x − (a+ v))

V = (1/2)(x − v)′H̃
−1
(x − v)

in which

v = a+A−1C′(CA−1C′ + B−1)−1 (b − Ca) �
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1.3.3 Dynamic Programming Solution

After this brief introduction to DP, we apply it to solve the LQ con-
trol problem. We first rewrite (1.6) in the following form to see the
structure clearly

V(x(0),u) =
N−1∑
k=0

`(x(k),u(k))+ `N(x(N)) s.t. x+ = Ax + Bu

in which the stage cost `(x,u) = (1/2)(x′Qx+u′Ru), k = 0, . . . ,N−1
and the terminal stage cost `N(x) = (1/2)x′Pfx. Since x(0) is known,
we choose backward DP as the convenient method to solve this prob-
lem. We first rearrange the overall objective function so we can opti-
mize over input u(N − 1) and state x(N)

min
u(0),x(1),...u(N−2),x(N−1)

`(x(0),u(0))+ `(x(1),u(1))+ · · ·+

min
u(N−1),x(N)

`(x(N − 1),u(N − 1))+ `N(x(N))

subject to

x(k+ 1) = Ax(k)+ Bu(k) k = 0, . . . N − 1

The problem to be solved at the last stage is

min
u(N−1),x(N)

`(x(N − 1),u(N − 1))+ `N(x(N)) (1.9)

subject to
x(N) = Ax(N − 1)+ Bu(N − 1)

in which x(N − 1) appears in this stage as a parameter. We denote the
optimal cost by V0

N−1(x(N − 1)) and the optimal decision variables by
u0
N−1(x(N − 1)) and x0

N(x(N − 1)). The optimal cost and decisions at
the last stage are parameterized by the state at the previous stage as
we expect in backward DP. We next solve this optimization. First we
substitute the state equation for x(N) and combine the two quadratic
terms using (1.8)

`(x(N − 1),u(N − 1))+ `N(x(N))

= (1/2)
(
|x(N − 1)|2Q + |u(N − 1)|2R + |Ax(N − 1)+ Bu(N − 1)|2Pf

)
= (1/2)

(
|x(N − 1)|2Q + |(u(N − 1)− v)|2H

)
+ d
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in which

H = R + B′PfB
v = K(N − 1)x(N − 1)

d = (1/2)x(N − 1)′
(
K(N − 1)′RK(N − 1)+

(A+ BK(N − 1))′Pf (A+ BK(N − 1))
)
x(N − 1)

K(N − 1) = −(B′PfB + R)−1B′PfA (1.10)

Given this form of the cost function, we see by inspection that the
optimal input for u(N − 1) is v defining the optimal control law at
stage N − 1 to be a linear function of the state x(N − 1). Then using
the model equation, the optimal final state is also a linear function of
state x(N − 1). The optimal cost is d, which makes the optimal cost a
quadratic function of x(N − 1). Summarizing, for all x

u0
N−1(x) = K(N − 1) x

x0
N(x) = (A+ BK(N − 1)) x

V0
N−1(x) = (1/2)x′ Π(N − 1) x

Π(N − 1) = Q+A′PfA+
K(N − 1)′(B′PfB + R)K(N − 1)+ 2K(N − 1)′B′PfA

We can rewrite Π(N − 1) using the result

K(N − 1)′(B′PfB + R)K(N − 1)+ 2K(N − 1)′B′PfA =
−A′PfB(B′PfB + R)−1B′PfA

which is obtained by substituting (1.10) for K into the equation for
Π(N − 1) and simplifying. Substituting this result into the previous
equation gives

Π(N − 1) = Q+A′PfA−A′PfB(B′PfB + R)−1B′PfA

The function V0
N−1(x) defines the optimal cost to go from state x for the

last stage under the optimal control law u0
N−1(x). Having this function

allows us to move to the next stage of the DP recursion. For the next
stage we solve the optimization

min
u(N−2),x(N−1)

`(x(N − 2),u(N − 2))+ V0
N−1(x(N − 1))
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subject to

x(N − 1) = Ax(N − 2)+ Bu(N − 2)

Notice that this problem is identical in structure to the stage we just
solved, (1.9), and we can write out the solution by simply renaming
variables

u0
N−2(x) = K(N − 2) x

x0
N−1(x) = (A+ BK(N − 2)) x

V0
N−2(x) = (1/2)x′ Π(N − 2) x

K(N − 2) = −(B′Π(N − 1)B + R)−1B′Π(N − 1)A
Π(N − 2) = Q+A′Π(N − 1)A−

A′Π(N − 1)B(B′Π(N − 1)B + R)−1B′Π(N − 1)A

The recursion fromΠ(N−1) toΠ(N−2) is known as a backward Riccati
iteration. To summarize, the backward Riccati iteration is defined as
follows

Π(k− 1) = Q+A′Π(k)A−A′Π(k)B
(
B′Π(k)B + R

)−1 B′Π(k)A
k = N,N − 1, . . . ,1 (1.11)

with terminal condition

Π(N) = Pf (1.12)

The terminal condition replaces the typical initial condition because
the iteration is running backward. The optimal control policy at each
stage is

u0
k(x) = K(k)x k = N − 1, N − 2, . . . ,0 (1.13)

The optimal gain at time k is computed from the Riccati matrix at time
k+ 1

K(k) = −
(
B′Π(k+ 1)B + R

)−1 B′Π(k+ 1)A k = N − 1, N − 2, . . . ,0
(1.14)

and the optimal cost to go from time k to time N is

V0
k (x) = (1/2)x′Π(k)x k = N,N − 1, . . . ,0 (1.15)



20 Getting Started with Model Predictive Control

1.3.4 The Infinite Horizon LQ Problem

Let us motivate the infinite horizon problem by showing a weakness of
the finite horizon problem. Kalman (1960b, p.113) pointed out in his
classic 1960 paper that optimality does not ensure stability.

In the engineering literature it is often assumed (tacitly and
incorrectly) that a system with optimal control law (6.8) is
necessarily stable.

Assume that we use as our control law the first feedback gain of the
finite horizon problem, K(0),

u(k) = K(0)x(k)

Then the stability of the closed-loop system is determined by the eigen-
values ofA+BK(0). We now construct an example that shows choosing
Q > 0, R > 0, and N ≥ 1 does not ensure stability. In fact, we can find
reasonable values of these parameters such that the controller desta-
bilizes a stable system.2 Let

A =
[

4/3 −2/3
1 0

]
B =

[
1
0

]
C = [−2/3 1]

This system is chosen so that G(z) has a zero at z = 3/2, i.e., an unsta-
ble zero. We now construct an LQ controller that inverts this zero and
hence produces an unstable system. We would like to choose Q = C′C
so that y itself is penalized, but that Q is only semidefinite. We add a
small positive definite piece to C′C so that Q is positive definite, and
choose a small positive R penalty (to encourage the controller to mis-
behave), and N = 5,

Q = C′C + 0.001I =
[

4/9+ .001 −2/3
−2/3 1.001

]
R = 0.001

We now iterate the Riccati equation four times starting from Π = Pf =
Q and compute K(0) for N = 5; then we compute the eigenvalues of
A+ BK(0) and achieve3

eig(A+ BK5(0)) = {1.307,0.001}
2In Chapter 2, we present several controller design methods that prevent this kind

of instability.
3Please check this answer with Octave or MATLAB.
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Using this controller the closed-loop system evolution is x(k) = (A +
BK5(0))kx0. Since an eigenvalue of A + BK5(0) is greater than unity,
x(k)→∞ as k→∞. In other words the closed-loop system is unstable.

If we continue to iterate the Riccati equation, which corresponds to
increasing the horizon in the controller, we obtain for N = 7

eig(A+ BK7(0)) = {0.989,0.001}

and the controller is stabilizing. If we continue iterating the Riccati
equation, we converge to the following steady-state closed-loop eigen-
values

eig(A+ BK∞(0)) = {0.664,0.001}

This controller corresponds to an infinite horizon control law. Notice
that it is stabilizing and has a reasonable stability margin. Nominal
stability is a guaranteed property of infinite horizon controllers as we
prove in the next section.

With this motivation, we are led to consider directly the infinite hori-
zon case

V(x(0),u) = 1
2

∞∑
k=0

x(k)′Qx(k)+u(k)′Ru(k) (1.16)

in whichx(k) is the solution at time k ofx+ = Ax+Bu if the initial state
is x(0) and the input sequence is u. If we are interested in a continuous
process (i.e., no final time), then the natural cost function is an infinite
horizon cost. If we were truly interested in a batch process (i.e., the
process does stop at k = N), then stability is not a relevant property,
and we naturally would use the finite horizon LQ controller and the
time-varying controller, u(k) = K(k)x(k), k = 0,1, . . . ,N.

In considering the infinite horizon problem, we first restrict atten-
tion to systems for which there exist input sequences that give bounded
cost. Consider the caseA = I and B = 0, for example. Regardless of the
choice of input sequence, (1.16) is unbounded for x(0) ≠ 0. It seems
clear that we are not going to stabilize an unstable system (A = I) with-
out any input (B = 0). This is an example of an uncontrollable system.
In order to state the sharpest results on stabilization, we require the
concepts of controllability, stabilizability, observability, and detectabil-
ity. We shall define these concepts subsequently.
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1.3.5 Controllability

A system is controllable if, for any pair of states x, z in the state space,
z can be reached in finite time from x (or x controlled to z) (Sontag,
1998, p.83). A linear discrete time system x+ = Ax + Bu is therefore
controllable if there exists a finite time N and a sequence of inputs

{u(0),u(1), . . . u(N − 1)}

that can transfer the system from any x to any z in which

z = ANx +
[
B AB · · · AN−1B

]

u(N − 1)
u(n− 2)

...
u(0)


We can simplify this condition by noting that the matrix powers Ak

for k ≥ n are expressible as linear combinations of the powers 0 to
n − 1. This result is a consequence of the Cayley-Hamilton theorem
(Horn and Johnson, 1985, pp. 86–87). Therefore the range of the matrix[
B AB · · · AN−1B

]
forN ≥ n is the same as

[
B AB · · · An−1B

]
.

In other words, for an unconstrained linear system, if we cannot reach
z in n moves, we cannot reach z in any number of moves. The ques-
tion of controllability of a linear time-invariant system is therefore a
question of existence of solutions to linear equations for an arbitrary
right-hand side

[
B AB · · · An−1B

]

u(n− 1)
u(n− 2)

...
u(0)

 = z −Anx

The matrix appearing in this equation is known as the controllability
matrix C

C =
[
B AB · · · An−1B

]
(1.17)

From the fundamental theorem of linear algebra, we know a solution
exists for all right-hand sides if and only if the rows of the n × nm
controllability matrix are linearly independent.4 Therefore, the system
(A, B) is controllable if and only if

rank(C) = n
4See Section A.4 of Appendix A or (Strang, 1980, pp.87–88) for a review of this result.
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The following result for checking controllability also proves useful (Hau-
tus, 1972).

Lemma 1.2 (Hautus Lemma for controllability). A system is controllable
if and only if

rank
[
λI −A B

]
= n for all λ ∈ C (1.18)

in which C is the set of complex numbers.

Notice that the first n columns of the matrix in (1.18) are linearly
independent if λ is not an eigenvalue of A, so (1.18) is equivalent to
checking the rank at just the eigenvalues of A

rank
[
λI −A B

]
= n for all λ ∈ eig(A)

1.3.6 Convergence of the Linear Quadratic Regulator

We now show that the infinite horizon regulator asymptotically stabi-
lizes the origin for the closed-loop system. Define the infinite horizon
objective function

V(x,u) = 1
2

∞∑
k=0

x(k)′Qx(k)+u(k)′Ru(k)

subject to

x+ = Ax + Bu
x(0) = x

withQ,R > 0. If (A, B) is controllable, the solution to the optimization
problem

min
u
V(x,u)

exists and is unique for all x. We denote the optimal solution by u0(x),
and the first input in the optimal sequence byu0(x). The feedback con-
trol law κ∞(·) for this infinite horizon case is then defined asu = κ∞(x)
in which κ∞(x) = u0(x) = u0(0;x). As stated in the following lemma,
this infinite horizon linear quadratic regulator (LQR) is stabilizing.

Lemma 1.3 (LQR convergence). For (A, B) controllable, the infinite hori-
zon LQR with Q,R > 0 gives a convergent closed-loop system

x+ = Ax + Bκ∞(x)
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Proof. The cost of the infinite horizon objective is bounded above for
allx(0) because (A, B) is controllable. Controllability implies that there
exists a sequence of n inputs {u(0),u(1), . . . , u(n− 1)} that transfers
the state from any x(0) to x(n) = 0. A zero control sequence after
k = n for {u(n + 1),u(n + 2), . . .} generates zero cost for all terms
in V after k = n, and the objective function for this infinite control
sequence is therefore finite. The cost function is strictly convex in u
because R > 0 so the solution to the optimization is unique.

If we consider the sequence of costs to go along the closed-loop
trajectory, we have

Vk+1 = Vk − (1/2)
(
x(k)′Qx(k)+u(k)′Ru(k)

)
in which Vk = V0(x(k)) is the cost at time k for state value x(k)
and u(k) = u0(x(k)) is the optimal control for state x(k). The cost
along the closed-loop trajectory is nonincreasing and bounded below
(by zero). Therefore, the sequence {Vk} converges and

x(k)′Qx(k)→ 0 u(k)′Ru(k)→ 0 as k→∞

Since Q,R > 0, we have

x(k)→ 0 u(k)→ 0 as k→∞

and closed-loop convergence is established. �

In fact we know more. From the previous sections, we know the
optimal solution is found by iterating the Riccati equation, and the
optimal infinite horizon control law and optimal cost are given by

u0(x) = Kx V0(x) = (1/2)x′Πx

in which

K = −(B′ΠB + R)−1B′ΠA

Π = Q+A′ΠA−A′ΠB(B′ΠB + R)−1B′ΠA (1.19)

Proving Lemma 1.3 has shown also that for (A, B) controllable and
Q,R > 0, a positive definite solution to the discrete algebraic Riccati
equation (DARE), (1.19), exists and the eigenvalues of (A + BK) are
asymptotically stable for the K corresponding to this solution (Bert-
sekas, 1987, pp.58–64).

This basic approach to establishing regulator stability will be gener-
alized in Chapter 2 to handle constrained and nonlinear systems, so it
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is helpful for the new student to first become familiar with these ideas
in the unconstrained, linear setting. For linear systems, asymptotic
convergence is equivalent to asymptotic stability, and we delay the dis-
cussion of stability until Chapter 2. In Chapter 2 the optimal cost is
shown to be a Lyapunov function for the closed-loop system. We also
can strengthen the stability for linear systems from asymptotic stability
to exponential stability based on the form of the Lyapunov function.

The LQR convergence result in Lemma 1.3 is the simplest to estab-
lish, but we can enlarge the class of systems and penalties for which
closed-loop stability is guaranteed. The system restriction can be weak-
ened from controllability to stabilizability, which is discussed in Exer-
cises 1.19 and 1.20. The restriction on the allowable state penalty Q
can be weakened from Q > 0 to Q ≥ 0 and (A,Q) detectable, which
is also discussed in Exercise 1.20. The restriction R > 0 is retained to
ensure uniqueness of the control law. In applications, if one cares little
about the cost of the control, then R is chosen to be small, but positive
definite.

1.4 Introductory State Estimation

The next topic is state estimation. In most applications, the variables
that are conveniently or economically measurable (y) are a small sub-
set of the variables required to model the system (x). Moreover, the
measurement is corrupted with sensor noise and the state evolution
is corrupted with process noise. Determining a good state estimate
for use in the regulator in the face of a noisy and incomplete output
measurement is a challenging task. That is the challenge of state esti-
mation.

To fully appreciate the fundamentals of state estimation, we must
address the fluctuations in the data. Probability theory has proven it-
self as the most successful and versatile approach to modeling these
fluctuations. In this section we introduce the probability fundamentals
necessary to develop an optimal state estimator in the simplest possi-
ble setting: a linear discrete time model subject to normally distributed
process and measurement noise. This optimal state estimator is known
as the Kalman filter (Kalman, 1960a). In Chapter 4 we revisit the state
estimation problem in a much wider setting, and consider nonlinear
models and constraints on the system that preclude an analytical solu-
tion such as the Kalman filter. The probability theory presented here
is also preparation for understanding that chapter.
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1.4.1 Linear Systems and Normal Distributions

This section summarizes the probability and random variable results
required for deriving a linear optimal estimator such as the Kalman fil-
ter. We assume that the reader is familiar with the concepts of a random
variable, probability density and distribution, the multivariate normal
distribution, mean and variance, statistical independence, and condi-
tional probability. Readers unfamiliar with these terms should study
the material in Appendix A before reading this and the next sections.

In the following discussion let x, y , and z be vectors of random
variables. We use the notation

x ∼ N(m,P)
px(x) = n(x,m,P)

to denote random variable x is normally distributed with meanm and
covariance (or simply variance) P , in which

n(x,m,P) = 1
(2π)n/2(detP)1/2

exp
[
−1

2
(x −m)′P−1(x −m)

]
(1.20)

and detP denotes the determinant of matrix P . Note that if x ∈ Rn,
then m ∈ Rn and P ∈ Rn×n is a positive definite matrix. We require
three main results. The simplest version can be stated as follows.

Joint independent normals. If x and y are normally distributed and
(statistically) independent5

x ∼ N(mx, Px) y ∼ N(my , Py)

then their joint density is given by

px,y(x,y) = n(x,mx, Px) n(y,my , Py)[
x
y

]
∼ N

([
mx
my

]
,
[
Px 0
0 Py

])
(1.21)

Note that, depending on convenience, we use both (x,y) and the
vector

[ x
y
]

to denote the pair of random variables.

Linear transformation of a normal. If x is normally distributed with
mean m and variance P , and y is a linear transformation of x,
y = Ax, then y is distributed with mean Am and variance APA′

x ∼ N(m,P) y = Ax y ∼ N(Am,APA′) (1.22)
5We may emphasize that two vectors of random variables are independent using sta-

tistically independent to distinguish this concept from linear independence of vectors.
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Conditional of a joint normal. Ifx andy are jointly normally distributed
as [

x
y

]
∼ N

([
mx
my

][
Px Pxy
Pyx Py

])
then the conditional density of x given y is also normal

px|y(x|y) = n(x,m,P) (1.23)

in which the mean is

m =mx + PxyP−1
y (y −my)

and the covariance is

P = Px − PxyP−1
y Pyx

Note that the conditional mean m is itself a random variable because
it depends on the random variable y .

To derive the optimal estimator, we actually require these three
main results conditioned on additional random variables. The anal-
ogous results are the following.

Joint independent normals. If px|z(x|z) is normal, and y is statisti-
cally independent of x and z and normally distributed

px|z(x|z) = n(x,mx, Px)
y ∼ N(my , Py) y independent of x and z

then the conditional joint density of (x,y) given z is

px,y|z(x,y|z) = n(x,mx, Px) n(y,my , Py)

px,y|z

([
x
y

]∣∣∣∣∣z
)
= n

([
x
y

]
,
[
mx
my

]
,
[
Px 0
0 Py

])
(1.24)

Linear transformation of a normal.

px|z(x|z) = n(x,m,P) y = Ax
py|z(y|z) = n(y,Am,APA′) (1.25)

Conditional of a joint normal. Ifx andy are jointly normally distributed
as

px,y|z

([
x
y

]∣∣∣∣∣z
)
= n

([
x
y

]
,
[
mx
my

]
,
[
Px Pxy
Pyx Py

])
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then the conditional density of x given y,z is also normal

px|y,z(x|y,z) = n(x,m,P) (1.26)

in which

m =mx + PxyP−1
y (y −my)

P = Px − PxyP−1
y Pyx

1.4.2 Linear Optimal State Estimation

We start by assuming the initial state x(0) is normally distributed with
some mean and covariance

x(0) ∼ N(x(0),Q(0))

In applications, we often do not know x(0) or Q(0). In such cases
we often set x(0) = 0 and choose a large value for Q(0) to indicate
our lack of prior knowledge. This choice is referred to in the statis-
tics literature as a noninformative prior. The choice of noninformative
prior forces the upcoming y(k) measurements to determine the state
estimate x̂(k).

Combining the measurement. We obtain noisy measurement y(0)
satisfying

y(0) = Cx(0)+ v(0)
in which v(0) ∼ N(0, R) is the measurement noise. If the measurement
process is quite noisy, then R is large. If the measurements are highly
accurate, then R is small. We choose a zero mean for v because all
of the deterministic effects with nonzero mean are considered part
of the model, and the measurement noise reflects what is left after
all these other effects have been considered. Given the measurement
y(0), we want to obtain the conditional density px(0)|y(0)(x(0)|y(0)).
This conditional density describes the change in our knowledge about
x(0) after we obtain measurement y(0). This step is the essence of
state estimation. To derive this conditional density, first consider the
pair of variables (x(0),y(0)) given as[

x(0)
y(0)

]
=
[
I 0
C I

][
x(0)
v(0)

]

We assume that the noise v(0) is statistically independent of x(0),
and use the independent joint normal result (1.21) to express the joint
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density of (x(0), v(0))[
x(0)
v(0)

]
∼ N

([
x(0)

0

]
,
[
Q(0) 0

0 R

])

From the previous equation, the pair (x(0),y(0)) is a linear transfor-
mation of the pair (x(0), v(0)). Therefore, using the linear transfor-
mation of normal result (1.22), and the density of (x(0), v(0)) gives
the density of (x(0),y(0))[

x(0)
y(0)

]
∼ N

([
x(0)
Cx(0)

]
,
[
Q(0) Q(0)C′

CQ(0) CQ(0)C′ + R

])

Given this joint density, we then use the conditional of a joint normal
result (1.23) to obtain

px(0)|y(0)
(
x(0)|y(0)

)
= n(x(0),m,P)

in which

m = x(0)+ L(0)
(
y(0)− Cx(0)

)
L(0) = Q(0)C′(CQ(0)C′ + R)−1

P = Q(0)−Q(0)C′(CQ(0)C′ + R)−1CQ(0)

We see that the conditional density px(0)|y(0) is normal. The optimal
state estimate is the value of x(0) that maximizes this conditional den-
sity. For a normal, that is the mean, and we choose x̂(0) = m. We
also denote the variance in this conditional after measurement y(0)
by P(0) = P with P given in the previous equation. The change in
variance after measurement (Q(0) to P(0)) quantifies the information
increase by obtaining measurement y(0). The variance after measure-
ment, P(0), is always less than or equal to Q(0), which implies that we
can only gain information by measurement; but the information gain
may be small if the measurement device is poor and the measurement
noise variance R is large.

Forecasting the state evolution. Next we consider the state evolution
from k = 0 to k = 1, which satisfies

x(1) =
[
A I

][x(0)
w(0)

]

in whichw(0) ∼ N(0,Q) is the process noise. If the state is subjected to
large disturbances, thenQ is large, and if the disturbances are small,Q
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is small. Again we choose zero mean for w because the nonzero mean
disturbances should have been accounted for in the system model. We
next calculate the conditional density px(1)|y(0). Now we require the
conditional version of the joint density (x(0),w(0)). We assume that
the process noise w(0) is statistically independent of both x(0) and
v(0), hence it is also independent ofy(0), which is a linear combination
of x(0) and v(0). Therefore we use (1.24) to obtain[

x(0)
w(0)

]
∼ N

([
x̂(0)

0

]
,
[
P(0) 0

0 Q

])

We then use the conditional version of the linear transformation of a
normal (1.25) to obtain

px(1)|y(0)(x(1)|y(0)) = n(x(1), x̂−(1), P−(1))

in which the mean and variance are

x̂−(1) = Ax̂(0) P−(1) = AP(0)A′ +Q

We see that forecasting forward one time step may increase or decrease
the conditional variance of the state. If the eigenvalues of A are less
than unity, for example, the term AP(0)A′ may be smaller than P(0),
but the process noise Q adds a positive contribution. If the system is
unstable, AP(0)A′ may be larger than P(0), and then the conditional
variance definitely increases upon forecasting. See also Exercise 1.27
for further discussion of this point.

Given that px(1)|y(0) is also a normal, we are situated to add mea-
surement y(1) and continue the process of adding measurements fol-
lowed by forecasting forward one time step until we have processed
all the available data. Because this process is recursive, the storage re-
quirements are small. We need to store only the current state estimate
and variance, and can discard the measurements as they are processed.
The required online calculation is minor. These features make the op-
timal linear estimator an ideal candidate for rapid online application.
We next summarize the state estimation recursion.

Summary. Denote the measurement trajectory by

y(k) :=
{
y(0),y(1), . . . y(k)

}
At time k the conditional density with data y(k− 1) is normal

px(k)|y(k−1)(x(k)|y(k− 1)) = n(x(k), x̂−(k), P−(k))
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and we denote the mean and variance with a superscript minus to in-
dicate these are the statistics before measurement y(k). At k = 0, the
recursion starts with x̂−(0) = x(0) and P−(0) = Q(0) as discussed
previously. We obtain measurement y(k) which satisfies[

x(k)
y(k)

]
=
[
I 0
C I

][
x(k)
v(k)

]

The density of (x(k), v(k)) follows from (1.24) since measurement
noise v(k) is independent of x(k) and y(k− 1)[

x(k)
v(k)

]
∼ N

([
x̂−(k)

0

]
,
[
P−(k) 0

0 R

])

Equation (1.25) then gives the joint density[
x(k)
y(k)

]
∼ N

([
x̂−(k)
Cx̂−(k)

]
,
[
P−(k) P−(k)C′

CP−(k) CP−(k)C′ + R

])

We note
{
y(k− 1),y(k)

}
= y(k), and using the conditional density

result (1.26) gives

px(k)|y(k) (x(k)|y(k)) = n(x(k), x̂(k), P(k))

in which

x̂(k) = x̂−(k)+ L(k)
(
y(k)− Cx̂−(k)

)
L(k) = P−(k)C′(CP−(k)C′ + R)−1

P(k) = P−(k)− P−(k)C′(CP−(k)C′ + R)−1CP−(k)

We forecast from k to k+ 1 using the model

x(k+ 1) =
[
A I

][x(k)
w(k)

]

Because w(k) is independent of x(k) and y(k), the joint density of
(x(k),w(k)) follows from a second use of (1.24)[

x(k)
w(k)

]
∼ N

([
x̂(k)

0

]
,
[
P(k) 0

0 Q

])

and a second use of the linear transformation result (1.25) gives

px(k+1)|y(k)(x(k+ 1)|y(k)) = n(x(k+ 1), x̂−(k+ 1), P−(k+ 1))
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in which

x̂−(k+ 1) = Ax̂(k)
P−(k+ 1) = AP(k)A′ +Q

and the recursion is complete.

1.4.3 Least Squares Estimation

We next consider the state estimation problem as a deterministic op-
timization problem rather than an exercise in maximizing conditional
density. This viewpoint proves valuable in Chapter 4 when we wish to
add constraints to the state estimator. Consider a time horizon with
measurements y(k), k = 0,1, . . . , T . We consider the prior information
to be our best initial guess of the initial state x(0), denoted x(0), and
weighting matrices P−(0), Q, and R for the initial state, process distur-
bance, and measurement disturbance. A reasonably flexible choice for
objective function is

VT (x(T)) =
1
2

(
|x(0)− x(0)|2(P−(0))−1 +

T−1∑
k=0

|x(k+ 1)−Ax(k)|2Q−1 +
T∑
k=0

∣∣y(k)− Cx(k)∣∣2
R−1

)
(1.27)

in which x(T) := {x(0), x(1), . . . , x(T)}. We claim and then show that
the following (deterministic) least squares optimization problem pro-
duces the same result as the conditional density function maximization
of the Kalman filter

min
x(T)

VT (x(T)) (1.28)

Game plan. Using forward DP, we can decompose and solve recur-
sively the least squares state estimation problem. To see clearly how
the procedure works, first we write out the terms in the state estimation
least squares problem (1.28)

min
x(0),...,x(T)

1
2

(
|x(0)− x(0)|2(P−(0))−1+

∣∣y(0)− Cx(0)∣∣2
R−1+|x(1)−Ax(0)|2Q−1

+
∣∣y(1)− Cx(1)∣∣2

R−1 + |x(2)−Ax(1)|2Q−1 + · · ·+

|x(T)−Ax(T − 1)|2Q−1 +
∣∣y(T)− Cx(T)∣∣2

R−1

)
(1.29)
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We decompose this T -stage optimization problem with forward DP.
First we combine the prior and the measurement y(0) into the quad-
ratic function V0(x(0)) as shown in the following equation

min
x(T),...,x(1)

arrival cost V−1 (x(1))︷ ︸︸ ︷
min
x(0)

1
2

(
|x(0)− x(0)|2(P−(0))−1 +

∣∣y(0)− Cx(0)∣∣2
R−1︸ ︷︷ ︸

combine V0(x(0))

+|x(1)−Ax(0)|2Q−1 +

∣∣y(1)− Cx(1)∣∣2
R−1 + |x(2)−Ax(1)|2Q−1 + · · ·+

|x(T)−Ax(T − 1)|2Q−1 +
∣∣y(T)− Cx(T)∣∣2

R−1

)

Then we optimize over the first state, x(0). This produces the arrival
cost for the first stage, V−1 (x(1)), which we will show is also quadratic

V−1 (x(1)) =
1
2

∣∣x(1)− x̂−(1)∣∣2
(P−(1))−1

Next we combine the arrival cost of the first stage with the next mea-
surement y(1) to obtain V1(x(1))

min
x(T),...,x(2)

arrival cost V−2 (x(2))︷ ︸︸ ︷
min
x(1)

1
2

(∣∣x(1)− x̂−(1)∣∣2
(P−(1))−1 +

∣∣y(1)− Cx(1)∣∣2
R−1︸ ︷︷ ︸

combine V1(x(1))

+|x(2)−Ax(1)|2Q−1 +

∣∣y(2)− Cx(2)∣∣2
R−1 + |x(3)−Ax(2)|2Q−1 + · · ·+

|x(T)−Ax(T − 1)|2Q−1 +
∣∣y(T)− Cx(T)∣∣2

R−1

)
(1.30)

We optimize over the second state, x(1), which defines arrival cost for
the first two stages, V−2 (x(2)). We continue in this fashion until we
have optimized finally over x(T) and have solved (1.29). Now that we
have in mind an overall game plan for solving the problem, we look at
each step in detail and develop the recursion formulas of forward DP.

Combine prior and measurement. Combining the prior and mea-
surement defines V0

V0(x(0)) =
1
2

(
|x(0)− x(0)|2(P−(0))−1︸ ︷︷ ︸

prior

+
∣∣y(0)− Cx(0)∣∣2

R−1︸ ︷︷ ︸
measurement

)
(1.31)
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which can be expressed also as

V0(x(0)) =
1
2

(
|x(0)− x(0)|2(P−(0))−1 +∣∣(y(0)− Cx(0))− C(x(0)− x(0))∣∣2

R−1

)
Using the third form in Example 1.1 we can combine these two terms
into a single quadratic function

V0(x(0)) = (1/2) (x(0)− x(0)− v)′H̃
−1
(x(0)− x(0)− v)+ constant

in which

v = P−(0)C′(CP−(0)C′ + R)−1 (y(0)− Cx(0))
H̃ = P−(0)− P−(0)C′(CP−(0)C′ + R)−1CP−(0)

and we set the constant term to zero because it does not depend on
x(1). If we define

P(0) = P−(0)− P−(0)C′(CP−(0)C′ + R)−1CP−(0)

L(0) = P−(0)C′(CP−(0)C′ + R)−1

and define the state estimate x̂(0) as follows

x̂(0) = x(0)+ v
x̂(0) = x(0)+ L(0)

(
y(0)− Cx(0)

)
and we have derived the following compact expression for the function
V0

V0(x(0)) = (1/2) |x(0)− x̂(0)|2P(0)−1

State evolution and arrival cost. Now we add the next term in (1.29)
to the function V0(·) and denote the sum as V(·)

V(x(0), x(1)) = V0(x(0))+ (1/2) |x(1)−Ax(0)|2Q−1

V(x(0), x(1)) = 1
2

(
|x(0)− x̂(0)|2P(0)−1 + |x(1)−Ax(0)|2Q−1

)
Again using the third form in Example 1.1, we can add the two quadrat-
ics to obtain

V(x(0), x(1)) = (1/2) |x(0)− v|2H̃−1 + d
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in which

v = x̂(0)+ P(0)A
(
AP(0)A′ +Q

)−1 (x(1)−Ax̂(0))
d = (1/2)

(
|v − x̂(0)|2P(0)−1 + |x(1)−Av|2Q−1

)
This form is convenient for optimization over the first decision variable
x(0); by inspection the solution isx(0) = v and the cost is d. We define
the arrival cost to be the result of this optimization

V−1 (x(1)) =min
x(0)

V(x(0), x(1))

Substituting v into the expression for d and simplifying gives

V−1 (x(1)) = (1/2) |x(1)−Ax̂(0)|
2
(P−(1))−1

in which
P−(1) = AP(0)A′ +Q

We define x̂−(1) = Ax̂(0) and express the arrival cost compactly as

V−1 (x(1)) = (1/2)
∣∣x(1)− x̂−(1)∣∣2

(P−(1))−1

Combine arrival cost and measurement. We now combine the ar-
rival cost and measurement for the next stage of the optimization to
obtain

V1(x(1)) = V−1 (x(1))︸ ︷︷ ︸
prior

+ (1/2)
∣∣(y(1)− Cx(1))∣∣2

R−1︸ ︷︷ ︸
measurement

V1(x(1)) =
1
2

(∣∣x(1)− x̂−(1)∣∣2
(P−(1))−1 +

∣∣y(1)− Cx(1)∣∣2
R−1

)
We can see that this equation is exactly the form as (1.31) of the previ-
ous step, and, by simply changing the variable names, we have that

P(1) = P−(1)− P−(1)C′(CP−(1)C′ + R)−1CP−(1)

L(1) = P−(1)C′(CP−(1)C′ + R)−1

x̂(1) = x̂−(1)+ L(1)(y(1)− Cx̂−(1))

and the cost function V1 is defined as

V1(x(1)) = (1/2)(x(1)− x̂(1))′P(1)−1(x(1)− x̂(1))

in which

x̂−(1) = Ax̂(0)
P−(1) = AP(0)A′ +Q
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Recursion and termination. The recursion can be summarized by
two steps. Adding the measurement at time k produces

P(k) = P−(k)− P−(k)C′(CP−(k)C′ + R)−1CP−(k)

L(k) = P−(k)C′(CP−(k)C′ + R)−1

x̂(k) = x̂−(k)+ L(k)(y(k)− Cx̂−(k))

Propagating the model to time k+ 1 produces

x̂−(k+ 1) = Ax̂(k)
P−(k+ 1) = AP(k)A′ +Q

and the recursion starts with the prior information x̂−(0) = x(0) and
P−(0). The arrival cost, V−k , and arrival cost plus measurement, Vk, for
each stage are given by

V−k (x(k)) = (1/2)
∣∣x(k)− x̂−(k)∣∣(P−(k))−1

Vk(x(k)) = (1/2) |x(k)− x̂(k)|(P(k))−1

The process terminates with the final measurement y(T), at which
point we have recursively solved the original problem (1.29).

We see by inspection that the recursion formulas given by forward
DP of (1.29) are the same as those found by calculating the conditional
density function in Section 1.4.2. Moreover, the conditional densities
before and after measurement are closely related to the least squares
value functions as shown below

p(x(k)|y(k− 1)) = 1
(2π)n/2(detP−(k))1/2

exp(−V−k (x(k))) (1.32)

p(x(k)|y(k)) = 1
(2π)n/2(detP(k))1/2

exp(−Vk(x(k)))

The discovery (and rediscovery) of the close connection between re-
cursive least squares and optimal statistical estimation has not always
been greeted happily by researchers:

The recursive least squares approach was actually inspired
by probabilistic results that automatically produce an equa-
tion of evolution for the estimate (the conditional mean).
In fact, much of the recent least squares work did nothing
more than rederive the probabilistic results (perhaps in an
attempt to understand them). As a result, much of the least
squares work contributes very little to estimation theory.
— Jazwinski (1970, pp.152–153)
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In contrast with this view, we find both approaches valuable in the
subsequent development. The probabilistic approach, which views the
state estimator as maximizing conditional density of the state given
measurement, offers the most insight. It provides a rigorous basis for
comparing different estimators based on the variance of their estimate
error. It also specifies what information is required to define an op-
timal estimator, with variances Q and R of primary importance. In
the probabilistic framework, these parameters should be found from
modeling and data. The main deficiency in the least squares viewpoint
is that the objective function, although reasonable, is ad hoc and not
justified. The choice of weighting matricesQ and R is arbitrary. Practi-
tioners generally choose these parameters based on a tradeoff between
the competing goals of speed of estimator response and insensitivity
to measurement noise. But a careful statement of this tradeoff often
just leads back to the probabilistic viewpoint in which the process dis-
turbance and measurement disturbance are modeled as normal distri-
butions. If we restrict attention to unconstrained linear systems, the
probabilistic viewpoint is clearly superior.

Approaching state estimation with the perspective of least squares
pays off, however, when the models are significantly more complex. It
is generally intractable to find and maximize the conditional density of
the state given measurements for complex, nonlinear and constrained
models. Although the state estimation problem can be stated in the
language of probability, it cannot be solved with current methods. But
reasonable objective functions can be chosen for even complex, nonlin-
ear and constrained models. Moreover, knowing which least squares
problems correspond to which statistically optimal estimation prob-
lems for the simple linear case, provides the engineer with valuable in-
sight in choosing useful objective functions for nonlinear estimation.
We explore these more complex and realistic estimation problems in
Chapter 4. The perspective of least squares also leads to succinct ar-
guments for establishing estimator stability, which we take up shortly.
First we consider situations in which it is advantageous to use moving
horizon estimation.

1.4.4 Moving Horizon Estimation

When using nonlinear models or considering constraints on the esti-
mates, we cannot calculate the conditional density recursively in closed
form as we did in Kalman filtering. Similarly, we cannot solve recur-
sively the least squares problem. If we use least squares we must opti-
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Figure 1.4: Schematic of the moving horizon estimation problem.

mize all the states in the trajectory x(T) simultaneously to obtain the
state estimates. This optimization problem becomes computationally
intractable as T increases. Moving horizon estimation (MHE) removes
this difficulty by considering only the most recentNmeasurements and
finds only the most recentN values of the state trajectory as sketched in
Figure 1.4. The states to be estimated are xN(T) = {x(T−N), . . . , x(T)}
given measurements yN(T) = {y(T − N), . . . , y(T)}. The data have
been broken into two sections with {y(T −N − 1),yN(T)} = y(T). We
assume here that T ≥ N−1 to ignore the initial period in which the es-
timation window fills with measurements and assume that the window
is always full.

The simplest form of MHE is the following least squares problem

min
xN(T)

V̂T (xN(T)) (1.33)

in which the objective function is

V̂T (xN(T)) =
1
2

( T−1∑
k=T−N

|x(k+ 1)−Ax(k)|2Q−1 +

T∑
k=T−N

∣∣y(k)− Cx(k)∣∣2
R−1

)
(1.34)

We use the circumflex (hat) to indicate this is the MHE cost function
considering data sequence from T −N to T rather than the full infor-
mation or least squares cost considering the data from 0 to T .
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MHE in terms of least squares. Notice that from our previous DP
recursion in (1.30), we can write the full least squares problem as

VT (xN(T)) = V−T−N(x(T −N))+

1
2

( T−1∑
k=T−N

|x(k+ 1)−Ax(k)|2Q−1 +
T∑

k=T−N

∣∣y(k)− Cx(k)∣∣2
R−1

)

in which V−T−N(·) is the arrival cost at time T − N. Comparing these
two objective functions, it is clear that the simplest form of MHE is
equivalent to setting up a full least squares problem, but then setting
the arrival cost function V−T−N(·) to zero.

MHE in terms of conditional density. Because we have established
the close connection between least squares and conditional density in
(1.32), we can write the full least squares problem also as an equivalent
conditional density maximization

max
x(T)

px(T)|yN(T)(x(T)|yN(T))

with prior density

px(T−N)|y(T−N−1)(x|y(T −N − 1)) = c exp(−V−T−N(x)) (1.35)

in which the constant c can be found from (1.20) if desired, but its
value does not change the solution to the optimization. We can see
from (1.35) that setting V−T−N(·) to zero in the simplest form of MHE
is equivalent to giving infinite variance to the conditional density of
x(T − N)|y(T − N − 1). This means we are using a noninformative
prior for the state x(T − N) and completely discounting the previous
measurements y(T −N − 1).

To provide a more flexible MHE problem, we therefore introduce a
penalty on the first state to account for the neglected data y(T −N−1)

V̂T (xN(T)) = ΓT−N(x(T −N))+

1
2

( T−1∑
k=T−N

|x(k+ 1)−Ax(k)|2Q−1 +
T∑

k=T−N

∣∣y(k)− Cx(k)∣∣2
R−1

)

For the linear Gaussian case, we can account for the neglected data
exactly with no approximation by setting Γ equal to the arrival cost, or,
equivalently, the negative logarithm of the conditional density of the
state given the prior measurements. Indeed, there is no need to use
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MHE for the linear Gaussian problem at all because we can solve the
full problem recursively. When addressing nonlinear and constrained
problems in Chapter 4, however, we must approximate the conditional
density of the state given the prior measurements in MHE to obtain a
computationally tractable and high-quality estimator.

1.4.5 Observability

We next explore the convergence properties of the state estimators.
For this we require the concept of system observability. The basic idea
of observability is that any two distinct states can be distinguished by
applying some input and observing the two system outputs over some
finite time interval (Sontag, 1998, p.262–263). We discuss this general
definition in more detail when treating nonlinear systems in Chapter
4, but observability for linear systems is much simpler. First of all, the
applied input is irrelevant and we can set it to zero. Therefore consider
the linear time-invariant system (A,C) with zero input

x(k+ 1) = Ax(k)
y(k) = Cx(k)

The system is observable if there exists a finite N, such that for every
x(0),N measurements {y(0),y(1), . . . , y(N−1)} distinguish uniquely
the initial state x(0). Similarly to the case of controllability, if we can-
not determine the initial state using n measurements, we cannot de-
termine it using N > n measurements. Therefore we can develop a
convenient test for observability as follows. For n measurements, the
system model gives 

y(0)
y(1)

...
y(n− 1)

 =


C
CA

...
CAn−1

x(0) (1.36)

The question of observability is therefore a question of uniqueness of
solutions to these linear equations. The matrix appearing in this equa-
tion is known as the observability matrix O

O =


C
CA

...
CAn−1

 (1.37)
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From the fundamental theorem of linear algebra, we know the solution
to (1.36) is unique if and only if the columns of the np×n observability
matrix are linearly independent.6 Therefore, we have that the system
(A,C) is observable if and only if

rank(O) = n

The following result for checking observability also proves useful (Hau-
tus, 1972).

Lemma 1.4 (Hautus Lemma for observability). A system is observable
if and only if

rank

[
λI −A
C

]
= n for all λ ∈ C (1.38)

in which C is the set of complex numbers.

Notice that the first n rows of the matrix in (1.38) are linearly inde-
pendent if λ ∉ eig(A), so (1.38) is equivalent to checking the rank at
just the eigenvalues of A

rank

[
λI −A
C

]
= n for all λ ∈ eig(A)

1.4.6 Convergence of the State Estimator

Next we consider the question of convergence of the estimates of sev-
eral of the estimators we have considered. The simplest convergence
question to ask is the following. Given an initial estimate error, and
zero state and measurement noises, does the state estimate converge to
the state as time increases and more measurements become available?
If the answer to this question is yes, we say the estimates converge;
sometimes we say the estimator converges. As with the regulator, op-
timality of an estimator does not ensure its stability. Consider the case
A = I, C = 0. The optimal estimate is x̂(k) = x(0), which does not
converge to the true state unless we have luckily chosen x(0) = x(0).7
Obviously the lack of stability is caused by our choosing an unobserv-
able (undetectable) system.

We treat first the Kalman filtering or full least squares problem.
Recall that this estimator optimizes over the entire state trajectory

6See Section A.4 of Appendix A or (Strang, 1980, pp.87–88) for a review of this result.
7If we could count on that kind of luck, we would have no need for state estimation.
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x(T) := {x(0), . . . , x(T)} based on all measurements y(T) := {y(0),
. . . , y(T)}. In order to establish convergence, the following result on
the optimal estimator cost function proves useful.

Lemma 1.5 (Convergence of estimator cost). Given noise-free measure-
ments y(T) =

{
Cx(0), CAx(0), . . . , CATx(0)

}
, the optimal estimator

cost V0
T (y(T)) converges as T →∞.

Proof. Denote the optimal state sequence at time T given measurement
y(T) by

{x̂(0|T), x̂(1|T), . . . , x̂(T |T)}
We wish to compare the optimal costs at time T and T − 1. Therefore,
consider using the first T − 1 elements of the solution at time T as
decision variables in the state estimation problem at time T − 1. The
cost for those decision variables at time T − 1 is given by

V0
T −

1
2

(
|x̂(T |T)−Ax̂(T − 1|T)|2Q−1 +

∣∣y(T)− Cx̂(T |T)∣∣2
R−1

)
In other words, we have the full cost at time T and we deduct the cost
of the last stage, which is not present at T − 1. Now this choice of
decision variables is not necessarily optimal at time T − 1, so we have
the inequality

V0
T−1 ≤ V0

T−
1
2

(
|x̂(T |T)−Ax̂(T − 1|T)|2Q−1+

∣∣y(T)− Cx̂(T |T)∣∣2
R−1

)
Because the quadratic terms are nonnegative, the sequence of optimal
estimator costs is nondecreasing with increasing T . We can establish
that the optimal cost is bounded above as follows: at any time T we can
choose the decision variables to be {x(0),Ax(0), . . . , ATx(0)}, which
achieves cost |x(0)− x(0)|2(P−(0))−1 independent of T . The optimal cost
sequence is nondecreasing and bounded above and, therefore, con-
verges. �

The optimal estimator cost converges regardless of system observ-
ability. But if we want the optimal estimate to converge to the state, we
have to restrict the system further. The following lemma provides an
example of what is required.

Lemma 1.6 (Estimator convergence). For (A,C) observable, Q,R > 0,
and noise-free measurements y(T) =

{
Cx(0), CAx(0), . . . , CATx(0)

}
,

the optimal linear state estimate converges to the state

x̂(T)→ x(T) as T →∞
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Proof. To compress the notation somewhat, let ŵT (j) = x̂(T + j +
1|T +n− 1)−Ax̂(T + j|T +n− 1). Using the optimal solution at time
T + n − 1 as decision variables at time T − 1 allows us to write the
following inequality

V0
T−1 ≤ V0

T+n−1−

1
2

( n−2∑
j=−1

∣∣ŵT (j)∣∣2
Q−1 +

n−1∑
j=0

∣∣y(T + j)− Cx̂(T + j|T +n− 1)
∣∣2
R−1

)

Because the sequence of optimal costs converges with increasing T ,
and Q−1, R−1 > 0, we have established that for increasing T

ŵT (j)→ 0 j = −1, . . . , n− 2

y(T + j)− Cx̂(T + j|T +n− 1)→ 0 j = 0, . . . , n− 1 (1.39)

From the system model we have the following relationship between the
last n stages in the optimization problem at time T + n − 1 with data
y(T +n− 1)


x̂(T |T +n− 1)

x̂(T + 1|T +n− 1)
...

x̂(T +n− 1|T +n− 1)

 =

I
A
...

An−1

 x̂(T |T +n− 1)+


0
I 0
...

...
. . .

An−2 An−3 · · · I



ŵT (0)
ŵT (1)

...
ŵT (n− 2)

 (1.40)

We note the measurements satisfy


y(T)

y(T + 1)
...

y(T +n− 1)

 = Ox(T)

Multiplying (1.40) by C and subtracting gives
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y(T)− Cx̂(T |T +n− 1)

y(T + 1)− Cx̂(T + 1|T +n− 1)
...

y(T +n− 1)− Cx̂(T +n− 1|T +n− 1)

 = O
(
x(T)− x̂(T |T +n− 1)

)
−


0
C 0
...

...
. . .

CAn−2 CAn−3 · · · C




ŵT (0)
ŵT (1)

...
ŵT (n− 2)



Applying (1.39) to this equation, we conclude O(x(T) − x̂(T |T + n −
1)) → 0 with increasing T . Because the observability matrix has inde-
pendent columns, we conclude x(T) − x̂(T |T + n − 1) → 0 as T → ∞.
Thus we conclude that the smoothed estimate x̂(T |T+n−1) converges
to the state x(T). Because the ŵT (j) terms go to zero with increasing
T , the last line of (1.40) gives x̂(T+n−1|T+n−1)→ An−1x̂(T |T+n−1)
as T →∞. From the system model An−1x(T) = x(T+n−1) and, there-
fore, after replacing T +n− 1 by T , we have

x̂(T |T)→ x(T) as T →∞

and asymptotic convergence of the estimator is established. �

This convergence result also covers MHE with prior weighting set to
the exact arrival cost because that is equivalent to Kalman filtering and
full least squares. The simplest form of MHE, which discounts prior
data completely, is also a convergent estimator, however, as discussed
in Exercise 1.28.

The estimator convergence result in Lemma 1.6 is the simplest to
establish, but, as in the case of the LQ regulator, we can enlarge the
class of systems and weighting matrices (variances) for which estimator
convergence is guaranteed. The system restriction can be weakened
from observability to detectability, which is discussed in Exercises 1.31
and 1.32. The restriction on the process disturbance weight (variance)
Q can be weakened from Q > 0 to Q ≥ 0 and (A,Q) stabilizable, which
is discussed in Exercise 1.33. The restriction R > 0 remains to ensure
uniqueness of the estimator.
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1.5 Tracking, Disturbances, and Zero Offset

In the last section of this chapter we show briefly how to use the MPC
regulator and MHE estimator to handle different kinds of control prob-
lems, including setpoint tracking and rejecting nonzero disturbances.

1.5.1 Tracking

It is a standard objective in applications to use a feedback controller
to move the measured outputs of a system to a specified and constant
setpoint. This problem is known as setpoint tracking. In Section 2.9
we consider the case in which the system is nonlinear and constrained,
but for simplicity here we consider the linear unconstrained system
in which ysp is an arbitrary constant. In the regulation problem of
Section 1.3 we assumed that the goal was to take the state of the system
to the origin. Such a regulator can be used to treat the setpoint tracking
problem with a coordinate transformation. Denote the desired output
setpoint as ysp. Denote a steady state of the system model as (xs , us).
From (1.5), the steady state satisfies

[
I −A −B

][xs
us

]
= 0

For unconstrained systems, we also impose the requirement that the
steady state satisfies Cxs = ysp for the tracking problem, giving the
set of equations [

I −A −B
C 0

][
xs
us

]
=
[

0
ysp

]
(1.41)

If this set of equations has a solution, we can then define deviation
variables

x̃(k) = x(k)− xs
ũ(k) = u(k)−us

that satisfy the dynamic model

x̃(k+ 1) = x(k+ 1)− xs
= Ax(k)+ Bu(k)− (Axs + Bus)

x̃(k+ 1) = Ax̃(k)+ Bũ(k)

so that the deviation variables satisfy the same model equation as the
original variables. The zero regulation problem applied to the system in
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deviation variables finds ũ(k) that takes x̃(k) to zero, or, equivalently,
which takes x(k) to xs , so that at steady state, Cx(k) = Cxs = ysp,
which is the goal of the setpoint tracking problem. After solving the
regulation problem in deviation variables, the input applied to the sys-
tem is u(k) = ũ(k)+us .

We next discuss when we can solve (1.41). We also note that for con-
strained systems, we must impose the constraints on the steady state
(xs , us). The matrix in (1.41) is a (n+ p)× (n+m) matrix. For (1.41)
to have a solution for all ysp, it is sufficient that the rows of the ma-
trix are linearly independent. That requires p ≤m: we require at least
as many inputs as outputs with setpoints. But it is not uncommon in
applications to have many more measured outputs than manipulated
inputs. To handle these more general situations, we choose a matrix
H and denote a new variable r = Hy as a selection of linear combi-
nations of the measured outputs. The variable r ∈ Rnc is known as
the controlled variable. For cases in which p > m, we choose some set
of outputs nc ≤m, as controlled variables, and assign setpoints to r ,
denoted rsp.

We also wish to treat systems with more inputs than outputs,m > p.
For these cases, the solution to (1.41) may exist for some choice of H
and rsp, but cannot be unique. If we wish to obtain a unique steady
state, then we also must provide desired values for the steady inputs,
usp. To handle constrained systems, we simply impose the constraints
on (xs , us).

Steady-state target problem. Our candidate optimization problem is
therefore

min
xs ,us

1
2

(∣∣us −usp
∣∣2
Rs +

∣∣Cxs −ysp
∣∣2
Qs

)
(1.42a)

subject to: [
I −A −B
HC 0

][
xs
us

]
=
[

0
rsp

]
(1.42b)

Eus ≤ e (1.42c)

FCxs ≤ f (1.42d)

We make the following assumptions:

Assumption 1.7 (Target feasibility and uniqueness).

(a) The target problem is feasible for the controlled variable setpoints
of interest rsp.
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(b) The steady-state input penalty Rs is positive definite.

Assumption 1.7 (a) ensures that the solution (xs , us) exists, and
Assumption 1.7 (b) ensures that the solution is unique. If one chooses
nc = 0, then no controlled variables are required to be at setpoint, and
the problem is feasible for any (usp, ysp) because (xs , us) = (0,0) is a
feasible point. Exercises 1.56 and 1.57 explore the connection between
feasibility of the equality constraints and the number of controlled vari-
ables relative to the number of inputs and outputs. One restriction is
that the number of controlled variables chosen to be offset free must
be less than or equal to the number of manipulated variables and the
number of measurements, nc ≤m and nc ≤ p.

Dynamic regulation problem. Given the steady-state solution, we de-
fine the following multistage objective function

V(x̃(0), ũ) = 1
2

N−1∑
k=0

∣∣x̃(k)∣∣2
Q +

∣∣ũ(k)∣∣2
R s.t. x̃+ = Ax̃ + Bũ

in which x̃(0) = x̂(k) − xs , i.e., the initial condition for the regula-
tion problem comes from the state estimate shifted by the steady-state
xs . The regulator solves the following dynamic, zero-state regulation
problem

min
ũ
V(x̃(0), ũ)

subject to

Eũ ≤ e− Eus
FCx̃ ≤ f − FCxs

in which the constraints also are shifted by the steady state (xs , us).
The optimal cost and solution are V0(x̃(0)) and ũ

0(x̃(0)). The mov-
ing horizon control law uses the first move of this optimal sequence,
ũ0(x̃(0)) = ũ

0(0; x̃(0)), so the controller output is u(k) = ũ0(x̃(0))+
us .

1.5.2 Disturbances and Zero Offset

Another common objective in applications is to use a feedback con-
troller to compensate for an unmeasured disturbance to the system
with the input so the disturbance’s effect on the controlled variable
is mitigated. This problem is known as disturbance rejection. We may



48 Getting Started with Model Predictive Control

wish to design a feedback controller that compensates for nonzero dis-
turbances such that the selected controlled variables asymptotically ap-
proach their setpoints without offset. This property is known as zero
offset. In this section we show a simple method for constructing an
MPC controller to achieve zero offset.

In Chapter 5, we address the full problem. Here we must be content
to limit our objective. We will ensure that if the system is stabilized in
the presence of the disturbance, then there is zero offset. But we will
not attempt to construct the controller that ensures stabilization over
an interesting class of disturbances. That topic is treated in Chapter 5.

This more limited objective is similar to what one achieves when us-
ing the integral mode in proportional-integral-derivative (PID) control
of an unconstrained system: either there is zero steady offset, or the
system trajectory is unbounded. In a constrained system, the state-
ment is amended to: either there is zero steady offset, or the system
trajectory is unbounded, or the system constraints are active at steady
state. In both constrained and unconstrained systems, the zero-offset
property precludes one undesirable possibility: the system settles at
an unconstrained steady state, and the steady state displays offset in
the controlled variables.

A simple method to compensate for an unmeasured disturbance is
to (i) model the disturbance, (ii) use the measurements and model to
estimate the disturbance, and (iii) find the inputs that minimize the
effect of the disturbance on the controlled variables. The choice of
disturbance model is motivated by the zero-offset goal. To achieve
offset-free performance we augment the system state with an integrat-
ing disturbance d driven by a white noise wd

d+ = d+wd (1.43)

This choice is motivated by the works of Davison and Smith (1971,
1974); Qiu and Davison (1993) and the Internal Model Principle of Fran-
cis and Wonham (1976). To remove offset, one designs a control sys-
tem that can remove asymptotically constant, nonzero disturbances
(Davison and Smith, 1971), (Kwakernaak and Sivan, 1972, p.278). To
accomplish this end, the original system is augmented with a replicate
of the constant, nonzero disturbance model, (1.43). Thus the states of
the original system are moved onto the manifold that cancels the effect
of the disturbance on the controlled variables. The augmented system
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model used for the state estimator is given by[
x
d

]+
=
[
A Bd
0 I

][
x
d

]
+
[
B
0

]
u+w (1.44a)

y =
[
C Cd

][x
d

]
+ v (1.44b)

and we are free to choose how the integrating disturbance affects the
states and measured outputs through the choice of Bd and Cd. The only
restriction is that the augmented system is detectable. That restriction
can be easily checked using the following result.

Lemma 1.8 (Detectability of the augmented system). The augmented
system (1.44) is detectable if and only if the nonaugmented system (A,C)
is detectable, and the following condition holds:

rank

[
I −A −Bd
C Cd

]
= n+nd (1.45)

Corollary 1.9 (Dimension of the disturbance). The maximal dimension
of the disturbance d in (1.44) such that the augmented system is de-
tectable is equal to the number of measurements, that is

nd ≤ p

A pair of matrices (Bd, Cd) such that (1.45) is satisfied always exists.
In fact, since (A,C) is detectable, the submatrix

[
I−A
C

]
∈ R(p+n)×n has

rank n. Thus, we can choose any nd ≤ p columns in Rp+n independent
of
[
I−A
C

]
for

[
−Bd
Cd

]
.

The state and the additional integrating disturbance are estimated
from the plant measurement using a Kalman filter designed for the
augmented system. The variances of the stochastic disturbances w
and v may be treated as adjustable parameters or found from input-
output measurements (Odelson, Rajamani, and Rawlings, 2006). The
estimator provides x̂(k) and d̂(k) at each time k. The best forecast of
the steady-state disturbance using (1.43) is simply

d̂s = d̂(k)

The steady-state target problem is therefore modified to account for
the nonzero disturbance d̂s

min
xs ,us

1
2

(∣∣us −usp
∣∣2
Rs +

∣∣∣Cxs + Cdd̂s −ysp

∣∣∣2

Qs

)
(1.46a)
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[
x̂
d̂

]+
=
[
A Bd
0 I

][
x̂
d̂

]
+
[
B
0

]
u+[

Lx
Ld

](
y −

[
C Cd

][x̂
d̂

])x̂
d̂

xs
us
x̂

estimator

target
selector

x̃
+ = Ax̃ + Bũ
(Q,R)

u y

ysp, usp, rsp

(Qs , Rs)

regulator plant

Figure 1.5: MPC controller consisting of: receding horizon regulator,
state estimator, and target selector.

subject to: [
I −A −B
HC 0

][
xs
us

]
=
[

Bdd̂s
rsp −HCdd̂s

]
(1.46b)

Eus ≤ e (1.46c)

FCxs ≤ f − FCdd̂s (1.46d)

Comparing (1.42) to (1.46), we see the disturbance model affects the
steady-state target determination in four ways.

1. The output target is modified in (1.46a) to account for the effect
of the disturbance on the measured output (ysp → ysp − Cdd̂s ).

2. The output constraint in (1.46d) is similarly modified (f → f −
FCdd̂s ).

3. The system steady-state relation in (1.46b) is modified to account
for the effect of the disturbance on the state evolution (0→ Bdd̂s ).

4. The controlled variable target in (1.46b) is modified to account
for the effect of the disturbance on the controlled variable (rsp →
rsp −HCdd̂s ).

Given the steady-state target, the same dynamic regulation problem as
presented in the tracking section, Section 1.5, is used for the regula-
tor. In other words, the regulator is based on the deterministic system
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(A, B) in which the current state is x̂(k)−xs and the goal is to take the
system to the origin.

The following lemma summarizes the offset-free control property
of the combined control system.

Lemma 1.10 (Offset-free control). Consider a system controlled by the
MPC algorithm as shown in Figure 1.5. The target problem (1.46) is
assumed feasible. Augment the system model with a number of inte-
grating disturbances equal to the number of measurements (nd = p);
choose any Bd ∈ Rn×p, Cd ∈ Rp×p such that

rank

[
I −A −Bd
C Cd

]
= n+ p

If the plant output y(k) goes to steady state ys , the closed-loop system is
stable, and constraints are not active at steady state, then there is zero
offset in the controlled variables, that is

Hys = rsp

The proof of this lemma is given in Pannocchia and Rawlings (2003).
It may seem surprising that the number of integrating disturbances
must be equal to the number of measurements used for feedback rather
than the number of controlled variables to guarantee offset-free con-
trol. To gain insight into the reason, consider the disturbance part
(bottom half) of the Kalman filter equations shown in Figure 1.5

d̂+ = d̂+ Ld
(
y −

[
C Cd

][x̂
d̂

])
Because of the integrator, the disturbance estimate cannot converge
until

Ld
(
y −

[
C Cd

][x̂
d̂

])
= 0

But notice this condition merely restricts the output prediction error
to lie in the nullspace of the matrix Ld, which is an nd × p matrix. If
we choose nd = nc < p, then the number of columns of Ld is greater
than the number of rows and Ld has a nonzero nullspace.8 In general,
we require the output prediction error to be zero to achieve zero offset
independently of the regulator tuning. For Ld to have only the zero
vector in its nullspace, we require nd ≥ p. Since we also know nd ≤ p
from Corollary 1.9, we conclude nd = p.
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F0, T0, c0

Tc

r
F

h

T , c

Figure 1.6: Schematic of the well-stirred reactor.

Parameter Nominal value Units

F0 0.1 m3/min
T0 350 K
c0 1 kmol/m3

r 0.219 m
k0 7.2× 1010 min−1

E/R 8750 K
U 54.94 kJ/min·m2·K
ρ 1000 kg/m3

Cp 0.239 kJ/kg·K
∆H −5× 104 kJ/kmol

Table 1.1: Parameters of the well-stirred reactor.

Notice also that Lemma 1.10 does not require that the plant output
be generated by the model. The theorem applies regardless of what
generates the plant output. If the plant is identical to the system plus
disturbance model assumed in the estimator, then the conclusion can
be strengthened. In the nominal case without measurement or process
noise (w = 0, v = 0), for a set of plant initial states, the closed-loop sys-
tem converges to a steady state and the feasible steady-state target is
achieved leading to zero offset in the controlled variables. Characteriz-
ing the set of initial states in the region of convergence, and stabilizing

8This is another consequence of the fundamental theorem of linear algebra. The
result is depicted in Figure A.1.



1.5 Tracking, Disturbances, and Zero Offset 53

the system when the plant and the model differ, are treated in Chap-
ters 3 and 5. We conclude the chapter with a nonlinear example that
demonstrates the use of Lemma 1.10.

Example 1.11: More measured outputs than inputs and zero offset

We consider a well-stirred chemical reactor depicted in Figure 1.6, as
in Pannocchia and Rawlings (2003). An irreversible, first-order reac-
tion A -→ B occurs in the liquid phase and the reactor temperature is

regulated with external cooling. Mass and energy balances lead to the
following nonlinear state space model:

dc
dt
= F0c0 − Fc

πr 2h
− k0 exp

(
− E
RT

)
c

dT
dt
= F0(T0 − T)

πr 2h
+ −∆H
ρCp

k0 exp
(
− E
RT

)
c + 2U

rρCp
(Tc − T)

dh
dt
= F0 − F
πr 2

The controlled variables are h, the level of the tank, and c, the molar
concentration of species A. The additional state variable is T , the re-
actor temperature; while the manipulated variables are Tc , the coolant
liquid temperature, and F , the outlet flowrate. Moreover, it is assumed
that the inlet flowrate acts as an unmeasured disturbance. The model
parameters in nominal conditions are reported in Table 1.1. The open-
loop stable steady-state operating conditions are the following:

cs = 0.878 kmol/m3 T s = 324.5 K hs = 0.659 m

T sc = 300 K F s = 0.1 m3/min

Using a sampling time of 1 min, a linearized discrete state space model
is obtained and, assuming that all the states are measured, the state
space variables are:

x =

 c − csT − T s
h− hs

 u =
[
Tc − T sc
F − F s

]
y =

 c − csT − T s
h− hs

 p = F0 − F s0

The corresponding linear model is:

x(k+ 1) = Ax(k)+ Bu(k)+ Bpp
y(k) = Cx(k)
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in which

A =

0.2681 −0.00338 −0.00728
9.703 0.3279 −25.44

0 0 1

 C =

1 0 0
0 1 0
0 0 1



B =

−0.00537 0.1655
1.297 97.91

0 −6.637

 Bp =

−0.1175
69.74
6.637


(a) Since we have two inputs, Tc and F , we try to remove offset in

two controlled variables, c and h. Model the disturbance with two
integrating output disturbances on the two controlled variables.
Assume that the covariances of the state noises are zero except
for the two integrating states. Assume that the covariances of the
three measurements’ noises are also zero.

Notice that although there are only two controlled variables, this
choice of two integrating disturbances does not follow the pre-
scription of Lemma 1.10 for zero offset.

Simulate the response of the controlled system after a 10% in-
crease in the inlet flowrate F0 at time t = 10 min. Use the nonlin-
ear differential equations for the plant model. Do you have steady
offset in any of the outputs? Which ones?

(b) Follow the prescription of Lemma 1.10 and choose a disturbance
model with three integrating modes. Can you choose three inte-
grating output disturbances for this plant? If so, prove it. If not,
state why not.

(c) Again choose a disturbance model with three integrating modes;
choose two integrating output disturbances on the two controlled
variables. Choose one integrating input disturbance on the outlet
flowrate F . Is the augmented system detectable?

Simulate again the response of the controlled system after a 10%
increase in the inlet flowrate F0 at time t = 10 min. Again use the
nonlinear differential equations for the plant model. Do you have
steady offset in any of the outputs? Which ones?

Compare and contrast the closed-loop performance for the design
with two integrating disturbances and the design with three inte-
grating disturbances. Which control system do you recommend
and why?
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Figure 1.7: Three measured outputs versus time after a step change
in inlet flowrate at 10 minutes; nd = 2.

Solution

(a) Integrating disturbances are added to the two controlled variables
(first and third outputs) by choosing

Cd =

1 0
0 0
0 1

 Bd = 0
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Figure 1.8: Two manipulated inputs versus time after a step change
in inlet flowrate at 10 minutes; nd = 2.

The results with two integrating disturbances are shown in Fig-
ures 1.7 and 1.8. Notice that despite adding integrating distur-
bances to the two controlled variables, c and h, both of these con-
trolled variables as well as the third output, T , all display nonzero
offset at steady state.

(b) A third integrating disturbance is added to the second output
giving

Cd =

1 0 0
0 0 1
0 1 0

 Bd = 0

The augmented system is not detectable with this disturbance
model. The rank of

[
I−A −Bd
C Cd

]
is only 5 instead of 6. The problem

here is that the system level is itself an integrator, and we cannot
distinguish h from the integrating disturbance added to h.
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Figure 1.9: Three measured outputs versus time after a step change
in inlet flowrate at 10 minutes; nd = 3.



58 Getting Started with Model Predictive Control

299

300

301

0 5 10 15 20 25 30 35 40 45 50

T c
(K

)

0.096
0.1

0.104
0.108
0.112
0.116

0.12

0 5 10 15 20 25 30 35 40 45 50

time (min)

F
(m

3
/m

in
)

Figure 1.10: Two manipulated inputs versus time after a step change
in inlet flowrate at 10 minutes; nd = 3.

(c) Next we try three integrating disturbances: two added to the two
controlled variables, and one added to the second manipulated
variable

Cd =

1 0 0
0 0 0
0 1 0

 Bd =

0 0 0.1655
0 0 97.91
0 0 −6.637


The augmented system is detectable for this disturbance model.

The results for this choice of three integrating disturbances are
shown in Figures 1.9 and 1.10. Notice that we have zero offset in
the two controlled variables, c andh, and have successfully forced
the steady-state effect of the inlet flowrate disturbance entirely
into the second output, T .

Notice also that the dynamic behavior of all three outputs is supe-
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rior to that achieved with the model using two integrating distur-
bances. The true disturbance, which is a step at the inlet flowrate,
is better represented by including the integrator in the outlet
flowrate. With a more accurate disturbance model, better over-
all control is achieved. The controller uses smaller manipulated
variable action and also achieves better output variable behavior.
An added bonus is that steady offset is removed in the maximum
possible number of outputs. �

Further notation

G transfer function matrix

m mean of normally distributed random variable

T reactor temperature

ũ input deviation variable

x,y, z spatial coordinates for a distributed system

x̃ state deviation variable
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1.6 Exercises

Exercise 1.1: State space form for chemical reaction model

Consider the following chemical reaction kinetics for a two-step series reaction

A
k1-→ B B

k2-→ C

We wish to follow the reaction in a constant volume, well-mixed, batch reactor. As
taught in the undergraduate chemical engineering curriculum, we proceed by writing
material balances for the three species giving

dcA
dt

= −r1
dcB
dt

= r1 − r2
dcC
dt

= r2

in which cj is the concentration of species j, and r1 and r2 are the rates (mol/(time·vol))
at which the two reactions occur. We then assume some rate law for the reaction
kinetics, such as

r1 = k1cA r2 = k2cB
We substitute the rate laws into the material balances and specify the starting concen-
trations to produce three differential equations for the three species concentrations.

(a) Write the linear state space model for the deterministic series chemical reaction
model. Assume we can measure the component A concentration. What are x,
y , A, B, C , and D for this model?

(b) Simulate this model with initial conditions and parameters given by

cA0 = 1 cB0 = cC0 = 0 k1 = 2 k2 = 1

Exercise 1.2: Distributed systems and time delay

We assume familiarity with the transfer function of a time delay from an undergraduate
systems course

y(s) = e−θsu(s)
Let’s see the connection between the delay and the distributed systems, which give rise
to it. A simple physical example of a time delay is the delay caused by transport in a
flowing system. Consider plug flow in a tube depicted in Figure 1.11.

(a) Write down the equation of change for moles of component j for an arbitrary
volume element and show that

∂cj
∂t
= −∇ · (cjvj)+ Rj

cj(L, t) = y(t)

z = 0 z = L
v

cj(0, t) = u(t)

Figure 1.11: Plug-flow reactor.
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in which cj is the molar concentration of component j, vj is the velocity of
component j, and Rj is the production rate of component j due to chemical
reaction.9

Plug flow means the fluid velocity of all components is purely in the z direction,
and is independent of r and θ and, we assume here, z

vj = vδz

(b) Assuming plug flow and neglecting chemical reaction in the tube, show that the
equation of change reduces to

∂cj
∂t
= −v

∂cj
∂z

(1.47)

This equation is known as a hyperbolic, first-order partial differential equation.
Assume the boundary and initial conditions are

cj(z, t) = u(t) 0 = z t ≥ 0 (1.48)

cj(z, t) = cj0(z) 0 ≤ z ≤ L t = 0 (1.49)

In other words, we are using the feed concentration as the manipulated variable,
u(t), and the tube starts out with some initial concentration profile of compo-
nent j, cj0(z).

(c) Show that the solution to (1.47) with these boundary conditions is

cj(z, t) =
{
u(t − z/v) vt > z
cj0(z − vt) vt < z (1.50)

(d) If the reactor starts out empty of component j, show that the transfer func-
tion between the outlet concentration, y = cj(L, t), and the inlet concentration,
cj(0, t) = u(t), is a time delay. What is the value of θ?

Exercise 1.3: Pendulum in state space

Consider the pendulum suspended at the end of a rigid link depicted in Figure 1.12. Let
r and θ denote the polar coordinates of the center of the pendulum, and let p = rδr be
the position vector of the pendulum, in which δr and δθ are the unit vectors in polar
coordinates. We wish to determine a state space description of the system. We are
able to apply a torque T to the pendulum as our manipulated variable. The pendulum
has mass m, the only other external force acting on the pendulum is gravity, and we
neglect friction. The link provides force −tδr necessary to maintain the pendulum at
distance r = R from the axis of rotation, and we measure this force t.

(a) Provide expressions for the four partial derivatives for changes in the unit vec-
tors with r and θ

∂δr
∂r

∂δr
∂θ

∂δθ
∂r

∂δθ
∂θ

(b) Use the chain rule to find the velocity of the pendulum in terms of the time
derivatives of r and θ. Do not simplify yet by assuming r is constant. We want
the general result.

9You will need the Gauss divergence theorem and 3D Leibniz formula to go from a
mass balance on a volume element to the equation of continuity.
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θ

r

T

m

g

Figure 1.12: Pendulum with applied torque.

(c) Differentiate again to show that the acceleration of the pendulum is

p̈ = (r̈ − r θ̇2)δr + (r θ̈ + 2ṙ θ̇)δθ

(d) Use a momentum balance on the pendulum mass (you may assume it is a point
mass) to determine both the force exerted by the link

t =mRθ̇2 +mg cosθ

and an equation for the acceleration of the pendulum due to gravity and the
applied torque

mRθ̈ − T/R +mg sinθ = 0

(e) Define a state vector and give a state space description of your system. What is
the physical significance of your state. Assume you measure the force exerted
by the link.

One answer is
dx1

dt
= x2

dx2

dt
= −(g/R) sinx1 +u

y =mRx2
2 +mg cosx1

in which u = T/(mR2)

Exercise 1.4: Time to Laplace domain

Take the Laplace transform of the following set of differential equations and find the
transfer function, G(s), connecting u(s) and y(s), y = Gu

dx
dt
= Ax + Bu

y = Cx +Du (1.51)

For x ∈ Rn, y ∈ Rp , and u ∈ Rm, what is the dimension of the G matrix? What
happens to the initial condition, x(0) = x0?
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Exercise 1.5: Converting between continuous and discrete time models

Given a prescribed u(t), derive and check the solution to (1.51). Given a prescribed
u(k) sequence, what is the solution to the discrete time model

x(k+ 1) = Ãx(k)+ B̃u(k)

y(k) = C̃x(k)+ D̃u(k)

(a) Compute Ã, B̃, C̃ , and D̃ so that the two solutions agree at the sample times for
a zero-order hold input, i.e., y(k) = y(tk) for u(t) = u(k), t ∈ (tk, tk+1) in
which tk = k∆ for sample time ∆.

(b) Is your result valid for A singular? If not, how can you find Ã, B̃, C̃ , and D̃ for
this case?

Exercise 1.6: Continuous to discrete time conversion for nonlinear models

Consider the autonomous nonlinear differential equation model

dx
dt
= f(x,u)

x(0) = x0 (1.52)

Given a zero-order hold on the input, let s(t,u,x0),0 ≤ t ≤ ∆, be the solution to (1.52)
given initial condition x0 at time t = 0, and constant input u is applied for t in the
interval 0 ≤ t ≤ ∆. Consider also the nonlinear discrete time model

x(k+ 1) = F(x(k),u(k))
(a) What is the relationship between F and s so that the solution of the discrete

time model agrees at the sample times with the continuous time model with a
zero-order hold?

(b) Assume f is linear and apply this result to check the result of Exercise 1.5.

Exercise 1.7: Commuting functions of a matrix

Although matrix multiplication does not commute in general

AB ≠ BA

multiplication of functions of the same matrix do commute. You may have used the
following fact in Exercise 1.5

A−1 exp(At) = exp(At)A−1 (1.53)

(a) Prove that (1.53) is true assuming A has distinct eigenvalues and can therefore
be represented as

A = QΛQ−1 Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


in which Λ is a diagonal matrix containing the eigenvalues of A, and Q is the
matrix of eigenvectors such that

Aqi = λiqi, i = 1, . . . , n

in which qi is the ith column of matrix Q.
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(b) Prove the more general relationship

f(A)g(A) = g(A)f(A) (1.54)

in which f and g are any functions definable by Taylor series.

(c) Prove that (1.54) is true without assuming the eigenvalues are distinct.

Hint: use the Taylor series defining the functions and apply the Cayley-Hamilton
theorem (Horn and Johnson, 1985, pp. 86–87).

Exercise 1.8: Finite difference formula and approximating the exponential

Instead of computing the exact conversion of a continuous time to a discrete time
system as in Exercise 1.5, assume instead one simply approximates the time derivative
with a first-order finite difference formula

dx
dt
≈ x(tk+1)− x(tk)

∆
with step size equal to the sample time, ∆. For this approximation of the continuous

time system, compute Ã and B̃ so that the discrete time system agrees with the approx-
imate continuous time system at the sample times. Comparing these answers to the
exact solution, what approximation of eA∆ results from the finite difference approxi-
mation? When is this a good approximation of eA∆?

Exercise 1.9: Mapping eigenvalues of continuous time systems to discrete
time systems

Consider the continuous time differential equation and discrete time difference equa-
tion

dx
dt
= Ax

x+ = Ãx
and the transformation

Ã = eA∆

Consider the scalar A case.

(a) What A represents an integrator in continuous time? What is the corresponding

Ã value for the integrator in discrete time?

(b) What A give purely oscillatory solutions? What are the corresponding Ã?

(c) For what A is the solution of the ODE stable? Unstable? What are the corre-
sponding Ã?

(d) Sketch and label these A and Ã regions in two complex-plane diagrams.

Exercise 1.10: State space realization

Define a state vector and realize the following models as state space models by hand.
One should do a few by hand to understand what the Octave or MATLAB calls are doing.
Answer the following questions. What is the connection between the poles ofG and the
state space description? For what kinds of G(s) does one obtain a nonzero D matrix?
What is the order and gain of these systems? Is there a connection between order and
the numbers of inputs and outputs?
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(a) G(s) = 1
2s + 1

(b) G(s) = 1
(2s + 1)(3s + 1)

(c) G(s) = 2s + 1
3s + 1

(d) y(k+ 1) = y(k)+ 2u(k)

(e) y(k + 1) = a1y(k) + a2y(k − 1) +
b1u(k)+ b2u(k− 1)

Exercise 1.11: Minimal realization

Find minimal realizations of the state space models you found by hand in Exercise 1.10.
Use Octave or MATLAB for computing minimal realizations. Were any of your hand
realizations nonminimal?

Exercise 1.12: Partitioned matrix inversion lemma

Let matrix Z be partitioned into

Z =
[
B C
D E

]

and assume Z−1, B−1 and E−1 exist.

(a) Perform row elimination and show that

Z−1 =
[
B−1 + B−1C(E −DB−1C)−1DB−1 −B−1C(E −DB−1C)−1

−(E −DB−1C)−1DB−1 (E −DB−1C)−1

]

Note that this result is still valid if E is singular.

(b) Perform column elimination and show that

Z−1 =
[

(B − CE−1D)−1 −(B − CE−1D)−1CE−1

−E−1D(B − CE−1D)−1 E−1 + E−1D(B − CE−1D)−1CE−1

]

Note that this result is still valid if B is singular.

(c) A host of other useful control-related inversion formulas follow from these re-
sults. Equate the (1,1) or (2,2) entries of Z−1 and derive the identity

(A+ BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1 (1.55)

A useful special case of this result is

(I +X−1)−1 = I − (I +X)−1

(d) Equate the (1,2) or (2,1) entries of Z−1 and derive the identity

(A+ BCD)−1BC = A−1B(DA−1B + C−1)−1 (1.56)

Equations (1.55) and (1.56) prove especially useful in rearranging formulas in
least squares estimation.
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Exercise 1.13: Perturbation to an asymptotically stable linear system

Given the system

x+ = Ax + Bu

If A is an asymptotically stable matrix, prove that if u(k)→ 0, then x(k)→ 0.

Exercise 1.14: Exponential stability of a perturbed linear system

Given the system

x+ = Ax + Bu

If A is an asymptotically stable matrix, prove that if u(k) decreases exponentially to

zero, then x(k) decreases exponentially to zero.

Exercise 1.15: Are we going forward or backward today?

In the chapter we derived the solution to

min
w,x,y

f(w,x)+ g(x,y)+ h(y, z)

in which z is a fixed parameter using forward dynamic programming (DP)

y0(z)

x̃
0
(z) = x0(y0(z))

w̃
0
(z) = w0(x0(y0(z)))

(a) Solve for optimal w as a function of z using backward DP.

(b) Is forward or backward DP more efficient if you want optimal w as a function
of z?

Exercise 1.16: Method of Lagrange multipliers

Consider the objective function V(x) = (1/2)x′Hx + h′x and optimization problem

min
x
V(x) (1.57)

subject to
Dx = d

in which H > 0, x ∈ Rn, d ∈ Rm, m < n, i.e., fewer constraints than decisions. Rather
than partially solving for x using the constraint and eliminating it, we make use of the
method of Lagrange multipliers for treating the equality constraints (Fletcher, 1987;
Nocedal and Wright, 1999).

In the method of Lagrange multipliers, we augment the objective function with the
constraints to form the Lagrangian function, L

L(x, λ) = (1/2)x′Hx + h′x − λ′(Dx − d)
in which λ ∈ Rm is the vector of Lagrange multipliers. The necessary and sufficient
conditions for a global minimizer are that the partial derivatives of L with respect to x
and λ vanish (Nocedal and Wright, 1999, p. 444), (Fletcher, 1987, p.198,236)
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(a) Show that the necessary and sufficient conditions are equivalent to the matrix
equation [

H −D′
−D 0

][
x
λ

]
= −

[
h
d

]
(1.58)

The solution to (1.58) then provides the solution to the original problem (1.57).

(b) We note one other important feature of the Lagrange multipliers, their relation-
ship to the optimal cost of the purely quadratic case. For h = 0, the cost is given
by

V0 = (1/2)(x0)′Hx0

Show that this can also be expressed in terms of λ0 by the following

V0 = (1/2)d′λ0

Exercise 1.17: Minimizing a constrained, quadratic function

Consider optimizing the positive definite quadratic function subject to a linear con-
straint

min
x
(1/2)x′Hx s.t. Ax = b

Using the method of Lagrange multipliers presented in Exercise 1.16, show that the
optimal solution, multiplier, and cost are given by

x0 = H−1A′(AH−1A′)−1b

λ0 = (AH−1A′)−1b

V0 = (1/2)b′(AH−1A′)−1b

Exercise 1.18: Minimizing a partitioned quadratic function

Consider the partitioned constrained minimization

min
x1,x2

[
x1
x2

]′ [H1
H2

][
x1
x2

]
subject to [

D I
][x1
x2

]
= d

The solution to this optimization is required in two different forms, depending on
whether one is solving an estimation or regulation problem. Show that the solution
can be expressed in the following two forms if both H1 and H2 are full rank.

• Regulator form

V0(d) = d′(H2 −H2D(D′H2D +H1)−1D′H2)d

x0
1(d) = K̃d K̃ = (D′H2D +H1)−1D′H2

x0
2(d) = (I −DK̃)d

• Estimator form

V0(d) = d′(DH−1
1 D′ +H−1

2 )−1d

x0
1(d) = L̃d L̃ = H−1

1 D′(DH−1
1 D′ +H−1

2 )−1

x0
2(d) = (I −DL̃)d
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Exercise 1.19: Stabilizability and controllability canonical forms

Consider the partitioned system[
x1
x2

]+
=
[
A11 A12

0 A22

][
x1
x2

]
+
[
B1
0

]
u

with (A11, B1) controllable. This form is known as controllability canonical form.

(a) Show that the system is not controllable by checking the rank of the controlla-
bility matrix.

(b) Show that the modes x1 can be controlled from any x1(0) to any x1(n)with a se-
quence of inputsu(0), . . . , u(n−1), but the modes x2 cannot be controlled from
any x2(0) to any x2(n). The states x2 are termed the uncontrollable modes.

(c) If A22 is stable the system is termed stabilizable. Although not all modes can be
controlled, the uncontrollable modes are stable and decay to steady state.

The following lemma gives an equivalent condition for stabilizability.

Lemma 1.12 (Hautus Lemma for stabilizability). A system is stabilizable if and
only if

rank
[
λI −A B

]
= n for all |λ| ≥ 1

Prove this lemma using Lemma 1.2 as the condition for controllability.

Exercise 1.20: Regulator stability, stabilizable systems, and semidefinite
state penalty

(a) Show that the infinite horizon LQR is stabilizing for (A, B) stabilizable with
R,Q > 0.

(b) Show that the infinite horizon LQR is stabilizing for (A, B) stabilizable and R > 0,
Q ≥ 0, and (A,Q) detectable. Discuss what happens to the controller’s stabiliz-
ing property if Q is not positive semidefinite or (A,Q) is not detectable.

Exercise 1.21: Time-varying linear quadratic problem

Consider the time-varying version of the LQ problem solved in the chapter. The system
model is

x(k+ 1) = A(k)x(k)+ B(k)u(k)
The objective function also contains time-varying penalties

min
u
V(x(0),u) = 1

2

N−1∑
k=0

(
x(k)′Q(k)x(k)+u(k)′R(k)u(k)

)
+ x(N)′Q(N)x(N)


subject to the model. Notice the penalty on the final state is now simply Q(N) instead
of Pf .

Apply the DP argument to this problem and determine the optimal input sequence
and cost. Can this problem also be solved in closed form like the time-invariant case?



1.6 Exercises 69

Exercise 1.22: Steady-state Riccati equation

Generate a random A and B for a system model for whatever n(≥ 3) and m(≥ 3) you
wish. Choose a positive semidefiniteQ and positive definite R of the appropriate sizes.

(a) Iterate the DARE by hand with Octave or MATLAB until Π stops changing. Save
this result. Now call the MATLAB or Octave function to solve the steady-state
DARE. Do the solutions agree? Where in the complex plane are the eigenvalues
of A+BK? Increase the size ofQ relative to R. Where do the eigenvalues move?

(b) Repeat for a singular A matrix. What happens to the two solution techniques?

(c) Repeat for an unstable A matrix.

Exercise 1.23: Positive definite Riccati iteration

If Π(k),Q,R > 0 in (1.11), show that Π(k− 1) > 0.
Hint: apply (1.55) to the term (B′Π(k)B + R)−1.

Exercise 1.24: Existence and uniqueness of the solution to constrained least
squares

Consider the least squares problem subject to linear constraint

min
x
(1/2)x′Qx subject to Ax = b

in which x ∈ Rn, b ∈ Rp , Q ∈ Rn×n, Q ≥ 0, A ∈ Rp×n. Show that this problem has a
solution for every b and the solution is unique if and only if

rank(A) = p rank

[
Q
A

]
= n

Exercise 1.25: Rate-of-change penalty

Consider the generalized LQR problem with the cross term between x(k) and u(k)

V(x(0),u) = 1
2

N−1∑
k=0

(
x(k)′Qx(k)+u(k)′Ru(k)+ 2x(k)′Mu(k)

)
+(1/2)x(N)′Pfx(N)

(a) Solve this problem with backward DP and write out the Riccati iteration and
feedback gain.

(b) Control engineers often wish to tune a regulator by penalizing the rate of change
of the input rather than the absolute size of the input. Consider the additional
positive definite penalty matrix S and the modified objective function

V(x(0),u) = 1
2

N−1∑
k=0

(
x(k)′Qx(k)+u(k)′Ru(k)+∆u(k)′S∆u(k)

)
+ (1/2)x(k)′Pfx(k)

in which ∆u(k) = u(k) − u(k − 1). Show that you can augment the state to
include u(k− 1) via

x̃(k) =
[
x(k)

u(k− 1)

]
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and reduce this new problem to the standard LQR with the cross term. What are

Ã, B̃, Q̃, R̃, and M̃ for the augmented problem (Rao and Rawlings, 1999)?

Exercise 1.26: Existence, uniqueness and stability with the cross term

Consider the linear quadratic problem with system

x+ = Ax + Bu (1.59)

and infinite horizon cost function

V(x(0),u) = (1/2)
∞∑
k=0

x(k)′Qx(k)+u(k)′Ru(k)

The existence, uniqueness and stability conditions for this problem are: (A, B) stabi-
lizable, Q ≥ 0, (A,Q) detectable, and R > 0. Consider the modified objective function
with the cross term

V = (1/2)
∞∑
k=0

x(k)′Qx(k)+u(k)′Ru(k)+ 2x(k)′Mu(k) (1.60)

(a) Consider reparameterizing the input as

v(k) = u(k)+ Tx(k) (1.61)

Choose T such that the cost function in x and v does not have a cross term,
and express the existence, uniqueness and stability conditions for the trans-
formed system. Goodwin and Sin (1984, p.251) discuss this procedure in the
state estimation problem with nonzero covariance between state and output
measurement noises.

(b) Translate and simplify these to obtain the existence, uniqueness and stability
conditions for the original system with cross term.

Exercise 1.27: Forecasting and variance increase or decrease

Given positive definite initial state variance P(0) and process disturbance variance Q,
the variance after forecasting one sample time was shown to be

P−(1) = AP(0)A′ +Q

(a) If A is stable, is it true that AP(0)A′ < P(0)? If so, prove it. If not, provide a
counterexample.

(b) If A is unstable, is it true that AP(0)A′ > P(0)? If so, prove it. If not, provide a
counterexample.

(c) If the magnitudes of all the eigenvalues ofA are unstable, is it true thatAP(0)A′ >
P(0)? If so, prove it. If not, provide a counterexample.
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Exercise 1.28: Convergence of MHE with noninformative prior

Show that the simplest form of MHE defined in (1.33) and (1.34) is also a convergent
estimator for an observable system. What restrictions on the horizon length N do you
require for this result to hold?

Hint: you can solve the MHE optimization problem by inspection when there is no

prior weighting of the data.

Exercise 1.29: Symmetry in regulation and estimation

In this exercise we display the symmetry of the backward DP recursion for regulation,
and the forward DP recursion for estimation. In the regulation problem we solve at
stage k

min
x,u

`(z,u)+ V0
k (x) s.t. x = Az + Bu

In backward DP, x is the state at the current stage and z is the state at the previous
stage. The stage cost and cost to go are given by

`(z,u) = (1/2)(z′Qz +u′Ru) V0
k (x) = (1/2)x

′Π(k)x

and the optimal cost is V0
k−1(z) since z is the state at the previous stage.

In estimation we solve at stage k

min
x,w

`(z,w)+ V0
k (x) s.t. z = Ax +w

In forward DP, x is the state at the current stage, z is the state at the next stage. The
stage cost and arrival cost are given by

`(z,w) = (1/2)
( ∣∣y(k+ 1)− Cz

∣∣2
R−1 +w′Q−1w

)
V0
k (x) = (1/2) |x − x̂(k)|

2
P(k)−1

and we wish to find V0
k+1(z) in the estimation problem.

(a) In the estimation problem, take the z term outside the optimization and solve

min
x,w

1
2

(
w′Q−1w + (x − x̂(k))′P(k)−1(x − x̂(k))

)
s.t. z = Ax +w

using the inverse form in Exercise 1.18, and show that the optimal cost is given
by

V0(z) = (1/2)(z −Ax̂(k))′(P−(k+ 1))−1(z −Ax̂(k))
P−(k+ 1) = AP(k)A′ +Q

Add the z term to this cost using the third part of Example 1.1 and show that

V0
k+1(z) = (1/2)(z − x̂(k+ 1))′P−1(k+ 1)(z − x̂(k+ 1))

P(k+ 1) = P−(k+ 1)− P−(k+ 1)C′(CP−(k+ 1)C′ + R)−1CP−(k+ 1)

x̂(k+ 1) = Ax̂(k)+ L(k+ 1)(y(k+ 1)− CAx̂(k))
L(k+ 1) = P−(k+ 1)C′(CP−(k+ 1)C′ + R)−1

(b) In the regulator problem, take the z term outside the optimization and solve the
remaining two-term problem using the regulator form of Exercise 1.18. Then
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add the z term and show that

V0
k−1(z) = (1/2)z

′Π(k− 1)z

Π(k− 1) = Q+A′Π(k)A−A′Π(k)B(B′Π(k)B + R)−1B′Π(k)A

u0(z) = K(k− 1)z

x0(z) = (A+ BK(k− 1))z

K(k− 1) = −(B′Π(k)B + R)−1B′Π(k)A

This symmetry can be developed further if we pose an output tracking problem rather
than zero state regulation problem in the regulator.

Exercise 1.30: Symmetry in the Riccati iteration

Show that the covariance before measurement P−(k + 1) in estimation satisfies an
identical iteration to the cost to go Π(k−1) in regulation under the change of variables
P− -→ Π, A -→ A′, C -→ B′.

Exercise 1.31: Detectability and observability canonical forms

Consider the partitioned system[
x1
x2

]+
=
[
A11 0
A21 A22

][
x1
x2

]

y =
[
C1 0

][x1
x2

]

with (A11, C1) observable. This form is known as observability canonical form.

(a) Show that the system is not observable by checking the rank of the observability
matrix.

(b) Show that the modes x1 can be uniquely determined from a sequence of mea-
surements, but the modes x2 cannot be uniquely determined from the measure-
ments. The states x2 are termed the unobservable modes.

(c) If A22 is stable the system is termed detectable. Although not all modes can be
observed, the unobservable modes are stable and decay to steady state.

The following lemma gives an equivalent condition for detectability.

Lemma 1.13 (Hautus Lemma for detectability). A system is detectable if and only
if

rank

[
λI −A
C

]
= n for all |λ| ≥ 1

Prove this lemma using Lemma 1.4 as the condition for observability.

Exercise 1.32: Estimator stability and detectable systems

Show that the least squares estimator given in (1.28) is stable for (A,C) detectable with
Q > 0.
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Exercise 1.33: Estimator stability and semidefinite state noise penalty

We wish to show that the least squares estimator is stable for (A,C) detectable and
Q ≥ 0, (A,Q) stabilizable.

(a) Because Q−1 is not defined in this problem, the objective function defined in
(1.27) requires modification. Show that the objective function with semidefinite
Q ≥ 0 can be converted into the following form

V(x(0),w(T)) = 1
2

(
|x(0)− x(0)|2(P−(0))−1 +

T−1∑
k=0

|w(k)|2Q̃−1 +
T∑
k=0

∣∣y(k)− Cx(k)∣∣2
R−1

)
in which

x+ = Ax +Gw Q̃ > 0

Find expressions for Q̃ and G in terms of the original semidefinite Q. How are

the dimension of Q̃ and G related to the rank of Q?

(b) What is the probabilistic interpretation of the state estimation problem with
semidefinite Q?

(c) Show that (A,Q) stabilizable implies (A,G) stabilizable in the converted form.

(d) Show that this estimator is stable for (A,C) detectable and (A,G) stabilizable

with Q̃, R > 0.

(e) Discuss what happens to the estimator’s stability ifQ is not positive semidefinite
or (A,Q) is not stabilizable.

Exercise 1.34: Calculating mean and variance from data

We are sampling a real-valued scalar random variable x(k) ∈ R at time k. Assume
the random variable comes from a distribution with mean x and variance P , and the
samples at different times are statistically independent.

A colleague has suggested the following formulas for estimating the mean and
variance from N samples

x̂N =
1
N

N∑
j=1

x(j) P̂N =
1
N

N∑
j=1

(x(j)− x̂N)2

(a) Prove that the estimate of the mean is unbiased for all N, i.e., show that for all
N

E(x̂N) = x

(b) Prove that the estimate of the variance is not unbiased for any N, i.e., show that
for all N

E(P̂N) ≠ P

(c) Using the result above, provide an alternative formula for the variance estimate
that is unbiased for allN. How large doesN have to be before these two estimates
of P are within 1%?



74 Getting Started with Model Predictive Control

Exercise 1.35: Expected sum of squares

Given that a random variable x has meanm and covariance P , show that the expected
sum of squares is given by the formula (Selby, 1973, p.138)

E(x′Qx) =m′Qm+ tr(QP)

The trace of a square matrix A, written tr(A), is defined to be the sum of the diagonal
elements

tr(A) :=
∑
i
Aii

Exercise 1.36: Normal distribution

Given a normal distribution with scalar parameters m and σ ,

pξ(x) =
√

1
2πσ2 exp

[
−1

2

(
x −m
σ

)2
]

(1.62)

By direct calculation, show that

(a)

E(ξ) =m
var(ξ) = σ2

(b) Show that the mean and the maximum likelihood are equal for the normal dis-
tribution. Draw a sketch of this result. The maximum likelihood estimate, x̂, is
defined as

x̂ := arg max
x
pξ(x)

in which arg returns the solution to the optimization problem.

Exercise 1.37: Conditional densities are positive definite

We show in Example A.44 that if ξ and η are jointly normally distributed as[
ξ
η

]
∼ N(m,P)

∼ N
([

mx
my

]
,
[
Px Pxy
Pyx Py

])
then the conditional density of ξ given η is also normal

(ξ|η) ∼ N(mx|y , Px|y)

in which the conditional mean is

mx|y =mx + PxyP−1
y (y −my)

and the conditional covariance is

Px|y = Px − PxyP−1
y Pyx

Given that the joint density is well defined, prove the marginal densities and the condi-

tional densities also are well defined, i.e., given P > 0, prove Px > 0, Py > 0, Px|y > 0,

Py|x > 0.
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Exercise 1.38: Expectation and covariance under linear transformations

Consider the random variable x ∈ Rn with density px and mean and covariance

E(x) =mx cov(x) = Px

Consider the random variable y ∈ Rp defined by the linear transformation

y = Cx

(a) Show that the mean and covariance for y are given by

E(y) = Cmx cov(y) = CPxC′

Does this result hold for all C? If yes, prove it; if no, provide a counterexample.

(b) Apply this result to solve Exercise A.35.

Exercise 1.39: Normal distributions under linear transformations

Given the normally distributed random variable, ξ ∈ Rn, consider the random variable,
η ∈ Rn, obtained by the linear transformation

η = Aξ

in which A is a nonsingular matrix. Using the result on transforming probability densi-
ties, show that if ξ ∼ N(m,P), then η ∼ N(Am,APA′). This result basically says that
linear transformations of normal random variables are normal.

Exercise 1.40: More on normals and linear transformations

Consider a normally distributed random variable x ∈ Rn, x ∼ N(mx , Px). You showed
in Exercise 1.39 for C ∈ Rn×n invertible, that the random variable y defined by the
linear transformation y = Cx is also normal and is distributed as

y ∼ N(Cmx , CPxC′)

Does this result hold for all C? If yes, prove it; if no, provide a counterexample.

Exercise 1.41: Signal processing in the good old days — recursive least
squares

Imagine we are sent back in time to 1960 and the only computers available have ex-
tremely small memories. Say we have a large amount of data coming from a process
and we want to compute the least squares estimate of model parameters from these
data. Our immediate challenge is that we cannot load all of these data into memory to
make the standard least squares calculation.

Alternatively, go 150 years further back in time and consider the situation from
Gauss’s perspective,

It occasionally happens that after we have completed all parts of an ex-
tended calculation on a sequence of observations, we learn of a new ob-
servation that we would like to include. In many cases we will not want to
have to redo the entire elimination but instead to find the modifications
due to the new observation in the most reliable values of the unknowns
and in their weights.
C.F. Gauss, 1823
G.W. Stewart Translation, 1995, p. 191.
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Given the linear model
yi = X′iθ

in which scalaryi is the measurement at sample i, X′i is the independent model variable
(row vector, 1 × p) at sample i, and θ is the parameter vector (p × 1) to be estimated
from these data. Given the weighted least squares objective and n measurements, we
wish to compute the usual estimate

θ̂ = (X′X)−1X′y (1.63)

in which

y =


y1
...
yn

 X =


X′1
...
X′n


We do not wish to store the large matrices X(n × p) and y(n × 1) required for this
calculation. Because we are planning to process the data one at a time, we first modify
our usual least squares problem to deal with small n. For example, we wish to estimate
the parameters when n < p and the inverse in (1.63) does not exist. In such cases, we
may choose to regularize the problem by modifying the objective function as follows

Φ(θ) = (θ − θ)′P−1
0 (θ − θ)+

n∑
i=1

(yi −X′iθ)
2

in which θ and P0 are chosen by the user. In Bayesian estimation, we call θ and P0 the
prior information, and often assume that the prior density of θ (without measurements)
is normal

θ ∼ N(θ, P0)
The solution to this modified least squares estimation problem is

θ̂ = θ + (X′X + P−1
0 )−1X′(y −Xθ) (1.64)

Devise a means to recursively estimate θ so that:

1. We never store more than one measurement at a time in memory.

2. After processing all the measurements, we obtain the same least squares esti-
mate given in (1.64).

Exercise 1.42: Least squares parameter estimation and Bayesian estimation

Consider a model linear in the parameters

y = Xθ + e (1.65)

in which y ∈ Rp is a vector of measurements, θ ∈ Rm is a vector of parameters,
X ∈ Rp×m is a matrix of known constants, and e ∈ Rp is a random variable modeling
the measurement error. The standard parameter estimation problem is to find the best
estimate of θ given the measurements y corrupted with measurement error e, which
we assume is distributed as

e ∼ N(0, R)

(a) Consider the case in which the errors in the measurements are independently
and identically distributed with variance σ2, R = σ2I. For this case, the classic
least squares problem and solution are

min
θ

∣∣y −Xθ∣∣2 θ̂ =
(
X′X

)−1 X′y
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Consider the measurements to be sampled from (1.65) with true parameter value
θ0. Show that using the least squares formula, the parameter estimate is dis-
tributed as

θ̂ ∼ N(θ0, Pθ̂) Pθ̂ = σ
2 (X′X)−1

(b) Now consider again the model of (1.65) and a Bayesian estimation problem. As-
sume a prior distribution for the random variable θ

θ ∼ N(θ, P)
Compute the conditional density of θ given measurement y , show that this
density is normal, and find its mean and covariance

pθ|y(θ|y) = n(θ,m,P)
Show that Bayesian estimation and least squares estimation give the same result
in the limit of a noninformative prior. In other words, if the covariance of the
prior is large compared to the covariance of the measurement error, show that

m ≈ (X′X)−1X′y P ≈ Pθ̂
(c) What (weighted) least squares minimization problem is solved for the general

measurement error covariance

e ∼ N(0, R)
Derive the least squares estimate formula for this case.

(d) Again consider the measurements to be sampled from (1.65) with true param-
eter value θ0. Show that the weighted least squares formula gives parameter
estimates that are distributed as

θ̂ ∼ N(θ0, Pθ̂)

and find Pθ̂ for this case.

(e) Show again that Bayesian estimation and least squares estimation give the same
result in the limit of a noninformative prior.

Exercise 1.43: Least squares and minimum variance estimation

Consider again the model linear in the parameters and the least squares estimator from
Exercise 1.42

y = Xθ + e e ∼ N(0, R)

θ̂ =
(
X′R−1X

)−1
X′R−1y

Show that the covariance of the least squares estimator is the smallest covariance of

all linear unbiased estimators.

Exercise 1.44: Two stages are not better than one

We often can decompose an estimation problem into stages. Consider the following
case in which we wish to estimate x from measurements of z, but we have the model
between x and an intermediate variable, y , and the model between y and z

y = Ax + e1 cov(e1) = Q1

z = By + e2 cov(e2) = Q2
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(a) Write down the optimal least squares problem to solve for ŷ given the z mea-
surements and the second model. Given ŷ , write down the optimal least squares
problem for x̂ in terms of ŷ . Combine these two results together and write the
resulting estimate of x̂ given measurements of z. Call this the two-stage estimate
of x.

(b) Combine the two models together into a single model and show that the rela-
tionship between z and x is

z = BAx + e3 cov(e3) = Q3

Express Q3 in terms of Q1,Q2 and the models A,B. What is the optimal least
squares estimate of x̂ given measurements of z and the one-stage model? Call
this the one-stage estimate of x.

(c) Are the one-stage and two-stage estimates of x the same? If yes, prove it. If
no, provide a counterexample. Do you have to make any assumptions about the
models A,B?

Exercise 1.45: Time-varying Kalman filter

Derive formulas for the conditional densities of x(k)|y(k − 1) and x(k)|y(k) for the
time-varying linear system

x(k+ 1) = A(k)x(k)+G(k)w(k)
y(k) = C(k)x(k)+ v(k)

in which the initial state, state noise and measurement noise are independently dis-
tributed as

x(0) ∼ N(x0,Q0) w(k) ∼ N(0,Q) v(k) ∼ N(0, R)

Exercise 1.46: More on conditional densities

In deriving the discrete time Kalman filter, we have px|y(x(k)|y(k)) and we wish to
calculate recursively px|y(x(k+ 1)|y(k+ 1)) after we collect the output measurement
at time k + 1. It is straightforward to calculate px,y|y(x(k + 1),y(k + 1)|y(k)) from
our established results on normal densities and knowledge of px|y(x(k)|y(k)), but
we still need to establish a formula for pushing the y(k + 1) to the other side of the
conditional density bar. Consider the following statement as a possible lemma to aid
in this operation.

pa|b,c(a|b, c) =
pa,b|c(a, b|c)
pb|c(b|c)

If this statement is true, prove it. If it is false, give a counterexample.

Exercise 1.47: Other useful conditional densities

Using the definitions of marginal and conditional density, establish the following useful
conditional density relations

1. pA|B(a|b) =
∫
pA|B,C(a|b, c)pC|B(c|b)dc

2. pA|B,C(a|b, c) = pC|A,B(c|a,b)
pA|B(a|b)
pC|B(c|b)
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Exercise 1.48: Optimal filtering and deterministic least squares

Given the data sequence {y(0), . . . , y(k)} and the system model

x+ = Ax +w
y = Cx + v

(a) Write down a least squares problem whose solution would provide a good state
estimate for x(k) in this situation. What probabilistic interpretation can you
assign to the estimate calculated from this least squares problem?

(b) Now consider the nonlinear model

x+ = f(x)+w
y = g(x)+ v

What is the corresponding nonlinear least squares problem for estimating x(k)
in this situation? What probabilistic interpretation, if any, can you assign to this
estimate in the nonlinear model context?

(c) What is the motivation for changing from these least squares estimators to the
moving horizon estimators we discussed in the chapter?

Exercise 1.49: A nonlinear transformation and conditional density

Consider the following relationship between the random variable y , and x and v

y = f(x)+ v

The author of a famous textbook wants us to believe that

py|x(y|x) = pv(y − f(x))

Derive this result and state what additional assumptions on the random variables x
and v are required for this result to be correct.

Exercise 1.50: Some smoothing

One of the problems with asking you to derive the Kalman filter is that the derivation
is in so many textbooks that it is difficult to tell if you are thinking independently.
So here’s a variation on the theme that should help you evaluate your level of under-
standing of these ideas. Let’s calculate a smoothed rather than filtered estimate and
covariance. Here’s the problem.

We have the usual setup with a prior on x(0)

x(0) ∼ N(x(0),Q0)

and we receive data from the following system

x(k+ 1) = Ax(k)+w(k)
y(k) = Cx(k)+ v(k)

in which the random variables w(k) and v(k) are independent, identically distributed
normals, w(k) ∼ N(0,Q), v(k) ∼ N(0, R).

(a) Calculate the standard density for the filtering problem, px(0),y(0)(x(0)|y(0)).
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(b) Now calculate the density for the smoothing problem

px(0)|y(0),y(1)(x(0)|y(0),y(1))

that is, not the usual px(1)|y(0),y(1)(x(1)|y(0),y(1)).

Exercise 1.51: Alive on arrival

The following two optimization problems are helpful in understanding the arrival cost
decomposition in state estimation.

(a) Let V(x,y, z) be a positive, strictly convex function consisting of the sum of
two functions, one of which depends on both x and y , and the other of which
depends on y and z

V(x,y, z) = g(x,y)+ h(y, z) V : Rm ×Rn ×Rp → R≥0

Consider the optimization problem

P1 : min
x,y,z

V(x,y, z)

The arrival cost decomposes this three-variable optimization problem into two,
smaller dimensional optimization problems. Define the “arrival cost” g̃ for this
problem as the solution to the following single-variable optimization problem

g̃(y) =min
x
g(x,y)

and define optimization problem P2 as follows

P2 : min
y,z

g̃(y)+ h(y, z)

Let (x′, y′, z′) denote the solution to P1 and (x0, y0, z0) denote the solution to
P2, in which

x0 = arg min
x
g(x,y0)

Prove that the two solutions are equal

(x′, y′, z′) = (x0, y0, z0)

(b) Repeat the previous part for the following optimization problems

V(x,y, z) = g(x)+ h(y, z)

Here the y variables do not appear in g but restrict the x variables through a
linear constraint. The two optimization problems are:

P1 : min
x,y,z

V(x,y, z) subject to Ex = y

P2 : min
y,z

g̃(y)+ h(y, z)

in which
g̃(y) =min

x
g(x) subject to Ex = y
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Exercise 1.52: On-time arrival

Consider the deterministic, full information state estimation optimization problem

min
x(0),w,v

1
2

(
|x(0)− x(0)|2(P−(0))−1 +

T−1∑
i=0

|w(i)|2Q−1 + |v(i)|2R−1

)
(1.66)

subject to

x+ = Ax +w
y = Cx + v (1.67)

in which the sequence of measurements y(T) are known values. Notice we assume the
noise-shaping matrix, G, is an identity matrix here. See Exercise 1.53 for the general
case. Using the result of the first part of Exercise 1.51, show that this problem is
equivalent to the following problem

min
x(T−N),w,v

V−T−N(x(T −N))+
1
2

T−1∑
i=T−N

|w(i)|2Q−1 + |v(i)|2R−1

subject to (1.67). The arrival cost is defined as

V−N (a) := min
x(0),w,v

1
2

(
|x(0)− x(0)|2(P−(0))−1 +

N−1∑
i=0

|w(i)|2Q−1 + |v(i)|2R−1

)
subject to (1.67) and x(N) = a. Notice that any value of N, 0 ≤ N ≤ T , can be used to
split the cost function using the arrival cost.

Exercise 1.53: Arrival cost with noise-shaping matrix G
Consider the deterministic, full information state estimation optimization problem

min
x(0),w,v

1
2

(
|x(0)− x(0)|2(P−(0))−1 +

T−1∑
i=0

|w(i)|2Q−1 + |v(i)|2R−1

)
subject to

x+ = Ax +Gw
y = Cx + v (1.68)

in which the sequence of measurements y are known values. Using the result of the
second part of Exercise 1.51, show that this problem also is equivalent to the following
problem

min
x(T−N),w,v

V−T−N(x(T −N))+
1
2

( T−1∑
i=T−N

|w(i)|2Q−1 + |v(i)|2R−1

)
subject to (1.68). The arrival cost is defined as

V−N (a) := min
x(0),w,v

1
2

(
|x(0)− x(0)|2(P−(0))−1 +

N−1∑
i=0

|w(i)|2Q−1 + |v(i)|2R−1

)
subject to (1.68) and x(N) = a. Notice that any value of N, 0 ≤ N ≤ T , can be used to
split the cost function using the arrival cost.
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Exercise 1.54: Where is the steady state?

Consider the two-input, two-output system

A =


0.5 0 0 0
0 0.6 0 0
0 0 0.5 0
0 0 0 0.6

 B =


0.5 0
0 0.4

0.25 0
0 0.6

 C =
[

1 1 0 0
0 0 1 1

]

(a) The output setpoint is ysp =
[
1 −1

]′
and the input setpoint is usp =

[
0 0

]′
.

Calculate the target triple (xs , us , ys). Is the output setpoint feasible, i.e., does
ys = ysp?

(b) Assume only input oneu1 is available for control. Is the output setpoint feasible?
What is the target in this case using Qs = I?

(c) Assume both inputs are available for control but only the first output has a
setpoint, y1t = 1. What is the solution to the target problem for Rs = I?

Exercise 1.55: Detectability of integrating disturbance models

(a) Prove Lemma 1.8; the augmented system is detectable if and only if the system
(A,C) is detectable and

rank

[
I −A −Bd
C Cd

]
= n+nd

(b) Prove Corollary 1.9; the augmented system is detectable only if nd ≤ p.

Exercise 1.56: Unconstrained tracking problem

(a) For an unconstrained system, show that the following condition is sufficient for
feasibility of the target problem for any rsp.

rank

[
I −A −B
HC 0

]
= n+nc (1.69)

(b) Show that (1.69) implies that the number of controlled variables without offset
is less than or equal to the number of manipulated variables and the number of
measurements, nc ≤m and nc ≤ p.

(c) Show that (1.69) implies the rows of H are independent.

(d) Does (1.69) imply that the rows of C are independent? If so, prove it; if not,
provide a counterexample.

(e) By choosingH, how can one satisfy (1.69) if one has installed redundant sensors
so several rows of C are identical?

Exercise 1.57: Unconstrained tracking problem for stabilizable systems

If we restrict attention to stabilizable systems, the sufficient condition of Exercise 1.56
becomes a necessary and sufficient condition. Prove the following lemma.
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Lemma 1.14 (Stabilizable systems and feasible targets). Consider an unconstrained,
stabilizable system (A, B). The target is feasible for any rsp if and only if

rank

[
I −A −B
HC 0

]
= n+nc

Exercise 1.58: Existence and uniqueness of the unconstrained target

Assume a system having p controlled variables z = Hx, with setpoints rsp, and m
manipulated variables u, with setpoints usp. Consider the steady-state target problem

min
x,u
(1/2)(u−usp)′R(u−usp) R > 0

subject to [
I −A −B
H 0

][
x
u

]
=
[

0
rsp

]
Show that the steady-state solution (x,u) exists for any (rsp, usp) and is unique if

rank

[
I −A −B
H 0

]
= n+ p rank

[
I −A
H

]
= n

Exercise 1.59: Choose a sample time

Consider the unstable continuous time system

dx
dt
= Ax + Bu y = Cx

in which

A =


−0.281 0.935 0.035 0.008
0.047 −0.116 0.053 0.383
0.679 0.519 0.030 0.067
0.679 0.831 0.671 −0.083

 B =


0.687
0.589
0.930
0.846

 C = I

Consider regulator tuning parameters and constraints

Q = diag(1,2,1,2) R = 1 N = 10 |x| ≤


1
2
1
3


(a) Compute the eigenvalues of A. Choose a sample time of ∆ = 0.04 and simulate

the MPC regulator response given x(0) =
[
−0.9 −1.8 0.7 2

]′
until t = 20.

Use an ODE solver to simulate the continuous time plant response. Plot all states
and the input versus time.

Now add an input disturbance to the regulator so the control applied to the plant
is ud instead of u in which

ud(k) = (1+ 0.1w1)u(k)+ 0.1w2

and w1 and w2 are zero mean, normally distributed random variables with unit
variance. Simulate the regulator’s performance given this disturbance. Plot all
states and ud(k) versus time.
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u

d

ysp y
gc g

−

Figure 1.13: Feedback control system with output disturbance d,
and setpoint ysp.

(b) Repeat the simulations with and without disturbance for ∆ = 0.4 and ∆ = 2.

(c) Compare the simulations for the different sample times. What happens if the
sample time is too large? Choose an appropriate sample time for this system
and justify your choice.

Exercise 1.60: Disturbance models and offset

Consider the following two-input, three-output plant discussed in Example 1.11

x+ = Ax + Bu+ Bpp
y = Cx

in which

A =

0.2681 −0.00338 −0.00728
9.703 0.3279 −25.44

0 0 1

 C =

1 0 0
0 1 0
0 0 1


B =

−0.00537 0.1655
1.297 97.91

0 −6.637

 Bp =

−0.1175
69.74
6.637


The input disturbance p results from a reactor inlet flowrate disturbance.

(a) Since there are two inputs, choose two outputs in which to remove steady-state
offset. Build an output disturbance model with two integrators. Is your aug-
mented model detectable?

(b) Implement your controller using p = 0.01 as a step disturbance at k = 0. Do you
remove offset in your chosen outputs? Do you remove offset in any outputs?

(c) Can you find any two-integrator disturbance model that removes offset in two
outputs? If so, which disturbance model do you use? If not, why not?

Exercise 1.61: MPC, PID and time delay

Consider the following first-order system with time delay shown in Figure 1.13

g(s) = k
τs + 1

e−θs , k = 1, τ = 1, θ = 5

Consider a unit step change in setpoint ysp, at t = 0.
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(a) Choose a reasonable sample time, ∆, and disturbance model, and simulate an
offset-free discrete time MPC controller for this setpoint change. List all of your
chosen parameters.

(b) Choose PID tuning parameters to achieve “good performance” for this system.
List your PID tuning parameters. Compare the performances of the two con-
trollers.
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2
Model Predictive Control — Regulation

2.1 Introduction

In Chapter 1 we investigated a special, but useful, form of model pre-
dictive control (MPC); an important feature of this form of MPC is that
there exists a set of initial states for which it is actually optimal for
an infinite horizon optimal control problem and therefore inherits the
associated advantages. Just as there are many methods other than in-
finite horizon linear quadratic control for stabilizing linear systems,
however, there are alternative forms of MPC that can stabilize linear
and even nonlinear systems. We explore these alternatives in the re-
mainder of this chapter. But first we place MPC in a more general setting
to facilitate comparison with other control methods.

MPC is, as we have seen earlier, a form of control in which the control
action is obtained by solving online, at each sampling instant, a finite
horizon optimal control problem in which the initial state is the current
state of the plant. Optimization yields a finite control sequence, and
the first control action in this sequence is applied to the plant. MPC
differs, therefore, from conventional control in which the control law
is precomputed offline. But this is not an essential difference; MPC
implicitly implements a control law that can, in principle, be computed
offline as we shall soon see. Specifically, if the current state of the
system being controlled is x, MPC obtains, by solving an open-loop
optimal control problem for this initial state, a specific control action
u to apply to the plant.

Dynamic programming (DP) may be used to solve a feedback version
of the same optimal control problem, however, yielding a receding hori-
zon control law κ(·). The important fact is that if x is the current state,
the optimal controlu obtained by MPC (by solving an open-loop optimal
control problem) satisfies u = κ(x). For example, MPC computes the
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value κ(x) of the optimal receding horizon control law for the current
state x, while DP yields the control law κ(·) that can be used for any
state. DP would appear to be preferable since it provides a control law
that can be implemented simply (as a look-up table). Obtaining a DP
solution is difficult, if not impossible, however, for most optimal con-
trol problems if the state dimension is reasonably high — unless the
system is linear, the cost quadratic and there are no control or state
constraints. The great advantage of MPC is that open-loop optimal
control problems often can be solved rapidly enough, using standard
mathematical programming algorithms, to permit the use of MPC even
though the system being controlled is nonlinear, and hard constraints
on states and controls must be satisfied. Thus MPC permits the ap-
plication of a DP solution, even though explicit determination of the
optimal control law is intractable. MPC is an effective implementation
of the DP solution and not a new method of control.

In this chapter we study MPC for the case when the state is known.
This case is particularly important, even though it rarely arises in prac-
tice, because important properties, such as stability and performance,
may be relatively easily established. The relative simplicity of this case
arises from the fact that if the state is known and if there are no dis-
turbances or model error, the problem is deterministic, i.e., there is no
uncertainty making feedback unnecessary in principle. As we pointed
out previously, for deterministic systems the MPC action for a given
state is identical to the receding horizon control law, determined using
DP, and evaluated at the given state. When the state is not known, it has
to be estimated and state estimation error, together with model error
and disturbances, makes the system uncertain in that future trajecto-
ries cannot be precisely predicted. The simple connection between MPC
and the DP solution is lost because there does not exist an open-loop
optimal control problem whose solution yields a control action that is
the same as that obtained by the DP solution. A practical consequence
is that special techniques are required to ensure robustness against
these various forms of uncertainty. So the results of this chapter hold
when there is no uncertainty. We prove, in particular, that the optimal
control problem that defines the model predictive control can always
be solved if the initial optimal control problem can be solved, and that
the optimal cost can always be reduced allowing us to prove asymptotic
or exponential stability of the target state. We refer to stability in the
absence of uncertainty as nominal stability.

When uncertainty is present, however, neither of these two asser-
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tions is necessarily true; uncertainty may cause the state to wander
outside the region where the optimal control problem can be solved
and may lead to instability. Procedures for overcoming the problems
arising from uncertainty are presented in Chapters 3 and 5. In most
of the control algorithms presented in this chapter, the decrease in the
optimal cost, on which the proof of stability is founded, is based on
the assumption that the next state is exactly as predicted and that the
global solution to the optimal control problem can be computed. In
the suboptimal control algorithm in Section 2.8, where global optimal-
ity is not required, the decrease in the optimal cost is still based on the
assumption that the current state is exactly the state as predicted one
step back in time.

2.2 Model Predictive Control

As discussed briefly in Chapter 1, most nonlinear system descriptions
derived from physical arguments are continuous time descriptions in
the form of nonlinear differential equations

dx
dt
= f(x,u)

For this class of systems, the control law with arguably the best closed-
loop properties is the solution to the following infinite horizon, con-
strained optimal control problem. The cost is defined to be

V∞(x,u(·)) =
∫∞

0
`(x(t),u(t))dt

in which x(t) and u(t) satisfy ẋ = f(x,u). The optimal control prob-
lem P(x) is defined by

min
u(·)

V∞(x,u(·))

subject to:

ẋ = f(x,u) x(0) = x0

u(t) ∈ U x(t) ∈ X for all t ∈ (0,∞)

If `(·) is positive definite, the goal of the regulator is to steer the state
of the system to the origin.

We denote the solution to this problem (when it exists) and the op-
timal value function by

V0
∞(x) u0

∞(·;x)
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The closed-loop system under this optimal control law evolves as

dx(t)
dt

= f(x(t),u0
∞(t;x))

We can demonstrate that the origin is an asymptotically stable solution
for the closed-loop system as follows. If f(·) and `(·) satisfy certain
differentiability and growth assumptions and there are no state con-
straints, then a solution to P(x) exists for all x; V0

∞(·) is differentiable
and satisfies

V̇0
∞(x) = −`(x,u0

∞(0;x))

Using this and upper and lower bounds on V0
∞(·) enables global asymp-

totic stability of the origin to be established.
Although the control law u0

∞(0; ·) provides excellent closed-loop
properties, there are several impediments to its use. A feedback, rather
than an open-loop, control is usually necessary because of uncertainty.
Solution of the optimal control problem P(x) yields the optimal control
u0
∞(0;x) for the state x but does not provide a control law. Dynamic

programming may, in principle, be employed, but is generally imprac-
tical if the state dimension and the horizon are not small.

If we turn instead to an MPC approach in which we generate online
only the value of u0

∞(·;x) for the currently measured value of x, rather
than for all x, the problem remains formidable for the following rea-
sons. First, we are optimizing over a time function, u(·), and functions
are infinite dimensional. Secondly, the time interval of interest, [0,∞),
is a semi-infinite interval, which poses other numerical challenges. Fi-
nally, the cost function V(x,u(·)) is usually not a convex function of
u(·), which presents significant optimization difficulties, especially in
an online setting. Even proving existence of the optimal control in this
general setting is a challenge.

Our task in this chapter may therefore be viewed as restricting the
system and control parameterization to replace problem P(x) with a
more easily computed approximate problem. We show how to pose
various approximate problems for which we can establish existence
of the optimal solution and asymptotic closed-loop stability of the re-
sulting controller. For these approximate problems, we almost always
replace the continuous time differential equation with a discrete time
difference equation. We often replace the semi-infinite time interval
with a finite time interval and append a terminal region such that we
can approximate the cost to go for the semi-infinite interval once the
system enters the terminal region. Although the solution of problem
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P(x) in its full generality is out of reach with today’s computational
methods, its value lies in distinguishing what is desirable in the control
problem formulation and what is achievable with available computing
technology.

We develop here MPC for the control of constrained nonlinear time-
invariant systems. The nonlinear system is described by the nonlinear
difference equation

x+ = f(x,u) (2.1)

in which x ∈ Rn is the current state, u is the current control, and
x+ the successor state; x+ = f(x,u) is the discrete time analog of
the continuous time differential equation ẋ = f(x,u). The function
f(·) is assumed to be continuous and to satisfy f(0,0) = 0, i.e., 0 is
an equilibrium point. Any solution x(·) of (2.1), if the initial state is
x(0) = x0 and the input (control) is u(·), satisfies

x(k+ 1) = f(x(k),u(k)) k = 0,1, . . .

and the initial condition x(0) = x0.
We introduce here some notation that we employ in the sequel. The

set I denotes the set of integers, I≥0 := {0,1,2, . . .} and, for any two
integersm and n satisfyingm ≤ n, Im:n := {m,m+1, . . . , n}. We refer
to the pair (x, i) as an event; an event (x, i) denotes that the state at
time i is x. We use u to denote the possibly infinite control sequence
{u(k) | k ∈ I≥0} = {u(0),u(1),u(2), . . .}. In the context of MPC, u
frequently denotes the finite sequence {u(0),u(1), . . . , u(N − 1)} in
which N is the control horizon. For any integer j ∈ I≥0, we employ
uj to denote the finite sequence {u(0),u(1), . . . , u(j − 1)}. Similarly x
denotes the possibly infinite state sequence {x(0), x(1), x(2), . . .} and
xj the finite sequence {x(0), x(1), . . . , x(j)}. When no confusion can
arise we often employ, for simplicity in notation, u in place of uN and
x in place of xN . Also for simplicity in notation, u, when used in alge-
braic expressions, denotes the column vector (u(0)′, u(1)′, . . . , u(N −
1)′)′; similarly x in algebraic expressions denotes the column vector
(x(0)′, x(1)′, . . . , x(N)′)′.

The solution of (2.1) at time k, if the initial state at time 0 is x and
the control sequence is u, is denoted by φ(k;x,u); the solution at time
k depends only on u(0),u(1), . . . , u(k − 1). Similarly, the solution of
the system (2.1) at time k, if the initial state at time i is x and the
control sequence is u, is denoted by φ(k; (x, i),u). Because the system
is time invariant, the solution does not depend on the initial time; if
the initial state is x at time i, the solution at time j ≥ i is φ(j− i;x,u).
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Thus the solution at time k if the initial event is (x, i) is identical to
the solution at time k − i if the initial event is (x,0). For each k, the
function (x,u), φ(k;x,u) is continuous as we show next.

Proposition 2.1 (Continuous system solution). Suppose the function
f(·) is continuous. Then, for each integer k ∈ I, the function (x,u) ,
φ(k;x,u) is continuous.

Proof.
Sinceφ(1;x,u(0)) = f(x,u(0)), the function (x,u(0)), φ(1;x,u(0))
is continuous. Suppose the function (x,uj−1) , φ(j;x,uj−1) is con-
tinuous and consider the function (x,uj), φ(j + 1;x,uj). Since

φ(j + 1;x,uj) = f(φ(j;x,uj−1),u(j))

where f(·) and φ(j; · ) are continuous and since φ(j + 1; · ) is the
composition of two continuous functions f(·) and φ(j; · ), it follows
that φ(j + 1; · ) is continuous. By induction φ(k; · ) is continuous for
any positive integer k. �

The system (2.1) is subject to hard constraints which may take the
form

u(k) ∈ U x(k) ∈ X for all k ∈ I≥0 (2.2)

The constraint (2.2) does not couple u(k) or x(k) at different times;
constraints that involve the control at several times are avoided by
introducing extra states. Thus the common rate constraint |u(k) −
u(k − 1)| ≤ c may be expressed as |u(k) − z(k)| ≤ c where z is an
extra state variable satisfying the difference equation z+ = u so that
z(k) = u(k−1). The constraint |u−z| ≤ c is an example of a mixed con-
straint, i.e., a constraint that involves both states and controls. Hence,
a more general constraint formulation of the form

y(k) ∈ Y for all k ∈ I≥0 (2.3)

in which the output y satisfies

y = h(x,u)

is sometimes required. A mixed constraint often is expressed in the
form Fx + Eu ≤ e, and may be regarded as a state dependent control
constraint. Because the constraint (2.3) is more general, the constraint
(2.2) may be expressed as y(k) ∈ Y by an appropriate choice of the
output function h(·) and the output constraint set Y (y = (x,u) and
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Y = X×U). We assume in this chapter that the state x is known; if the
state x is estimated, uncertainty (state estimation error) is introduced
and robust MPC, discussed in Chapter 3, is required.

The next ingredient of the optimal control problem is the cost func-
tion. Practical considerations require that the cost be defined over a
finite horizonN — to ensure the resultant optimal control problem can
be solved sufficiently rapidly to permit effective control. We consider
initially the regulation problem where the target state is the origin. If
x is the current state and i the current time, then the optimal control
problem may be posed as minimizing a cost defined over the interval
from time i to time N + i. The optimal control problem PN(x, i) at
event (x, i) is the problem of minimizing the cost

i+N−1∑
k=i

`(x(k),u(k))+ Vf (x(N + i))

with respect to the sequences x := {x(i), x(i+1), . . . , x(i+N)} and u :=
{u(i),u(i+ 1), . . . , u(i+N − 1)} subject to the constraints that x and
u satisfy the difference equation (2.1), the initial condition x(i) = x,
and the state and control constraints (2.2). We assume that `(·) is con-
tinuous and that `(0,0) = 0. The optimal control and state sequences,
obtained by solving PN(x, i), are functions of the initial event (x, i)

u0(x, i) = {u0(i; (x, i)),u0(i+ 1; (x, i)), . . . , u0(i+N − 1; (x, i))}
x0(x, i) = {x0(i; (x, i)), x0(i+ 1; (x, i)), . . . , x0(i+N; (x, i))}

where x0(i; (x, i)) = x. In MPC, the first control action u0(i; (x, i))
in the optimal control sequence u0(x, i) is applied to the plant, i.e.,
u(i) = u0(i; (x, i)). Because the system x+ = f(x,u), the stage cost
`(·), and the terminal cost Vf (·) are all time invariant, however, the
solution of PN(x, i), for any time i ∈ I≥0, is identical to the solution of
PN(x,0) so that

u0(x, i) = u0(x,0)

x0(x, i) = x0(x,0)

In particular, u0(i; (x, i)) = u0(0; (x,0)), i.e., the control u0(i; (x, i))
applied to the plant is equal to u0(0; (x,0)), the first element in the
sequence u0(x,0). Hence we may as well merely consider problem
PN(x,0) which, since the initial time is irrelevant, we call PN(x). Sim-
ilarly, for simplicity in notation, we replace u0(x,0) and x0(x,0) by,
respectively, u0(x) and x0(x).
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The optimal control problem PN(x)may then be expressed as min-
imization of

N−1∑
k=0

`(x(k),u(k))+ Vf (x(N))

with respect to the decision variables (x,u) subject to the constraints
that the state and control sequences x and u satisfy the difference equa-
tion (2.1), the initial condition x(0) = x, and the state and control
constraints (2.2). Here u denotes the control sequence {u(0),u(1), . . . ,
u(N − 1)} and x the state sequence {x(0), x(1), . . . , x(N)}. Retaining
the state sequence in the set of decision variables is discussed in Chap-
ter 6. For the purpose of analysis, however, it is preferable to constrain
the state sequence x a priori to be a solution of x+ = f(x,u) enabling
us to express the problem in the equivalent form of minimizing, with
respect to the decision variable u, a cost that is purely a function of the
initial state x and the control sequence u. This formulation is possible
since the state sequence x may be expressed, via the difference equa-
tion x+ = f(x,u), as a function of (x,u). The cost becomes VN(x,u)
defined by

VN(x,u) :=
N−1∑
k=0

`(x(k),u(k))+ Vf (x(N)) (2.4)

where, now, x(k) := φ(k;x,u) for all k ∈ I0:N . Similarly the constraints
(2.2), together with an additional terminal constraint

x(N) ∈ Xf

where Xf ⊆ X, impose an implicit constraint on the control sequence
of the form

u ∈ UN(x) (2.5)

in which the control constraint set UN(x) is the set of control se-
quences u := {u(0),u(1), . . . , u(N−1)} satisfying the state and control
constraints. It is therefore defined by

UN(x) := {u | (x,u) ∈ ZN} (2.6)

in which the set ZN ⊂ Rn ×RNm is defined by

ZN :=
{
(x,u) | u(k) ∈ U, φ(k;x,u) ∈ X, ∀k ∈ I0:N−1,

and φ(N;x,u) ∈ Xf
}

(2.7)
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The optimal control problem PN(x), is, therefore

PN(x) : V0
N(x) :=min

u
{VN(x,u) | u ∈ UN(x)} (2.8)

Problem PN(x) is a parametric optimization problem in which the de-
cision variable is u, and both the cost and the constraint set depend on
the parameter x. The set ZN is the set of admissible (x,u), i.e., the set
of (x,u) for which x ∈ X and the constraints of PN(x) are satisfied.
Let XN be the set of states in X for which PN(x) has a solution

XN := {x ∈ X | UN(x) ≠∅} (2.9)

It follows from (2.8) and (2.9) that

XN = {x ∈ Rn | ∃u ∈ RNm such that (x,u) ∈ ZN}

which is the orthogonal projection of ZN ⊂ Rn×RNm onto Rn. The do-
main of V0

N(·), i.e., the set of states in X for which PN(x) has a solution,
is XN .

Not every optimization problem has a solution. For example, the
problem min{x | x ∈ (0,1)} does not have a solution; inf{x | x ∈
(0,1)} = 0 but x = 0 does not lie in the constraint set (0,1). By
Weierstrass’s theorem, however, an optimization problem does have
a solution if the cost is continuous (in the decision variable) and the
constraint set compact (see Proposition A.7). This is the case for our
problem as shown subsequently in Proposition 2.4. We assume, with-
out further comment, that the following standing conditions are satis-
fied in the sequel.

Assumption 2.2 (Continuity of system and cost). The functions f :
X × U → Rn, ` : X × U → R≥0 and Vf : Xf → R≥0 are continuous,
f(0,0) = 0, `(0,0) = 0 and Vf (0) = 0.

Assumption 2.3 (Properties of constraint sets). The sets X and Xf are
closed, Xf ⊆ X and U are compact; each set contains the origin.

The sets U, X and Xf are assumed to contain the origin because the
first problem we tackle is regulation to the origin. This assumption is
modified when we consider the tracking problem.

Proposition 2.4 (Existence of solution to optimal control problem). Sup-
pose Assumptions 2.2 and 2.3 hold. Then

(a) The function VN(·) is continuous in ZN .
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(b) For each x ∈ XN , the control constraint set UN(x) is compact.

(c) For each x ∈ XN , a solution to PN(x) exists.

Proof.

(a) That (x,u), VN(x,u) is continuous follows from continuity of `(·)
and Vf (·) in Assumption 2.2, and the continuity of (x,u), φ(j;x,u)
for each j ∈ I0:N−1, established in Proposition 2.1.

(b) We have to show that for each x ∈ XN , the setUN(x) is closed and
bounded. It is clearly bounded since UN(x) ⊆ UN , which is compact
(bounded and closed) by Assumption 2.3. By Proposition 2.1, the func-
tion φ(j; · ) is continuous for any j ∈ I0:N . Since U, X and Xf are all
closed, any sequence {(xi,ui)} in ZN , defined in (2.7), that converges
to, say, (x̄, ū) satisfies φ(j; x̄, ū) ∈ X for all j ∈ I0:N−1, φ(N; x̄, ū) ∈ Xf
and ū ∈ UN . Hence (x̄, ū) ∈ ZN so that ZN is closed. It follows that
UN(x) = {u | (x,u) ∈ ZN} is closed and, therefore, compact for all
x ∈ XN .

(c) SinceVN(x, · ) is continuous andUN(x) is compact, by Weierstrass’s
theorem (Proposition A.7) a solution to PN(x) exists for each x ∈
XN . �

Although the function (x,u), VN(x,u) is continuous, the function
x , V0

N(x) is not necessarily continuous; we discuss this possibility
and its implications later. For each x ∈ XN , the solution of PN(x) is

u0(x) = arg min
u
{VN(x,u) | u ∈ UN(x)}

If u0(x) = {u0(0;x),u0(1;x), . . . , u0(N − 1;x)} is unique for each
x ∈ XN , then u0 : Rn → RNm is a function; otherwise it is a set-valued
function.1 In MPC, the control applied to the plant is the first element
u0(0;x) of the optimal control sequence. At the next sampling instant,
the procedure is repeated for the successor state. Although MPC com-
putes u0(x) only for specific values of the state x, it could, in principle,
be used to compute u0(x) and, hence, u0(0;x) for every x for which
PN(x) is feasible, yielding the implicit MPC control law κN(·) defined
by

κN(x) := u0(0;x), x ∈ XN
1A set-valued function φ(·) is a function whose value φ(x) for each x in its domain

is a set.
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MPC does not require determination of the control law κN(·), a task that
is usually intractable when constraints or nonlinearities are present; it
is this fact that makes MPC so useful.

If, at a given state x, the solution of PN(x) is not unique, then
κN(·) = u0(0; · ) is set valued and the model predictive controller se-
lects one element from the set κN(x).

Example 2.5: Linear quadratic MPC

Suppose the system is described by

x+ = f(x,u) := x +u

with initial state x. The stage cost and terminal cost are

`(x,u) := (1/2)(x2 +u2) Vf (x) := (1/2)x2

The control constraint is
u ∈ [−1,1]

and there are no state or terminal constraints. Suppose the horizon is
N = 2. Under the first approach, the decision variables are u and x,
and the optimal control problem is minimization of

VN(x(0), x(1), x(2),u(0),u(1)) =

(1/2)
(
x(0)2 + x(1)2 + x(2)2 +u(0)2 +u(1)2

)
with respect to (x(0), x(1), x(2)), and (u(0),u(1)) subject to the fol-
lowing constraints

x(0) = x x(1) = x(0)+u(0) x(2) = x(1)+u(1)
u(0) ∈ [−1,1] u(1) ∈ [−1,1]

The constraint u ∈ [−1,1] is equivalent to two inequality constraints,
u ≤ 1 and −u ≤ 1. The first three constraints are equality constraints
enforcing satisfaction of the difference equation.

In the second approach, the decision variable is merely u because
the first three constraints are automatically enforced by requiring x to
be a solution of the difference equation. Hence, the optimal control
problem becomes minimization with respect to u = (u(0)′, u(1))′ of

VN(x,u) = (1/2)
(
x2 + (x +u(0))2 + (x +u(0)+u(1))2+

u(0)2 +u(1)2
)

= (3/2)x2 +
[
2x x

]
u+ (1/2)u′Hu
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Figure 2.1: Example of MPC.

in which

H =
[

3 1
1 2

]
subject to the constraint u ∈ UN(x) where

UN(x) = {u | |u(k)| ≤ 1 k = 0,1}

Because there are no state or terminal constraints, the set UN(x) =
UN for this example does not depend on the parameter x; often it
does. Both optimal control problems are quadratic programs.2 The
solution for x = 10 is u0(1; 10) = u0(2; 10) = −1 so the optimal state
trajectory is x0(0; 10) = 10, x0(1; 10) = 9 and x0(2; 10) = 8. The value
V0
N(10) = 124. By solving PN(x) for every x ∈ [−10,10], the optimal

control law κN(·) on this set can be determined, and is shown in Figure
2.1(a). The implicit MPC control law is time invariant since the system
being controlled, the cost, and the constraints are all time invariant.
For our example, the controlled system (the system with MPC) satisfies
the difference equation

x+ = x + κN(x) κN(x) = −sat((3/5)x)

and the state and control trajectories for an initial state of x = 10 are
shown in Figure 2.1(b). It turns out that the origin is exponentially sta-
ble for this simple case; often, however, the terminal cost and terminal
constraint set have to be carefully chosen to ensure stability. �

2A quadratic program is an optimization problem in which the cost is quadratic and
the constraint set is polyhedral, i.e., defined by linear inequalities.
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Figure 2.2: Feasible region U2, elliptical cost contours, and ellipse
center, a(x), and constrained minimizers for different
values of x.

Example 2.6: Closer inspection of linear quadratic MPC

We revisit the MPC problem discussed in Example 2.5. The objective
function is

VN(x,u) = (1/2)u′Hu+ c(x)′u+ d(x)

where c(x)′ = [2 1]x and d(x) = (3/2)x2. The objective function may
be written in the form

VN(x,u) = (1/2)(u− a(x))′H(u− a(x))+ e(x)

Expanding the second form shows the two forms are equal if

a(x) = −H−1c(x) = K1x K1 = −(1/5)
[

3
1

]

and
e(x)+ (1/2)a(x)′Ha(x) = d(x)
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SinceH is positive definite, a(x) is the unconstrained minimizer of the
objective function; indeed ∇uVN(x,a(x)) = 0 since

∇uVN(x,u) = Hu+ c(x)

The locus of a(x) for x ≥ 0 is shown in Figure 2.2. Clearly the un-
constrained minimizer a(x) = K1x is equal to the constrained min-
imizer u0(x) for all x such that a(x) ∈ U2 where U2 is the unit
square illustrated in Figure 2.2; since a(x) = K1x, a(x) ∈ U2 for all
x ∈ X1 = [0, xc1] where xc1 = 5/3. For x > xc1, the unconstrained
minimizer lies outside U2 as shown in Figure 2.2 for x = 2.25, x = 3
and x = 5. For such x, the constrained minimizer u0(x) is a point that
lies on the intersection of a level set of the objective function (which
is an ellipse) and the boundary of U2. For x ∈ [xc1, xc2), u0(x) lies
on the left face of the box U2 and for x ≥ xc2 = 3, u0(x) remains at
(−1,−1), the bottom left vertex of U2.

When u0(x) lies on the left face ofU2, the gradient∇uVN(x,u0(x))
of the objective function is normal to the left face of U2, i.e., the level
set of V0

N(·) passing through u0(x) is tangential to the left face of U2.
The outward normal to U2 at a point on the left face is −e1 = (−1,0)
so that at u = u0(x)

∇uV(x,u0(x))+ λ(−e1) = 0

for some λ > 0; this is a standard condition of optimality. Since u =
[−1 v]′ for some v ∈ [−1,1] and since ∇uV(x,u) = H(u − a(x)) =
Hu+ c(x), the condition of optimality is[

3 1
1 2

][
−1
v

]
+
[

2
1

]
x −

[
λ
0

]
=
[

0
0

]

or

− 3+ v + 2x − λ = 0

− 1+ 2v + x = 0

which, when solved, yields v = (1/2)−(1/2)x and λ = −(5/2)+(3/2)x.
Hence,

u0(x) = b2 +K2x b2 =
[
−1
(1/2)

]
K2 =

[
0

−(1/2)

]
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for all x ∈ X2 = [xc1, xc2] where xc2 = 3 since u0(x) ∈ U2 for all x in
this range. For all x ∈ X3 = [xc2 ,∞), u0(x) = (−1,−1)′. Summarizing:

x ∈ [0, (5/3)] =⇒ u0(x) = K1x

x ∈ [(5/3),3] =⇒ u0(x) = K2x + b2

x ∈ [3,∞) =⇒ u0(x) = b3

in which

K1 =
[
−(3/5)
−(1/5)

]
K2 =

[
0

−(1/2)

]
b2 =

[
−1
(1/2)

]
b3 =

[
−1
−1

]
The optimal control for x ≤ 0 may be obtained by symmetry; u0(−x) =
−u0(x) for all x ≥ 0 so that:

x ∈ [0,−(5/3)] =⇒ u0(x) = −K1x

x ∈ [−(5/3),−3] =⇒ u0(x) = −K2x − b2

x ∈ [−3,−∞) =⇒ u0(x) = −b3

It is easily checked that u0(·) is continuous and satisfies the constraint
for all x ∈ R. The MPC control law κN(·) is the first component of u0(·)
and, therefore, is defined by:

κN(x) = 1 x ≤ −3

κN(x) = 1 x ∈ [−(5/3),−3]
κN(x) = −(3/5)x x ∈ [−(5/3), (5/3)]
κN(x) = −1 x ∈ [(5/3),3]
κN(x) = −1 x ≥ 3

i.e., κN(x) = −sat((3/5)x) which is the saturating control law depicted
in Figure 2.1(a). The control law is piecewise affine and the value func-
tion piecewise quadratic. The structure of the solution to constrained
linear quadratic optimal control problems is explored more fully in
Chapter 7. �

As we show in Chapter 3, continuity of the value function is desir-
able. Unfortunately, this is not true in general; the major difficulty is in
establishing that the set-valued function x , UN(x) has certain con-
tinuity properties. Continuity of the value function V0

N(·) and of the
implicit control law κN(·)may be established for a few important cases,
however, as is shown by the next result, which assumes satisfaction of
our standing assumptions: 2.2 and 2.3 so that the cost function VN(·)
is continuous in (x,u).
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Theorem 2.7 (Continuity of value function and control law). Suppose
that Assumptions 2.2 and 2.3 hold.

(a) Suppose that there are no state constraints so that X = Xf = Rn.
Then the value function V0

N : XN → R is continuous and XN = Rn.

(b) Suppose f(·) is linear (x+ = Ax+Bu) and that the state and control
constraints sets X and U are polyhedral.3 Then the value function V0

N :
XN → R is continuous.

(c) If, in addition, the solution u0(x) of PN(x) is unique at each x ∈ XN ,
then the implicit MPC control law κN(·) is continuous.

The proof of this theorem is given in Section C.3 of Appendix C.
The following example, due to Meadows, Henson, Eaton, and Rawlings
(1995), shows that there exist nonlinear examples where the value func-
tion and implicit control law are not continuous.

Example 2.8: Discontinuous MPC control law

Consider the nonlinear system defined by

x+1 = x1 +u
x+2 = x2 +u3

The control horizon is N = 3 and the cost function V3(·) is defined by

V3(x,u) :=
2∑
k=0

`(x(k),u(k))

and the stage cost `(·) is defined by

`(x,u) := |x|2 +u2

The constraint sets are X = R2, U = R, and Xf := {0}, i.e., there are no
state and control constraints, and the terminal state must satisfy the
constraint x(3) = 0. Hence, although there are three control actions,
u(0), u(1), and u(2), two must be employed to satisfy the terminal
constraint, leaving only one degree of freedom. Choosing u(0) to be
the free decision variable automatically constrains u(1) and u(2) to be
functions of the initial state x and the first control action u(0). Solving

3A set X is polyhedral if it may be defined as set of linear inequalities, i.e., if it may
be expressed in the form X = {x | Mx ≤m}.
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Figure 2.3: First element of control constraint set U3(x)
(shaded) and control law κ3(x) (circle) versus
x = (cos(θ), sin(θ)), θ ∈ [−π,π] on the unit cir-
cle for a nonlinear system with terminal constraint.

the equation

x1(3) = x1 +u(0)+u(1)+u(2) = 0

x2(3) = x2 +u(0)3 +u(1)3 +u(2)3= 0

for u(1) and u(2) yields

u(1) = −x1/2−u(0)/2±
√
b

u(2) = −x1/2−u(0)/2∓
√
b

in which

b = 3u(0)3 − 3u(0)2x1 − 3u(0)x2
1 − x3

1 + 4x2

12(u(0)+ x1)

Clearly a real solution exists only if b is positive, i.e., if both the numer-
ator and denominator in the expression for b have the same sign. The
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Figure 2.4: Optimal cost V 0
3 (x) versus x = (cos(θ), sin(θ)), θ ∈

[−π,π] on the unit circle; the discontinuity in V 0
3 is

caused by the discontinuity inU3 as θ crosses the dashed
line in Figure 2.3.

optimal control problem P3(x) is defined by

V0
3 (x) =min

u
{V3(x,u) | φ(3;x,u) = 0}

and the implicit MPC control law is κ3(·) where κ3(x) = u0(0;x), the
first element in the minimizing sequence u0(x). It can be shown, using
analysis presented later in this chapter, that the origin is asymptotically
stable for the controlled system x+ = f(x, κN(x)). That this control
law is necessarily discontinuous may be shown as follows. If the con-
trol is strictly positive, any trajectory originating in the first quadrant
(x1, x2 > 0) moves away from the origin. If the control is strictly neg-
ative, any control originating in the third quadrant (x1, x2 < 0) also
moves away from the origin. But the control cannot be zero at any
nonzero point lying in the domain of attraction. If it were, this point
would be a fixed point for the controlled system, contradicting the fact
that it lies in the domain of attraction.

In fact, both the value function V0
3 (·) and the MPC control law κ3(·)

are discontinuous. Figures 2.3 and 2.4 show how U3(x), κ3(x), and
V0

3 (x) vary asx = (cos(θ), sin(θ)) ranges over the unit circle. A further
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conclusion that can be drawn from this example is that it is possible
for the MPC control law to be discontinuous at points where the value
function is continuous. �

2.3 Dynamic Programming Solution

We examine next the DP solution of the optimal control problem PN(x),
not because it provides a practical procedure but because of the insight
it provides. DP can rarely be used for constrained and/or nonlinear
control problems unless the state dimension n is small. MPC is best
regarded as a practical means of implementing the DP solution; for a
given state x it provides V0

N(x) and κN(x), the value, respectively, of
the value function and control law at a point x. DP, on the other hand,
yields the value function V0

N(·) and the implicit MPC control law κN(·).
The optimal control problem PN(x) is defined, as before, by (2.8)

with the cost function VN(·) defined by (2.4) and the constraints by
(2.5). DP yields an optimal policy µ0 = {µ0

0(·), µ0
1(·), . . . , µ0

N−1(·)}, i.e.,
a sequence of control laws µi : Xi → U, i = 0,1, . . . ,N − 1. The domain
Xi of each control law will be defined later. The optimal controlled
system is time varying and satisfies

x+ = f(x, µ0
i (x)), i = 0,1, . . . ,N − 1

in contrast with the system using MPC, which is time invariant and
satisfies

x+ = f(x, κN(x)), i = 0,1, . . . ,N − 1

where κN(·) = µ0
0(·). The optimal control law at time i is µ0

i (·)whereas
receding horizon control (RHC) uses the time-invariant control law κN(·)
obtained by assuming that at each time t, the terminal time or horizon
is t + N so that the horizon t + N recedes as t increases. One conse-
quence is that the time-invariant control law κN(·) is not optimal for
the problem of controlling x+ = f(x,u) over the fixed interval [0, T ]
in such a way as to minimize VN and satisfy the constraints.

For all j ∈ I0:N−1, let Vj(x,u), Uj(x), Pj(x), and V0
j (x) be defined,

respectively, by (2.4), (2.5), (2.6), and (2.7), with N replaced by j. As
shown in Section C.1 of Appendix C, DP solves not only PN(x) for all
x ∈ XN , the domain of V0

N(·), but also Pj(x) for all x ∈ Xj , the domain
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of V0
j (·), all j ∈ I0:N−1. The DP equations are

V0
j (x) =min

u∈U
{`(x,u)+ V0

j−1(f (x,u)) | f(x,u) ∈ Xj−1}, ∀x ∈ Xj
(2.10)

κj(x) = arg min
u∈U
{`(x,u)+ V0

j−1(f (x,u)) | f(x,u) ∈ Xj−1}, ∀x ∈ Xj
(2.11)

Xj = {x ∈ X | ∃u ∈ U such that f(x,u) ∈ Xj−1} (2.12)

for j = 1,2, . . . ,N (j is time to go), with terminal conditions

V0
0 (x) = Vf (x) ∀x ∈ X0 X0 = Xf

For each j, V0
j (x) is the optimal cost for problem Pj(x) if the current

state is x, current time is 0 (or i), and the terminal time is j (or i+j), and
Xj is its domain; Xj is also the set of states in X that can be steered
to the terminal set Xf in j steps by an admissible control sequence,
i.e., a control sequence that satisfies the control, state, and terminal
constraints and, therefore, lies in the set Uj(x). Hence, for each j

Xj = {x ∈ X | Uj(x) ≠∅}

Definition 2.9 (Feasible preimage of the state). Let Z := X × U. The
set-valued function f−1

Z : X→ Z is defined by

f−1
Z (x) := f−1(x)∩ Z

in which
f−1(x) := {z ∈ Rn ×Rm | f(z) = x}

For all j ≥ 0, let the set Zj ⊆ Rn ×Rm be defined by

Zj := f−1
Z (Xj−1) = {(x,u) | f(x,u) ∈ Xj−1} ∩ Z

The set Xj may then be expressed as

Xj = {x ∈ Rn | ∃u ∈ Rm such that (x,u) ∈ Zj}

i.e., Xj is the orthogonal projection of Zj ⊆ Rn ×Rm onto Rn.
DP yields much more than an optimal control sequence for a given

initial state; it yields an optimal feedback policy µ0 or sequence of con-
trol laws where

µ0 := {µ0(·), µ1(·), . . . , µN−1(·)} = {κN(·), κN−1(·), . . . , κ1(·)}
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Figure 2.5: The sets Zj and Xj .

At event (x, i), i.e., at state x at time i, the time to go is N − i and the
optimal control is

µ0
i (x) = κN−i(x)

i.e., µi(·) is the control law at time i. Consider an initial event (x,0),
i.e., state x at time 0. If the terminal time (horizon) is N, the optimal
control for (x,0) is κN(x). The successor state, at time 1, is

x+ = f(x, κN(x))

At event (x+,1), the time to go to the terminal time is N − 1 and the
optimal control is κN−1(x+) = κN−1(f (x, κN(x))). For a given initial
event (x,0), the optimal policy generates the optimal state and control
trajectories x0(x) and u0(x) that satisfy the difference equations

x(0) = x u(0) = κN(x) (2.13)

x(i+ 1) = f(x(i),u(i)) u(i) = κN−i(x(i)) (2.14)

for i = 0,1, . . . ,N − 1. These state and control trajectories are iden-
tical to those obtained, as in MPC, by solving PN(x) directly for the
particular initial event (x,0) using a mathematical programming algo-
rithm. Dynamic programming, however, provides a solution for any
event (x, i) such that i ∈ I0:N−1 and x ∈ Xi.

Optimal control, in the classic sense of determining a control that
minimizes a cost over the interval [0, T ], is generally time varying (at
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event (x, i), i ∈ I0:N , the optimal control is µi(x) = κN−i(x)). Under
fairly general conditions, µi(·) → κ∞(·) as N → ∞ where κ∞(·) is the
stationary infinite horizon optimal control law. MPC and RHC, on the
other hand, employ the time-invariant control κN(x) for all i ∈ I≥0.
Thus the state and control trajectories xmpc(x) and umpc(x) generated
by MPC for an initial event (x,0) satisfy the difference equations

x(0) = x u(0) = κN(x)
x(i+ 1) = f(x(i),u(i)) u(i) = κN(x(i))

and can be seen to differ in general from x0(x) and u0(x), which satisfy
(2.13) and (2.14), and, hence, are not optimal for PN(x).

Before leaving this section, we obtain some properties of the solu-
tion to each partial problem Pj(x). For this, we require a few defini-
tions.

Definition 2.10 (Positive and control invariant sets).

(a) A set X ⊆ Rn is positive invariant for x+ = f(x) if x ∈ X implies
f(x) ∈ X.

(b) A set X ⊆ Rn is control invariant for x+ = f(x,u), u ∈ U, if, for all
x ∈ X, there exists a u ∈ U such that f(x,u) ∈ X.

We recall from our standing assumptions 2.2 and 2.3 that f(·), `(·)
and Vf (·) are continuous, that X and Xf are closed, U is compact and
that each of these sets contains the origin.

Proposition 2.11 (Existence of solutions to DP recursion). Suppose As-
sumptions 2.2 and 2.3 hold. Then

(a) For all j ≥ 0, the cost function Vj(·) is continuous in Zj , and, for
each x ∈ Xj , the control constraint setUj(x) is compact and a solution
u0(x) ∈ Uj(x) to Pj(x) exists.

(b) If X0 := Xf is control invariant for x+ = f(x,u), u ∈ U, then, for
each j ∈ I≥0, the setXj is also control invariant,Xj ⊇ Xj−1, and 0 ∈ Xj .
In addition, the set XN is positive invariant for x+ = f(x, κN(x)).

(c) For each j ≥ 0, the set Xj is closed.

Proof.

(a) This proof is almost identical to the proof of Proposition 2.4.

(b) By assumption, X0 = Xf ⊆ X is control invariant. By (2.12)

X1 = {x ∈ X | ∃u ∈ U such that f(x,u) ∈ X0}
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Since X0 is control invariant for x+ = f(x,u),u ∈ U, for every x ∈ X0

there exist a u ∈ U such that f(x,u) ∈ X0 so that x ∈ X1. Hence
X1 ⊇ X0. Since for every x ∈ X1, there exists a u ∈ U such that
f(x,u) ∈ X0 ⊆ X1, it follows that X1 is control invariant for x+ =
f(x,u), u ∈ U. If for some integer j ∈ I≥0, Xj−1 is control invariant
for x+ = f(x,u), it follows by similar reasoning that Xj ⊇ Xj−1 and
that Xj is control invariant. By induction Xj is control invariant and
Xj ⊇ Xj−1 for all j > 0. Hence 0 ∈ Xj for all j ∈ I≥0. That XN
is positive invariant for x+ = f(x, κN(x)) follows from (2.11), which
shows that κN(·) steers every x ∈ XN into XN−1 ⊆ XN .

(c) By Assumption 2.3, X0 = Xf is closed. Suppose, for some j ∈ I≥1,
that Xj−1 is closed. Then Zj := {(x,u) ∈ Z | f(x,u) ∈ Xj−1} is
closed since f(·) is continuous. To prove that Xj is closed, take any
sequence {xi} in Xj that converges to, say, x̄. For each i, select a
ui ∈ U such that (xi, ui) ∈ Zj . Then, since U is compact, there exists a
subsequence of {(xi, ui)}, indexed by I, such that xi → x̄ and ui → ū
as i → ∞, i ∈ I. Since X is closed, U is compact, and Zj is closed, it
follows that x̄ ∈ X, ū ∈ U and (x̄, ū) ∈ Zj . Hence x̄ ∈ Xj := {x ∈ X |
∃u ∈ U such that (x,u) ∈ Zj} so that Xj is closed. By induction Xj is
closed for all j ∈ I≥0. �

The fact that XN is positive invariant for x+ = f(x, κN(x)) can also
be established by observing thatXN is the set of states x in X for which
there exists a u that is feasible for PN(x), i.e., for which there exists
a control u satisfying the control, state and terminal constraints. It is
shown in the next section that for every x ∈ XN , there exists a feasible
control sequence ũ for PN(x+) where x+ = f(x, κN(x)) is the suc-
cessor state provided that Xf is control invariant, i.e., XN is positive
invariant for x+ = f(x, κN(x)) if Xf is control invariant. An important
practical consequence is that if PN(x(0)) can be solved for the initial
state x(0), then PN(x(i)) can be solved for any subsequent state x(i)
of the controlled system x+ = f(x, κN(x)), a property that is some-
times called recursive feasibility. Uncertainty, in the form of additive
disturbances, model error or state estimation error, may destroy this
important property; techniques to restore this property when uncer-
tainty is present are discussed in Chapter 3.
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2.4 Stability

2.4.1 Introduction

To establish stability we employ Lyapunov theorems such as Theorem
B.13 in Appendix B. Because we are considering the regulator problem
in this chapter, we are concerned with asymptotic or exponential sta-
bility of the origin. Hence, we replaceA in Theorem B.13 of Appendix
B by {0}, the set consisting of a single point, the origin. Thus, the ori-
gin is asymptotically stable with a region of attraction X for the system
x+ = f(x) if there exist: a Lyapunov function V , a positive invariant set
X, two K∞ functions α1(·) and α2(·), and a positive definite function
α3(·) satisfying

V(x) ≥ α1(|x|) (2.15)

V(x) ≤ α2(|x|) (2.16)

V(f(x)) ≤ V(x)−α3(|x|) (2.17)

for all x ∈ X. Recall that α : R → R≥0 is a K∞ function if it is con-
tinuous, strictly increasing, zero at zero, and is unbounded; and α is
a positive definite function if it is continuous and positive everywhere
except at the origin. Our task in this chapter is to find a function V(·)
with these properties for the MPC system x+ = f(x, κN(x)).

A standard approach to establish stability is to employ the value
function of an infinite horizon optimal control problem as a Lyapunov
function. This suggests the use of V0

N(·), the value function for the fi-
nite horizon optimal control problem whose solution yields the model
predictive controller, as a Lyapunov function. It is simple to show, un-
der mild assumptions on `(·), that V0

N(·) has property (2.15) for all
x ∈ XN . The value function V∞(·) for infinite horizon optimal con-
trol problems does satisfy, under mild conditions, V0

∞(f (x, κ∞(x))) =
V0
∞(x) − `(x, κ∞(x)) thereby ensuring satisfaction of property (2.17).

Since, as is often pointed out, optimality does not imply stability, this
property does not usually hold when the horizon is finite. One of the
main tasks of this chapter is show that if the “ingredients” Vf (·), `(·),
and Xf of the finite horizon optimal control problem are chosen ap-
propriately, then V0

N(f (x, κN(x))) ≤ V0
N(x) − `(x, κN(x)) for all x in

XN enabling property (2.17) to be obtained. Property (2.16), an upper
bound on the value function, is more difficult to establish. We show
subsequently that the choice of “ingredients” that ensures satisfaction
of property (2.17) also ensures satisfaction of property (2.16) but only
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for all x in Xf rather than for all x ∈ XN . We therefore also address
the problem of establishing asymptotic or exponential stability of the
origin even if property (2.16) holds only for x in Xf .

We now address a point that we have glossed over. The solution
to an optimization problem is not necessarily unique. Thus u0(x) and
κN(x) may be set valued; any point in the set u0(x) is a solution of
PN(x). Similarly x0(x) is set valued. Uniqueness may be obtained by
choosing that element in the set u0(x) that has least norm. To avoid
expressions such as “let u be any element of the minimizing set u0(x),”
we shall, in the sequel, use u0(x) to denote any sequence in the set
of minimizing sequences and use κN(x) to denote u0(0;x), the first
element of this sequence.

2.4.2 Stabilizing Conditions: No State Constraints

To show as simply as possible that the descent property (2.17) holds if
Vf (·) and Xf are chosen appropriately, we consider first the case when
there are no state or terminal constraints, i.e., X = Xf = Rn, so that the
only constraint is the control constraint. Hence UN(x) = UN , which is
independent of x. For this case, Xj = Rn for all j ∈ {1,2, . . . ,N}. Let
x be any state in XN = Rn at time 0. Then

V0
N(x) = VN(x,u0(x))

in which

u0(x) =
{
u0(0;x),u0(1;x), . . . , u0(N − 1;x)

}
is any minimizing control sequence. The resultant optimal state se-
quence is

x0(x) =
{
x0(0;x),x0(1;x), . . . , x0(N;x)

}
where x0(0;x) = x and x0(1;x) = x+. The successor state to x at time
0 is x+ = f(x, κN(x)) = x0(1;x) at time 1 where κN(x) = u0(0;x),
and

V0
N(x

+) = VN(x+,u0(x+))

in which

u0(x+) =
{
u0(0;x+),u0(1;x+), . . . , u0(N − 1;x+)

}
It is difficult to compare V0

N(x) and V0
N(x+) directly, but

V0
N(x

+) = VN(x+,u0(x+)) ≤ VN(x+, ũ)
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where ũ is any feasible control sequence for PN(x+), i.e., any control
sequence in UN . To facilitate comparison of VN(x+, ũ) with V0

N(x) =
VN(x,u0(x)), we choose

ũ =
{
u0(1;x), . . . , u0(N − 1;x),u

}
where u still has to be chosen. Comparing ũ with u0(x) shows that x̃,
the state sequence due to control sequence ũ, is

x̃ =
{
x0(1;x),x0(2;x), . . . , x0(N;x), f (x0(N;x),u)

}
in which x0(1;x) = x+ = f(x, κN(x)); since there are no state or termi-
nal constraints, the state sequence x̃ is clearly feasible if u ∈ U. Since
x0 coincides with x̃ and u(·) coincides with ũ for i = 1,2, . . . ,N−1 (but
not for i = N), a simple calculation yields

V0
N(x) = VN(x,u0(x))

= `(x, κN(x))+
N−1∑
j=1

`(x0(j;x),u0(j;x))+ Vf (x0(N;x))

so that

VN(x+, ũ) = V0
N(x)− `(x, κN(x))− Vf (x0(N;x))+

`(x0(N;x),u)+ Vf (f (x0(N;x),u))

in which x+ = f(x, κN(x)). Since V0
N(x+) ≤ VN(x+, ũ), it follows that

V0
N(f (x, κN(x)))− V0

N(x) ≤ −`(x, κN(x)) (2.18)

for all x ∈ Rn provided that for all x ∈ Rn, there exists a u ∈ U such
that

Vf (f (x,u))− Vf (x)+ `(x,u) ≤ 0 (2.19)

A continuous positive definite functionVf (·) satisfying inequality (2.19)
for all x ∈ Rn with a positive definite `(·) is a global control-Lyapunov
function (CLF). If Vf (·) is a global CLF, the value function V0

N(·) has
the desired descent property (2.18). Global asymptotic stability of the
origin for the system x+ = f(x, κN(x)) under MPC may be established.
If Vf (·) is a global CLF satisfying (2.19), however, there exists a con-
trol law κf (·) satisfying Vf (f (x, κf (x))) ≤ Vf (x) − `(x, κf (x)) for
all x ∈ Rn. Global asymptotic stability of the origin for the system
x+ = f(x, κf (x)) may be established. In this case MPC is not required
to stabilize the system, though it may provide superior performance.
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2.4.3 Stabilizing Conditions: Constrained Problems

In this section we consider the case when state and control constraints
(2.2) are present. MPC is stabilizing if a global CLF is employed as the
terminal cost. A global CLF is seldom available, however, either because
the system is nonlinear or because constraints are present. Hence, we
must set our sights lower and employ as our terminal cost function
Vf (·), a local CLF, one that is defined only on a neighborhood Xf of the
origin where Xf ⊆ X. A consequent requirement is that the terminal
state must be constrained, explicitly or implicitly, to lie in Xf . Our
stabilizing condition now takes the form:

Assumption 2.12 (Basic stability assumption).

min
u∈U
{Vf (f (x,u))+ `(x,u) | f(x,u) ∈ Xf } ≤ Vf (x), ∀x ∈ Xf

This assumption implicitly requires that for each x ∈ Xf , there
exists a u ∈ U such that f(x,u) ∈ Xf , i.e., Assumption 2.12 implies
the following assumption.

Assumption 2.13 (Implied invariance assumption). The set Xf is con-
trol invariant for the system x+ = f(x,u).

Assumptions 2.12 and 2.13 specify properties which, if possessed
by the terminal cost function and terminal constraint set, enable us
to employ the value function V0

N(·) for the optimal control problem
PN as a Lyapunov function. The important descent and monotonicity
properties of V0

N(·) are established in Lemmas 2.14 and 2.15.

Lemma 2.14 (Optimal cost decrease). Suppose, as usual, that Assump-
tions 2.2 and 2.3 hold, and that Assumptions 2.12 (and 2.13) hold. Then

V0
N(f (x, κN(x))) ≤ V0

N(x)− `(x, κN(x))

for all x ∈ XN .

Proof. Let x be any point in XN . Then V0
N(x) = VN(x,u0(x)) where

u0(x) = {u0(0;x),u0(1;x), . . . , u0(N − 1;x)}

and u0(0;x) = κN(x); the control sequence is feasible for PN(x) be-
cause it satisfies all control, state, and terminal constraints. The corre-
sponding state sequence is

x0(x) = {x0(0;x),x0(1;x), . . . , x0(N;x)}
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where x0(0;x) = x, x0(1;x) = f(x, κN(x)) and x0(N;x) ∈ Xf . At the
successor state x+ = x0(1;x), we choose, as before, the nonoptimal
control sequence ũ defined by

ũ := {u0(1;x), . . . , u0(N − 1;x),u}

where u is still to be chosen. The resultant state sequence is

x̃ = {x0(1;x), . . . , x0(N;x), f (x0(N;x),u)}

The control sequence ũ(·) is feasible, but not necessarily optimal, for
PN(x0(1;x)) provided that f(x0(N;x),u) ∈ Xf . We obtain as before

V0
N(f (x, κN(x))) ≤ V0

N(x)− `(x, κN(x))

provided now that for all x ∈ Xf , there exists a u ∈ U such that

Vf (f (x,u)) ≤ Vf (x)− `(x,u), and f(x,u) ∈ Xf

which is true by Assumptions 2.12 and 2.13. �

Lemma 2.14 holds if U is closed but not necessarily bounded and
can be used, with suitable assumptions on `(·), to establish asymptotic
stability of the origin. The descent property established in Lemma 2.14
may be established also using a monotonicity property of the value
function.

2.4.4 Monotonicity of the Value Function

If Assumptions 2.12 (and 2.13) hold, the value function sequence {V0
j (·)}

has an interesting monotonicity property, first established for the un-
constrained linear quadratic regulator problem, namely, for given x,
the value V0

j (x) decreases as the time to go j increases. We prove this
in Lemma 2.15.

Lemma 2.15 (Monotonicity of the value function). Suppose, as usual,
that Assumptions 2.2 and 2.3 hold, and that Assumptions 2.12 (and 2.13)
hold. Then

V0
j+1(x) ≤ V0

j (x) ∀x ∈ Xj , ∀j ∈ I0:N−1

V0
N(x) ≤ Vf (x) ∀x ∈ Xf
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Proof. From the DP recursion (2.10)

V0
1 (x) =min

u∈U
{`(x,u)+ V0

0 (f (x,u)) | f(x,u) ∈ X0}

But V0
0 (·) := Vf (·) and X0 := Xf . Also, by Assumption 2.12,

min
u∈U
{`(x,u)+ Vf (f (x,u))} ≤ Vf (x) ∀x ∈ Xf

so that
V0

1 (x) ≤ V0
0 (x) ∀x ∈ X0

Next, suppose that for some j ≥ 1,

V0
j (x) ≤ V0

j−1(x) ∀x ∈ Xj−1

Then, using the DP equation (2.10)

V0
j+1(x)− V0

j (x) = `(x, κj+1(x))+ V0
j (f (x, κj+1(x)))

− `(x, κj(x))− V0
j−1(f (x, κj(x))) ∀x ∈ Xj ⊆ Xj+1

Since κj(x) may not be optimal for Pj+1(x) for all x ∈ Xj ⊆ Xj+1, we
have

V0
j+1(x)− V0

j (x) ≤ `(x, κj(x))+ V0
j (f (x, κj(x)))

− `(x, κj(x))− V0
j−1(f (x, κj(x))) ∀x ∈ Xj

Also, from (2.12), x ∈ Xj implies f(x, κj(x)) ∈ Xj−1 so that, by as-
sumption, V0

j (f (x, κj(x))) ≤ V0
j−1(f (x, κj(x))) for all x ∈ Xj . Hence

V0
j+1(x) ≤ V0

j (x) ∀x ∈ Xj

By induction

V0
j+1(x) ≤ V0

j (x) ∀x ∈ Xj , ∀j ∈ {1,2, . . . ,N − 1}

It then follows that V0
N(x) ≤ V0

0 (x) := Vf (x) for all x ∈ X0 := Xf . �

Lemma 2.15 also holds if U is closed but not bounded. The mono-
tonicity property can be used to establish the descent property of V0

N(·)
proved in Lemma 2.14 by noting that

V0
N(x) = `(x, κN(x))+ V0

N−1(f (x, κN(x)))

= `(x, κN(x))+ V0
N(f (x, κN(x)))+

[V0
N−1(f (x, κN(x)))− V0

N(f (x, κN(x)))]
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so that using the monotonicity property

V0
N(f (x, κN(x))) = V0

N(x)− `(x, κN(x))+
[V0
N(f (x, κN(x)))− V0

N−1(f (x, κN(x)))]

≤ V0
N(x)− `(x, κN(x)) ∀x ∈ XN

which is the desired descent property.

2.4.5 Further Properties of the Value Function V0
N(·)

Lemma 2.14 shows that the value function V0
N(·) has a descent property

that makes it a suitable candidate for a Lyapunov function that may
be used to establish stability of the origin for a wide variety of MPC
systems. To proceed, we postulate two alternative conditions on the
stage cost `(·) and terminal cost Vf (·) required to show that V0

N(·) has
the properties given in Appendix B, which are sufficient to establish
stability of the origin. Our additional assumption is:

Assumption 2.16 (Bounds on stage and terminal costs).

(a) The stage cost `(·) and the terminal cost Vf (·) satisfy

`(x,u) ≥ α1(|x|) ∀x ∈ XN , ∀u ∈ U

Vf (x) ≤ α2(|x|) ∀x ∈ Xf

in which α1(·) and α2(·) areK∞ functions, or

(b) The stage cost `(·) and the terminal cost Vf (·) satisfy

`(x,u) ≥ c1|x|a ∀x ∈ XN , ∀u ∈ U

Vf (x) ≤ c2|x|a ∀x ∈ Xf

for some c1 > 0, c2 > 0, and a > 0.

Note that Assumption 2.16(b) implies 2.16(a) and that both Assump-
tions 2.16(a) and 2.16(b) are satisfied witha = 2 if `(x,u) = (1/2)(x′Qx
+u′Ru) andQ and R are positive definite. With this extra assumption,
V0
N(·) has the properties summarized in the following result.

Proposition 2.17 (Optimal value function properties).

(a) Suppose that Assumptions 2.2, 2.3, 2.12, 2.13, and 2.16(a) are satis-
fied. Then there existK∞ functions α1(·) and α2(·) such that V0

N(·) has
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the following properties

V0
N(x) ≥ α1(|x|) ∀x ∈ XN
V0
N(x) ≤ α2(|x|) ∀x ∈ Xf

V0
N(f (x, κN(x))) ≤ V0

N(x)−α1(|x|) ∀x ∈ XN

(b) Suppose that Assumptions 2.2, 2.3, 2.12, 2.13, and 2.16(b) are satis-
fied. Then there exist positive constants c1, c2, and a such that V0

N(·)
has the following properties

V0
N(x) ≥ c1|x|a ∀x ∈ XN
V0
N(x) ≤ c2|x|a ∀x ∈ Xf

V0
N(f (x, κN(x))) ≤ V0

N(x)− c1|x|a ∀x ∈ XN

Proof.

(a) The first inequality follows from Assumption 2.16(a) and the fact
that V0

N(x) ≥ `(x, κN(x)). The second inequality follows from Lemma
2.15 and Assumption 2.16. Finally, the third inequality follows from
Lemma 2.14 and Assumption 2.16(a).

(b) The proof of this part is similar to the previous. �

These properties are almost identical to those required in Theorems
B.11 and B.13 in Appendix B to establish asymptotic stability of the ori-
gin with a region of attraction XN . The second property falls short
because the upper bound holds for all x in Xf rather than for all x
in XN . Despite this, asymptotic stability of the origin with a region of
attractionXN can still be established when Xf contains the origin in its
interior as we show subsequently. Alternatively, the second inequality
is sometimes assumed to hold for all x ∈ XN , in which case asymp-
totic stability of the origin can be established using standard theorems
in Appendix B; see the subsequent Assumption 2.23. Finally, as we
show next, V0

N(x) ≤ α2(|x|) for all x ∈ Xf implies, under some mild
assumptions, that V0

N(x) ≤ α2(|x|) for all x ∈ XN so that, under these
assumptions, the results of Appendix B can again be used to prove
asymptotic stability of the origin. In the next result, the set X may be
XN , if XN is compact, or a sublevel set of V0

N(·).

Proposition 2.18 (Extension of upper bound to compact set). Suppose
that Assumptions 2.2, 2.3, 2.12, and 2.13 hold, that Xf contains the
origin in its interior, and that Xf ⊆ X where X is a compact set in Rn. If
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there exists aK∞ functionα(·) such that V0
N(x) ≤ α(|x|) for all x ∈ Xf ,

then there exists another K∞ function β(·) such that V0
N(x) ≤ β(|x|)

for all x ∈ X.

Proof. Because the origin lies in the interior of Xf , there exists a d > 0
such that {x | |x| ≤ d} ⊂ Xf . Let e = max{α(|x|) | |x| ≤ d} > 0;
then α(|x|) ≥ e for all x ∈ X \ Xf . Since X is compact by assumption,
U is compact by Assumption 2.3, and VN(·) continuous by Proposition
2.4, there exists an upper bound c > e for VN(·) on X ×UN and, hence,
for V0

N(·) on X. Thus β(·) := (c/e)α(·) is a K∞ function satisfying
β(|x|) ≥ α(|x|) for all x in X and β(|x|) ≥ c for all x ∈ X \Xf . Hence
β(·) is aK∞ function satisfying V0

N(x) ≤ β(|x|) for all x ∈ X. �

An immediate consequence of Propositions 2.17 and 2.18 is the fol-
lowing result.

Proposition 2.19 (Lyapunov function onXN ). Suppose Assumptions 2.2,
2.3, 2.12, 2.13, and 2.16 are satisfied, that Xf has an interior containing
the origin, and that XN is bounded. Then, for all x ∈ XN

V0
N(x) ≥ α1(|x|) (2.20)

V0
N(x) ≤ α2(|x|) (2.21)

V0
N(f (x, κN(x))) ≤ V0

N(x)−α1(|x|) (2.22)

in which α1(·) and α2(·) areK∞ functions.

Proof. The result follows directly from Proposition 2.18 since the as-
sumption that the set XN is bounded, coupled with the fact that it is
closed, as shown in Proposition 2.11, implies that it is compact. �

Hence, if the hypotheses of Proposition 2.19 are satisfied, Theorems
B.11 and B.13 in Appendix B may be used to establish asymptotic sta-
bility of the origin in XN . Sufficient conditions for the boundedness of
XN are provided by the next result. Recall f−1

Z (·) is given in Definition
2.9.

Proposition 2.20 (Boundedness of Xj). If either X is bounded or Xf is
bounded and f−1

Z (·) is bounded on bounded sets, then, for all j ∈ I≥0,
Xj is bounded.

Proof. That XN is bounded if X is bounded follows immediately from
the fact that, by definition, XN ⊆ X. Assume then that Xf is bounded
and f−1

Z (·) is bounded on bounded sets. Then the set Z1 = f−1
Z (Xf ) is
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bounded and, hence, so is the set X1. Suppose, for some j > 0, the set
Zj−1 is bounded; then its projection onto the set Xj−1 is bounded and
so is the set Zj = f−1

Z (Xj). Thus the set Xj is bounded. By induction
Xj is bounded for all j ∈ I≥0. �

When f(·) is linear, i.e., f(x,u) = Ax+Bu, then f−1
Z (·) is bounded

on bounded sets ifA is nonsingular. The matrixA is always nonsingular
when A and B are obtained by sampling a continuous time system ẋ =
Acx+Bcu with u constant between sampling instants. In this case A =
exp(Ac∆) and B =

∫∆
0 exp(Ac(∆−s))Bds so thatA is invertible. To show

that f−1
Z (·) is bounded on bounded sets, let X be an arbitrary bounded

set in Rn and let x′ be an arbitrary point x′ ∈ X. Then f−1(x′) =
{(x,u) | Ax + Bu = x′}. Any (x,u) in f−1(x′) satisfies x = A−1x′ −
A−1Bu so that x lies in the bounded set A−1X⊕(−A−1BU) and u lies in
the bounded set U. Hence both f−1(X) and f−1

Z (X) lie in the bounded
set A−1X ⊕ (−A−1B). A similar result holds for nonlinear systems. If
f(·) is obtained by sampling a continuous time system ẋ = fc(x,u)
with period ∆ and u constant between sampling instants, then f(·) is
defined by

f(x,u) = x +
∫ ∆

0
fc(x(s),u)ds

where x(s) is the solution of ẋ = fc(x,u) at time s if x is the state at
time zero and u is the constant input in the interval [0,∆].

Proposition 2.21 (Properties of discrete time system). Suppose that

(a) fc(·) is continuous.

(b) There exists a positive constant c such that

|fc(x′, u)− fc(x,u)| ≤ c|x′ − x| ∀x, x′ ∈ Rn, u ∈ U

Then f(·) and f−1
Z (·) are bounded on bounded sets.

The proof of Proposition 2.21 is discussed in Exercise 2.2. Proposi-
tion 2.19 shows that if the terminal constraint setXf contains the origin
in its interior and if XN is bounded, which is often the case, then stan-
dard stability theorems, such as Theorems B.11 and B.12 in Appendix
B, may be used to establish asymptotic stability of the origin. When
Xf contains the origin in its interior but XN is unbounded, asymptotic
stability of the origin can still be established using the next result that
is a slight generalization of Theorem B.12 in Appendix B.
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Theorem 2.22 (Asymptotic stability with unbounded region of attrac-
tion). Suppose X ⊂ Rn and Xf ⊂ X are positive invariant for the system
x+ = f(x), that Xf ⊂ X is closed and contains the origin in its interior,
and that there exist a function V : Rn → R≥0 and two K∞ functions
α1(·) and α2(·) such that

V(x) ≥ α1(|x|) ∀x ∈ X (2.23)

V(x) ≤ α2(|x|) ∀x ∈ Xf (2.24)

V(f(x))− V(x) ≤ −α1(|x|) ∀x ∈ X (2.25)

Then the origin is asymptotically stable with a region of attraction X for
the system x+ = f(x).

Proof.

Stability. Because Xf contains the origin in its interior, there exists
a δ1 > 0 such that δ1B ⊂ Xf ; here B denotes the closed unit ball in
Rn. Let δ ∈ (0, δ1] > 0 be arbitrary. Let φ(i;x) denote the solution
of x+ = f(x) at time i if the initial state is x. Suppose that |x| ≤ δ
so that x ∈ Xf . It follows from (2.24) that V(x) ≤ α2(δ) and from
(2.25) that V(φ(i;x)) ≤ V(x) ≤ α2(δ) for all i ∈ I≥0. From (2.23),
|φ(i;x)| ≤ α−1

1 (V(x(i))) ≤ (α−1
1 ◦ α2)(δ) for all i ∈ I≥0. Hence for all

ε > 0, there exists a δ > 0, δ := min{δ1, (α−1
1 ◦ α2)−1(ε)}, such that

|x| ≤ δ implies that |φ(i;x)| ≤ ε for all i ∈ I≥0. Stability of the origin
is established.

Attractivity. The proof of attractivity is similar to the proof of attrac-
tivity in Theorem B.11 of Appendix B. �

Hence, if we add to the hypotheses of Proposition 2.17 the assump-
tion that Xf contains the origin in its interior, we can use Theorem
2.22 to establish the asymptotic stability of the origin with a region of
attraction XN for the system x+ = f(x, κN(x)).

In situations where Xf does not have an interior, such as when Xf =
{0}, we cannot establish an upper bound for V0

N(·) from Assumptions
2.12 and 2.13, and resort to the following assumption.

Assumption 2.23 (Weak controllability). There exists a K∞ function
α(·) such that

V0
N(x) ≤ α(|x|) ∀x ∈ XN
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Assumption 2.23 is weaker than a controllability assumption though
it bounds the cost of steering an initial state x to Xf . It confines atten-
tion to those initial states that can be steered to Xf in N steps while
satisfying the control and state constraints, and merely requires that
the cost of doing so is not excessive.

2.4.6 Summary

In the sequel we apply the previous results to establish asymptotic or
exponential stability of a wide range of MPC systems. To facilitate ap-
plication, we summarize these results and some of their consequences
in the following theorem. Since κN(·)may be set valued, statements of
the form κN(x) has property A in the sequel should be interpreted as
every u in κN(x) has property A.

Theorem 2.24 (MPC stability).

(a) Suppose that Assumptions 2.2, 2.3, 2.12, 2.13, and 2.16(a) are satis-
fied and thatXN = Xf = Rn so that Vf (·) is a global CLF. Then the origin
is globally asymptotically stable for x+ = f(x, κN(x)). If, in addition,
Assumption 2.16(b) is satisfied, then the origin is globally exponentially
stable.

(b) Suppose that Assumptions 2.2, 2.3, 2.12, 2.13, and 2.16(a) are sat-
isfied and that Xf contains the origin in its interior. Then the origin
is asymptotically stable with a region of attraction XN for the system
x+ = f(x, κN(x)). If, in addition, Assumption 2.16(b) is satisfied and
XN is bounded, then the origin is exponentially stable with a region of
attraction XN for the system x+ = f(x, κN(x)); if XN is unbounded,
then the origin is exponentially stable with a region of attraction that is
any sublevel set of V0

N(·).

(c) Suppose that Assumptions 2.2, 2.3, 2.12, 2.13, and 2.23 are satisfied
and that `(·) satisfies `(x,u) ≥ α1(|x|) for all x ∈ XN , all u ∈ U,
where α1(·) is a K∞ function. Then the origin is asymptotically stable
with a region of attraction XN for the system x+ = f(x, κN(x)). If `(·)
satisfies `(x,u) ≥ c1|x|a for all x ∈ XN , all u ∈ U, and Assumption
2.23 is satisfied with α(r) = c2ra for some c1 > 0, c2 > 0 and a > 0,
then the origin is exponentially stable with a region of attraction XN for
the system x+ = f(x, κN(x)).

(d) Suppose that Assumptions 2.2, 2.3, 2.12, and 2.13 are satisfied, that
`(·) satisfies `(x,u) ≥ c1|x|a + c1|u|a, and that Assumption 2.23 is



124 Model Predictive Control — Regulation

satisfied with α(r) = c2ra for some c1 > 0, c2 > 0, and a > 0. Then
|κN(x)| ≤ c|x| for all x ∈ XN where c = (c2/c1)1/a.

Proof.

(a) Since Xf = Rn, Lemmas 2.14 and 2.15 ensure the existence of K∞
functions α1(·) and α2(·) such that the value function V0

N(·) satisfies

V0
N(x) ≥ α1(|x|)
V0
N(f (x, κN(x))) ≤ V0

N(x)−α1(|x|)
V0
N(x) ≤ α2(|x|)

for all x ∈ Rn. Asymptotic stability of the origin follows from Theo-
rem B.11 in Appendix B. When Assumption 2.16(b) is satisfied, global
exponential stability of the origin follows as in the proof of the next
part with XN = Rn.

(b) If Assumption 2.16(a) is satisfied, asymptotic stability of the origin
follows from Proposition 2.17 and Theorem 2.22. If Assumption 2.16(b)
is satisfied and XN is bounded, it follows from Propositions 2.18 and
2.19 that there exists c2 sufficiently large such that the value function
satisfies

V0
N(x) ≥ c1|x|a (2.26)

V0
N(f (x, κN(x))) ≤ V0

N(x)− c1|x|a (2.27)

V0
N(x) ≤ c2|x|a (2.28)

for all x ∈ XN . Consider any initial state x ∈ XN , and let x(i) denote
the solution at time i of the difference equation x+ = f(x, κN(x)) with
initial condition x(0) = x. Since, by Proposition 2.11, XN is positive
invariant for x+ = f(x, κN(x)), the entire sequence {x(i)} lies in XN
if the initial state x lies in XN . Hence {x(i)} satisfies

V0
N(x(i+ 1)) ≤ V0

N(x(i))− c1|x(i)|a ≤ (1− c1/c2)V0
N(x(i))

for all i ∈ I≥0. It follows that

V0
N(x(i)) ≤ γiV0

N(x(0))

for all i ∈ I≥0 in which γ := (1− c1/c2) ∈ (0,1). Hence

|x(i)|a ≤ (1/c1)V0
N(x(i)) ≤ (1/c1)γiV0

N(x(0)) ≤ (c2/c1)γi|x(0)|a
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so that
|x(i)| ≤ cδi|x(0)| ∀x(0) ∈ XN ∀i ∈ I≥0

in which c := (c2/c1)1/a and δ := γ1/a ∈ (0,1). Since x(i) ∈ XN for all
i ∈ I≥0, it follows that the origin is exponentially stable with a region of
attraction XN for x+ = f(x, κN(x)). Consider now the case when XN
is unbounded. It follows from (2.26) that any sublevel set of V0

N(·) is
bounded, and, from (2.27), is positive invariant for x+ = f(x, κN(x)).
The origin is exponentially stable with a region of attraction equal to
any sublevel set of V0

N(·), which follows by similar reasoning for the
case when XN is bounded by replacing XN with the bounded sublevel
set of V0

N(·).

(c) It follows from the proof of Proposition 2.17 and Assumption 2.23
that V0

N(·) satisfies (2.20)–(2.22) for all x ∈ XN . Since XN is positive
invariant, it follows from Theorem B.13 in Appendix B that the ori-
gin is asymptotically stable with a region of attraction XN for x+ =
f(x, κN(x)). Suppose now that `(·) satisfies `(x,u) ≥ c1|x|a for all
x ∈ XN , all u ∈ U and Assumption 2.23 is satisfied with α(r) = c2ra

for some c1 > 0, c2 > 0, and a > 0. It follows that V0
N(·) satisfies

(2.26)–(2.28) for all x ∈ XN . Exponential stability of the origin for
x+ = f(x, κN(x)) follows by the same reasoning employed in the proof
of part (b).

(d) It follows the assumption on `(·) and Assumption 2.23 that c2|x|a ≥
V0
N(x) ≥ c1|κN(x)|a so that |κN(x)|a ≤ (c2/c1)|x|a, which implies
|κN(x)| ≤ (c2/c1)1/a|x| for all x ∈ XN . �

2.4.7 Controllability and Observability

We have not yet made any assumptions on controllability (stabilizabil-
ity) or observability (detectability) of the system (2.1) being controlled,
which may be puzzling since such assumptions are commonly required
in optimal control to, for example, establish existence of a solution to
the optimal control problem. The reasons for this omission are that
such assumptions are implicitly required, at least locally, for the basic
stability Assumption 2.12, and that we restrict attention to XN , the set
of states that can be steered to Xf in N steps satisfying all constraints.

For example, one version of MPC uses a target set Xf = {0}, so
that the optimal control problem requires determination of an optimal
trajectory terminating at the origin; clearly some assumption on con-
trollability to the origin such as Assumption 2.23 is required. Similarly,
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if the system being controlled is linear, and the constraints polytopic
or polyhedral, a common choice for Xf is the maximal invariant con-
straint admissible set for a controlled system where the controller is
linear and stabilizing. The terminal constraint set Xf is then the set
{x | x(i) ∈ X, Kx(i) ∈ U} where x(i) is the solution at time i of
x+ = (A+ BK)x, and u = κf (x) = Kx is a stabilizing control law. Sta-
bilizability of the system being controlled is then required; see Section
C.3 of Appendix C for a brief exposition of invariant sets.

Detectability assumptions also are required, mainly in proofs of
asymptotic or exponential stability. For example, if the stage cost sat-
isfies `(x,u) = (1/2)(|y|2 + |u|2R) where y = Cx, the stability proofs
commonly establish that y(k) = Cx(k) tends to zero as k tends to in-
finity. To deduce from this fact that x(k) → 0 requires a detectability
assumption on the system x+ = f(x,u), y = Cx. If C is invertible, as
we sometimes assume, the system is detectable (sincey(k)→ 0 implies
x(k)→ 0).

The requisite assumptions of stabilizability and detectability are
made later in the context of discussing specific forms of MPC.

2.4.8 Time-Varying Systems

Most of the control problems discussed in this book are time invari-
ant. Time-varying problems do arise in practice, however, even if the
system being controlled is time invariant. One example occurs when
an observer or filter is used to estimate the state of the system being
controlled since bounds on the state estimation error are often time
varying. In the deterministic case, for example, state estimation error
decays exponentially to zero. In this section, which may be omitted in
the first reading, we show how MPC may be employed for time-varying
systems.

The problem. The time-varying nonlinear system is described by

x+ = f(x,u, i)

where x is the current state at time i, u the current control, and x+ the
successor state at time i+ 1. For each integer i, the function f(·, i) is
assumed to be continuous. The solution of this system at time k given
that the initial state isx at time i is denoted byφ(k;x, i,u); the solution
now depends on both the initial time i and current time k rather than
merely on the difference k − i as in the time-invariant case. The cost
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VN(x, i,u) also depends on the initial time i and is defined by

VN(x, i,u) :=
i+N−1∑
k=i

`(x(k),u(k), k)+ Vf (x(i+N), i+N)

in which x(k) := φ(k;x, i,u), u = {u(i),u(i+1), . . . , u(i+N−1)}, and
the stage cost `(·) and terminal cost Vf (·) are time varying. The state
and control constraints are also time varying

x(k) ∈ X(k) u(k) ∈ U(k)

for all k. In addition, there is a time-varying terminal constraint

x(i+N) ∈ Xf (i+N)

in which i is the current time. The time-varying optimal control prob-
lem at event (x, i) is PN(x, i) defined by

PN(x, i) : V0
N(x, i) =min{VN(x, i,u) | u ∈ UN(x, i)}

in which UN(x, i) is the set of control sequences u = {u(i),u(i +
1), . . . , u(i + N − 1)} satisfying the state, control and terminal con-
straints, i.e.,

UN(x, i) := {u | (x,u) ∈ ZN(i)}

in which, for each i, ZN(i) ⊂ Rn ×RNm is defined by

ZN(i) :=
{
(x,u) | u(k) ∈ U(k), φ(k;x, i,u) ∈ X(k),∀k ∈ Ii,i+N−1,

φ(i+N;x, i,u) ∈ Xf (i+N)
}

For each time i, the domain of V0
N(·, i) is XN(i) where

XN(i) := {x ∈ X(i) | UN(x, i) ≠∅}
= {x ∈ Rn | ∃u such that (x,u) ∈ ZN(i)}

which is the projection of ZN(i) onto Rn. Our standing assumptions
(2.2 and 2.3) are replaced, in the time-varying case, by

Assumption 2.25 (Continuity of system and cost; time-varying case).
The functions f(·), `(·), and Vf (·) are continuous; for all i ∈ I≥0,
f(0,0, i) = 0, `(0,0, i) = 0, and Vf (0, i) = 0.
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Assumption 2.26 (Properties of constraint sets; time-varying case). For
all i ∈ I≥0, X(i) and Xf (i) are closed, Xf (i) ⊂ X(i) and U(i) are com-
pact; each set contains the origin.

Because of the time-varying nature of the problem, we need to ex-
tend our definitions of invariance and control invariance.

Definition 2.27 (Time-varying control invariant sets). The sequence of
sets {X(i) | i ∈ I≥0} is said to be time-varying control invariant for
the time-varying system x+ = f(x,u, i) if, for each i ∈ I≥0, for each
x ∈ X(i), there exists a u ∈ U(i) such that x+ = f(x,u, i) ∈ X(i+ 1).
The sequence of sets {X(i) | i ∈ I≥0} is said to be time-varying positive
invariant for the time-varying systemx+ = f(x, i) if, for eachx ∈ X(i),
x+ = f(x, i) ∈ X(i+ 1).

A sequence of sets {X(i)} is a tube, and time-varying positive in-
variance of the sequence is positive invariance of the tube. If (x, i)
lies in the tube, i.e., if x ∈ X(i) for some i ∈ I≥0, then all solutions
of x+ = f(x, i) starting at event (x, i) remain in the tube. The follow-
ing results, which are analogs of the results for time-invariant systems
given previously, are stated without proof.

Proposition 2.28 (Continuous system solution; time-varying case). Sup-
pose Assumptions 2.25 and 2.26 are satisfied. For each initial time i and
final time j, the function (x,u), φ(j;x, i,u) is continuous.

Proposition 2.29 (Existence of solution to optimal control problem;
time-varying case). Suppose Assumptions 2.25 and 2.26 are satisfied.
Then for each time i ∈ I≥0

(a) The function (x,u), VN(x, i,u) is continuous in ZN(i).

(b) For each x ∈ XN(i), the control constraint set UN(x, i) is compact.

(c) For each x ∈ XN(i), a solution to PN(x, i) exists.

(d) XN(i) is closed.

(e) If {Xf (i)} is time-varying control invariant for x+ = f(x,u, i), then
{XN(i)} is time-varying control invariant for x+ = f(x,u, i) and time-
varying positive invariant for x+ = f(x, κN(x, i), i).

(f) 0 ∈ XN(i).

Stability. As before, the receding horizon control law κN(·), which is
now time varying, is not necessarily optimal or stabilizing. By choos-
ing the time-varying “ingredients” Vf (·) and Xf in the optimal control
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problem appropriately, however, stability can be ensured, as we now
show. We replace the stability assumptions (2.12 and 2.13) by their
time-varying extension.

Assumption 2.30 (Basic stability assumption; time-varying case). For
all i ∈ I≥0, minu∈Ui{Vf (f (x,u, i), i+1)+`(x,u, i) | f(x,u, i) ∈ Xf (i+
1)} ≤ Vf (x, i), ∀x ∈ Xf (i).

This assumption implicitly requires that the sets {Xf (i)} are time-
varying positive invariant in the following sense.

Assumption 2.31 (Implied invariance assumption; time-varying case).
For each i ∈ I≥0 and each x ∈ Xf (i), there exists a u ∈ U(i) such that
f(x,u, i) ∈ Xf (i+ 1).

A direct consequence of Assumption 2.31 is the extension of Lemma
2.14, namely, that the time-varying value function V0

N(·) has the de-
scent property that its value at (f (x, κN(x, i), i), i+ 1) is less than its
value at (x, i) by an amount `(x, κN(x, i), i).

Lemma 2.32 (Optimal cost decrease; time-varying case). Suppose As-
sumptions 2.25, 2.26, 2.30 and 2.31 hold. Then,

V0
N(f (x, κN(x, i), i), i+ 1) ≤ V0

N(x, i)− `(x, κN(x, i), i) (2.29)

for all x ∈ XN(i), all i ∈ I≥0.

Lemma 2.33 (MPC cost is less than terminal cost). Suppose Assumptions
2.25, 2.26, 2.30 and 2.31 hold. Then,

V0
N(x, i) ≤ Vf (x, i) ∀x ∈ Xf (i), ∀i ∈ I≥0

The proofs of Lemmas 2.32 and 2.33 are left as Exercises 2.9 and
2.10. Determination of a time-varying terminal cost Vf (·) and time-
varying terminal constraint set Xf is complex. Fortunately there are
a few important cases where choice of time-invariant terminal cost
and constraint set is possible. The first possibility is Xf = {0} and
Vf (0) = 0; this choice satisfies Assumptions 2.12 and 2.13, as already
demonstrated, as well as Assumptions 2.30 and 2.31. The second pos-
sibility arises when f(·) is time invariant, which is the case when out-
put feedback rather than state feedback is employed. In this case,
discussed more fully in Chapter 5, time-varying bounds on state es-
timation error may lead to time-varying constraints even though the
underlying system is time invariant. We therefore make the following
assumption.
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Assumption 2.34 (Bounds on stage and terminal costs; time-varying
case).

(a) The terminal cost Vf (·) and terminal constraint set Xf are time in-
variant.

(b) The stage cost `(·) and the terminal cost Vf (·) satisfy, for all i ∈ I≥0

`(x,u, i) ≥ α1(|x|) ∀x ∈ XN(i), ∀u ∈ U(i)
Vf (x, i) ≤ α2(|x|) ∀x ∈ Xf

in which α1(·) and α2(·) areK∞ functions.

Our next result is an analog of Proposition 2.17, and follows fairly
simply from Lemmas 2.32 and 2.33 and our assumptions.

Proposition 2.35 (Optimal value function properties; time-varying case).
Suppose Assumptions 2.25, 2.26, 2.30, 2.31, and 2.34 are satisfied. Then
there exist twoK∞ functions α1(·) and α2(·) such that, for all i ∈ I≥0

V0
N(x, i) ≥ α1(|x|) ∀x ∈ XN(i)
V0
N(x, i) ≤ α2(|x|) ∀x ∈ Xf

V0
N(f (x, κN(x, i), i)) ≤ V0

N(x, i)−α1(|x|) ∀x ∈ XN(i)

We can deal with the obstacle posed by the fact that the upper bound
on V0

N(·) holds only in Xf in much the same way as we did previously
for the time-invariant case. For simplicity, however, we invoke instead
a uniform controllability assumption.

Assumption 2.36 (Uniform weak controllability). There exists a K∞
function α1(·) such that

V0
N(x, i) ≤ α(|x|) ∀x ∈ XN(i), ∀i ∈ I≥0

If Assumptions 2.25, 2.26, 2.30, 2.31, 2.34, and 2.36 are satisfied, it
follows from the proof of Proposition 2.35 that, for all i ∈ I≥0

V0
N(x, i) ≥ α1(|x|) ∀x ∈ XN(i) (2.30)

V0
N(x, i) ≤ α2(|x|) ∀x ∈ XN(i) (2.31)

V0
N(f (x, κN(x, i), i)) ≤ V0

N(x, i)−α1(|x|) ∀x ∈ XN(i) (2.32)

Since the bounds in inequalities (2.30)–(2.32) hold independently of
time i ∈ I≥0, we may employ Theorems B.11 and B.13 of Appendix
B with minor modification to obtain the following stability result.
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Assumption Title Page

2.2 Continuity of system and cost 97
2.3 Properties of constraint sets 97
2.12 Basic stability assumption 115
2.13 Implied invariance assumption 115
2.16 Bounds on stage and terminal costs 118
2.23 Weak controllability 122

Table 2.1: Stability assumptions; time-invariant case.

Assumption Title Page

2.25 Continuity of system and cost 127
2.26 Properties of constraint sets 128
2.30 Basic stability assumption 129
2.31 Implied invariance assumption 129
2.34 Bounds on stage and terminal costs 130
2.36 Uniform weak controllability 130

Table 2.2: Stability assumptions; time-varying case.

Theorem 2.37 (MPC stability; time-varying case). Suppose Assumptions
2.25, 2.26, 2.30, 2.31, 2.34, and 2.36 hold. Then, for each initial time
i ∈ I≥0, the origin is asymptotically stable with a region of attraction
XN(i) for the time-varying system x+ = f(x, κN(x, j), j), j ≥ i.

2.5 Examples of MPC

We already have discussed the general principles underlying the de-
sign of stabilizing model predictive controllers. The conditions on Xf ,
`(·), and Vf (·) that guarantee stability can be implemented in a vari-
ety of ways so that MPC can take many different forms. We present
in this section a representative set of examples of MPC and include in
these examples the most useful forms for applications. These examples
also display the roles of the six main assumptions used to guarantee
closed-loop asymptotic stability. These six main assumptions are sum-
marized in Table 2.1 for the time-invariant case and Table 2.2 for the
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time-varying case. Refering back to this table may prove helpful while
reading this section and comparing the various forms of MPC.

One question that is often asked is whether or not the terminal con-
straint is necessary. Since the conditions given previously are suffi-
cient, necessity cannot be claimed. We discuss this further later. It is
evident that the constraint arises because one often has a local, rather
than a global, CLF for the system being controlled. In some situations,
a global CLF is available; in such situations, a terminal constraint is not
necessary and the terminal constraint set can be taken to be Rn.

All model predictive controllers determine the control action to be
applied to the system being controlled by solving, at each state, an opti-
mal control that is usually constrained. If the constraints in the optimal
control problem include hard state constraints, then the feasible region
XN is a subset ofRn. The analysis given previously shows that if the ini-
tial state x(0) lies inXN , so do all subsequent states, a property known
as recursive feasibility ; this property holds if all the assumptions made
in our analysis hold. It is always possible, however, for unanticipated
events to cause the state to become infeasible. In this case, the optimal
control problem, as stated, cannot be solved, and the controller fails.
It is therefore desirable, if this does not conflict with design aims, to
employ soft state constraints in place of hard constraints. Otherwise,
any implementation of the algorithms described subsequently should
be modified to include a feature that enables recovery from faults that
cause infeasibility. One remedy is to replace the hard constraints by
soft constraints when the current state is infeasible, thereby restoring
feasibility, and to revert back to the hard constraints as soon as they
are satisfied by the current state.

2.5.1 Unconstrained Systems

For unconstrained systems, U = Rm and X = Rn so that Assumption
2.3 that postulates U is compact does not hold.

2.5.1.1 Linear Time-Invariant Systems

Here f(x,u) = Ax+Bu and `(x,u) = (1/2)(|x|2Q+|u|2R) whereQ > 0
and R > 0. If (A, B) is stabilizable, there exists a stabilizing controller
u = Kx. Let AK := A+ BK, Qf := Q + K′RK and let Vf : Rn → R≥0 be
defined by Vf (x) := (1/2)x′Pfx where Pf > 0 satisfies the Lyapunov
equation

A′KPfAK +Qf = Pf
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Since V0
N(x) ≥ `(x, κN(x)) ≥ (1/2)|x|2Q, it follows that there exist

c1 > 0 and c2 > 0 such that

V0
N(x) ≥ c1|x|2 Vf (x) ≤ c2|x|2 ∀x ∈ Rn

With f(·), `(·), and Vf (·) defined this way, problem PN(x) is an uncon-
strained parametric quadratic program4 of the form minu(1/2)x′Lx+
x′Mu+ (1/2)u′Nu so that V0

N(·) is a quadratic function of the param-
eter x, and u0(·) and κN(·) are linear functions of x. Since

Vf (Ax + BKx)− Vf (x)+ `(x,Kx) = x′[A′KPfAK +Qf − Pf ]x = 0

for all x ∈ Rn,

Vf (Ax + BKx) = Vf (x)− `(x,Kx) ∀x ∈ Rn

so that Vf (·) and Xf := Rn satisfy Assumptions 2.12 and 2.13 with
u = Kx; Vf (·) is a global CLF and XN = Rn. Hence,

V0
N(f (x, κN(x))) ≤ V0

N(x)− c1|x|2 ∀x ∈ Rn

It also follows from Lemma 2.15, which does not require the assump-
tion that U is compact, that

V0
N(x) ≤ Vf (x) ≤ c2|x|2 ∀x ∈ Rn

Summarizing, we have:

With these assumptions on Vf (·), Xf , and `(·), Assump-
tions 2.12, 2.13, and 2.16(b) are satisfied and, as shown pre-
viously, V0

N(·) satisfies (2.26)–(2.28). It follows, as shown
in Theorem 2.24(a), that the origin is globally exponentially
stable for x+ = f(x, κN(x)).

Since Vf (·) is a global CLF, there exists a simple stabilizing controller,
namely u = Kx. In this case, there is no motivation to use MPC to
obtain a stabilizing controller; standard linearH2 orH∞ optimal control
theory may be employed to obtain satisfactory control. The situation
is different in the time-varying case, which we consider next.

4An optimization problem is parametric if it takes the form minu{VN(x; u) | u ∈
UN(x)}where u is the decision variable and x is a parameter; the solution is a function
of the parameter x.
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2.5.1.2 Linear Time-Varying Systems

Here f(x,u, i) = Aix+Biu and `(x,u, i) = (1/2)(|x|2Qi +|u|
2
Ri) where

Qi > 0 and Ri > 0 for i ∈ I≥0. Because of the time-varying nature
of the problem, it is impossible to obtain a controller by solving an
infinite horizon optimal control problemP∞(x). It is possible, however,
to determine for each x ∈ XN(i) and each i ∈ I≥0, the MPC action
κN(x, i). Hence, MPC makes it possible to solve an otherwise intractable
problem.

It is difficult to determine a time-varying global CLF satisfying As-
sumption 2.12 that could serve as the terminal cost function Vf (·), so
we impose the condition that Xf = {0} in which case Vf (·) may be
chosen arbitrarily; the simplest choice is Vf (0) = 0. With this choice,
problem PN(x, i) is a time-varying unconstrained parametric quadratic
program that can be easily solved online either as a parametric program
or by DP. The value function is a time-varying quadratic function of the
parameter x, and κN(·) a time-varying linear function of x. The ter-
minal cost function and constraint set satisfy Assumptions 2.30 and
2.31. Our choice of `(·) ensures the existence of a c1 > 0 such that
V0
N(x) ≥ `(x, κN(x)) ≥ c1|x|2 for all x ∈ Rn. Because Assumptions

2.30 and 2.31 are satisfied, we can employ Lemma 2.32 to show that
V0
N(·) satisfies the descent property in (2.29). Finally, if we assume that

controllability Assumption 2.36 is satisfied, we obtain an upper bound
for V0

N(·). Summarizing, we have:

With these assumptions on Vf (·) andXf , Assumptions 2.30,
2.31, and 2.34 are satisfied and if, in addition, Assumption
2.36 is satisfied, then, as shown previously, V0

N(·) satisfies
(2.30)–(2.32). It follows from Theorem 2.37 that, for each
initial time i, the origin is asymptotically stable with a region
of attraction XN(i) for the time-varying system x+ = Ajx+
BjκN(x, j), j ≥ i.

2.5.1.3 Nonlinear Systems

Generally, when the system is nonlinear, albeit unconstrained, it is dif-
ficult to obtain a global CLF. We next present two forms of MPC. In the
first, which is the simplest, the target set is the origin Xf = {0}. In
the second, Xf is a positive invariant ellipsoidal set for the system with
linear control based on the linearization of the nonlinear system at the
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origin. The system to be controlled is

x+ = f(x,u)

in which f(·) is continuous. The cost function VN(·) is defined as
before by

VN(x,u) =
N−1∑
i=0

`(x(i),u(i))+ Vf (x(N))

where, for each i, x(i) := φ(i;x,u), the solution of x+ = f(x,u) at
time i if the initial state is x at time 0 and the control is u. Unless
Vf (·) is a global CLF, a terminal constraint set Xf is required, so the
optimal control problem solved online is

PN(x) : V0
N(x) =min

u
{VN(x,u) | u ∈ UN(x)}

in which, in the absence of state and control constraints,

UN(x) := {u | φ(N;x,u) ∈ Xf }

Problem PN(x) is an unconstrained nonlinear parametric program so
that global solutions are not usually possible. We ignore this difficulty
here and assume in this section that the global solution for any x may
be computed online. We address the problem when this is not possible
in Section 2.8.

Case 1. Xf = {0}, Vf (0) = 0. This is the simplest case. As before, we
note that Assumptions 2.12 and 2.13 hold if the origin is an equilibrium
point, i.e., if f(0,0) = 0. If, in addition, we assume that `(·) satisfies
Assumption 2.16(a), namely that there exists aK∞ function α1(·) such
that `(·) satisfies `(x,u) ≥ α1(|x|) for all (x,u) ∈ Rn ×Rm, then, for
all x ∈ XN

V0
N(x) ≥ `(x, κN(x)) ≥ α1(|x|)
V0
N(f (x, κN(x)))− V0

N(x) ≤ −`(x, κN(x)) ≤ −α1(|x|)

where the latter inequality is a consequence of Lemma 2.14. If we also
assume the controllability Assumption 2.23 is satisfied, then

V0
N(x) ≤ α(|x|) ∀x ∈ XN

Summarizing, we have:
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If these assumptions on Vf (·), Xf , and `(·) hold, and As-
sumptions 2.2 and 2.3 are satisfied, then Assumptions 2.12,
2.13, and 2.16(a) are satisfied. If, in addition, the controlla-
bility Assumption 2.23 is satisfied, then it follows from The-
orem 2.24(b) that the origin is asymptotically stable with a
region of attraction XN for x+ = f(x, κN(x)).

Case 2. Vf (x) = (1/2)|x|2P , Xf = {x | Vf (x) ≤ a}. In this case we
obtain a terminal cost function Vf (·) and a terminal constraint set Xf
by linearization of the nonlinear system x+ = f(x,u) at the origin.
Hence, for the purpose of this case we assume f(·) and `(·) are twice
continuously differentiable. Suppose then the linearized system is

x+ = Ax + Bu

where A := fx(0,0) and B := fu(0,0). We assume that (A, B) is sta-
bilizable and we choose any controller u = Kx such that the origin is
globally exponentially stable for the system x+ = AKx, AK := A+ BK,
i.e., such that AK is stable. Suppose also that the stage cost `(·) is
defined by `(x,u) := (1/2)(|x|2Q + |u|2R) where Q and R are positive
definite; hence `(x,Kx) = (1/2)x′Q∗x where Q∗ := (Q + K′RK). Let
P be defined by the Lyapunov equation

A′KPAK + 2Q∗ = P

The reason for the factor 2 will become apparent soon. Since Q∗ is
positive definite andAK is stable, P is positive definite. Let the terminal
cost function Vf (·) be defined by

Vf (x) := (1/2)x′Px

ClearlyVf (·) is a global CLF for the linear systemx+ = Ax+Bu. Indeed,
it follows from its definition that Vf (·) satisfies

Vf (AKx)+ x′Q∗x − Vf (x) = 0 ∀x ∈ Rn (2.33)

Consider now the nonlinear system x+ = f(x,u) with linear control
u = Kx. The controlled system satisfies

x+ = f(x,Kx)

We wish to show that Vf (·) is a local CLF for x+ = f(x,u) in some
neighborhood of the origin; specifically, we wish to show there exists
an a ∈ (0,∞) such that

Vf (f (x,Kx))+ (1/2)x′Q∗x − Vf (x) ≤ 0 ∀x ∈ W(a) (2.34)
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where, for all a > 0,W(a) := levaVf = {x | Vf (x) ≤ a} is a sublevel set
of Vf . Since P is positive definite, W(a) is an ellipsoid with the origin
as its center. Comparing inequality (2.34) with (2.33), we see that (2.34)
is satisfied if

Vf (f (x,Kx))− Vf (AKx) ≤ (1/2)x′Q∗x ∀x ∈ W(a) (2.35)

Let e(·) be defined as follows

e(x) := f(x,Kx)−AKx

so that

Vf (f (x,Kx))− Vf (AKx) = (AKx)′Pe(x)+ (1/2)e(x)′Pe(x) (2.36)

By definition, e(0) = f(0,0) − AK0 = 0 and ex(x) = fx(x,Kx) +
fu(x,Kx)K − AK . It follows that ex(0) = 0. Since f(·) is twice con-
tinuously differentiable, for any δ > 0, there exists a cδ > 0 such that
|exx(x)| ≤ cδ for all x in δB. From Proposition A.11 in Appendix A,

|e(x)| =
∣∣∣∣e(0)+ ex(0)x + ∫ 1

0
(1− s)x′exx(sx)xds

∣∣∣∣
≤
∫ 1

0
(1− s)cδ|x|2ds ≤ (1/2)cδ|x|2

for all x in δB. From (2.36), we see that there exists an ε ∈ (0, δ] such
that (2.35), and, hence, (2.34), is satisfied for all x ∈ εB. Because of
our choice of `(·), there exists a c1 > 0 such that Vf (x) ≥ `(x,Kx) ≥
c1|x|2 for all x ∈ Rn. It follows that x ∈ W(a) implies |x| ≤

√
a/c1. We

can choose a to satisfy
√
a/c1 = ε. With this choice, x ∈ W(a) implies

|x| ≤ ε ≤ δ, which, in turn, implies (2.34) is satisfied.
We conclude that there exists an a > 0 such that Vf (·) and Xf :=

W(a) satisfy Assumptions 2.12 and 2.13. For each x ∈ Xf there ex-
ists a u = Kx such that Vf (x,u) ≤ Vf (x) − `(x,u) since `(x,Kx) =
(1/2)x′Q∗x. Our assumption that `(x,u) = (1/2)(x′Qx + u′Ru)
where Q and R are positive definite, and our definition of Vf (·) ensure
the existence of positive constants c1 and c2 such that V0

N(x) ≥ c1|x|2
for all Rn, and Vf (x) ≤ c2|x|2 for all x ∈ Xf thereby satisfying As-
sumption 2.16. The set XN = Rn because the optimal control problem
PN(x) has no state or terminal constraints. Finally, by definition, the
set Xf contains the origin in its interior. Summarizing, we have:

If these assumptions on Vf (·), Xf , and `(·) hold, and As-
sumptions 2.2 and 2.3 are satisfied, then Assumptions 2.12,
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2.13, and 2.16(b) are satisfied, Xf contains the origin in its
interior, and XN = Rn. Hence, by Theorem 2.24(b), the ori-
gin is globally asymptotically stable for x+ = f(x, κN(x)).
Also, by Theorem 2.24(b), the origin is exponentially stable
for x+ = f(x, κN(x)) with any sublevel set of V0

N(·) as a
region of attraction.

2.5.2 Systems with Control Constraints

Usually, when constraints and/or nonlinearities are present, it is im-
possible to obtain a global CLF to serve as the terminal cost function
Vf (·). There are, however, a few special cases where this is possible;
we examine two such cases in this section.

2.5.2.1 Linear Stable Systems

The system to be controlled is x+ = Ax + Bu where A is stable (its
eigenvalues lie strictly inside the unit circle) and the controlu is subject
to the constraintu ∈ UwhereU is compact and contains the origin in its
interior. The stage cost is `(x,u) = (1/2)(x′Qx+u′Ru) where Q and
R are positive definite. To establish stability of the systems under MPC
(or RHC), we wish to obtain a global CLF to serve as the terminal cost
function Vf (·). This is usually difficult because any linear control law
u = Kx, say, will transgress the control constraint for x sufficiently
large. In other words, it is usually impossible to find a Vf (·) such
that there exists a u ∈ U satisfying Vf (Ax + Bu) ≤ Vf (x) − `(x,u)
for all x in Rn. Since A is stable, however, it is possible to obtain
a Lyapunov function for the autonomous system x+ = Ax that is a
suitable candidate for Vf (·); in fact, for all Q > 0, there exists a P > 0
such that

A′PA+Q = P

Let Vf (·) be defined by

Vf (x) = (1/2)x′Px

With f(·), `(·), and Vf (·) defined thus, PN(x) is a parametric quadratic
problem if the constraint set U is polyhedral and global solutions may
be computed online. The terminal cost function Vf (·) satisfies

Vf (Ax)+ (1/2)x′Qx − Vf (x) = (1/2)x′(A′PA+Q− P)x = 0
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for all x ∈ Xf := Rn. We see that for all x ∈ Xf , there exists au, namely
u = 0, such that Vf (Ax+Bu) ≤ Vf (x)−`(x,u); `(x,u) = (1/2)x′Qx
when u = 0. Since there are no state or terminal constraints, XN = Rn.
It follows that there exist positive constants c1 and c2 such that

V0
N(x) ≥ c1|x|2

V0
N(f (x, κN(x))) ≤ V0

N(x)− c1|x|2

V0
N(x) ≤ c2|x|2

for all x ∈ XN = Rn. Summarizing, we have:

If these assumptions on Vf (·), Xf , and `(·) hold, and As-
sumption 2.3 is satisfied, then Assumptions 2.12, 2.13, and
2.16(b) are satisfied andXN = Xf = Rn. It follows from The-
orem 2.24(a) that the origin is globally, exponentially stable
for the controlled system x+ = Ax + BκN(x).

An extension of this approach for unstable A is used in Chapter 6.

2.5.2.2 Neutrally Stable Systems

The system to be controlled is, again, x+ = Ax + Bu, but A is now
neutrally stable5 and the control u is subject to the constraint u ∈ U
where U is compact, contains the origin in its interior, and has the form

U = {u ∈ Rm | ui ∈ [ai, bi], i ∈ I1:m}

where ai < 0 < bi. The linear system x+ = Ax is therefore Lyapunov
stable but not asymptotically stable. We assume that the pair (A, B) is
controllable. This problem is much more challenging than the problem
considered immediately above since control has to be applied to make
the system asymptotically stable, and this control can transgress the
control constraints. Any linear control law u = Kx, no matter how
small K, transgresses the control constraints for large enough x. Re-
cent research, however, has demonstrated the existence of a global CLF
for x+ = Ax+Bu where A is neutrally stable; the Lyapunov function is,
unusually, based on a nonlinear control law of the form u = sat(Kx)
where sat(·) is the vector saturation function defined by

sat(u) :=
[
sat(u1) sat(u2) · · · sat(um)

]′
5A linear system is neutrally stable if some of the eigenvalues of A lie on the unit

circle and are simple, and the remaining eigenvalues lie within the unit circle.
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in which ui is the ith component of the vector u, and

sat(ui) :=


bi ui ≥ bi
ui ui ∈ [ai, bi]
ai ui ≤ ai

If A is neutrally stable, there exists a P > 0 such that

A′PA ≤ P

Note that this is weaker than the corresponding result in the previous
section. If κ satisfies

κB′PB < I

however, then the linear control law u = Kx in which

K := −κB′PA

globally stabilizes the unconstrained system, i.e., the matrix AK := A+
BK is stable. Hence, for all Q∗ > 0, there exists a positive definite
matrix P∗ satisfying

A′KP
∗AK +Q∗ = P∗

Let κf (·) denote the nonlinear control law defined by

κf (x) := sat(Kx)

Then, as shown in Kim, Yoon, Jadbabaie, and Persis (2004), there exists
a λ > 0 such that Vf (·) defined by

Vf (x) := (1/2)x′P∗x + λ(x′Px)3/2

is a global CLF for x+ = Ax + Bu, satisfying

Vf (Ax + Bκf (x))− Vf (x)+ (1/2)|x|2Q∗ ≤ 0 (2.37)

for all x ∈ Rn. Suppose now the optimal control problem defining the
receding horizon controller (or model predictive controller) is

PN(x) : V0
N(x) =min

u
{VN(x,u) | u ∈ UN}

in which the cost VN(·) is defined by

VN(x,u) :=
N−1∑
i=0

`(x(i),u(i))+ Vf (x(N))
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and, for all i, x(i) = φ(i;x,u), the solution of x+ = Ax + Bu at time
i if the initial state at time 0 is x and the control sequence is u. The
stage cost is

`(x,u) := (1/2)(|x|2Q + |u|2R)

whereQ andR are positive definite andR is diagonal. We wish to ensure
that Vf (·), defined previously, and Xf := Rn satisfy Assumption 2.12
so that the system with MPC has satisfactory stability properties. But
Assumptions 2.12 and 2.13 are satisfied for all x ∈ Rn if

Vf (Ax + Bκf (x))− Vf (x)+ `(x, κf (x)) ≤ 0 (2.38)

It follows from (2.37) that Assumption 2.12 is satisfied if

(1/2)x′Q∗x ≥ `(x, κf (x)) = (1/2)x′Qx+(1/2)κf (x)′Rκf (x) (2.39)

We can achieve this by choosing Q∗ appropriately. Suppose

Q∗ := Q+K′RK

Then
x′Q∗x = x′Qx + (Kx)′RKx

But
κf (x)′Rκf (x) = (sat(Kx))′Rsat(Kx)

Since R is diagonal and positive definite, and since (sat(a))2 ≤ a2 if a
is a scalar, we have

κf (x)′Rκf (x) ≤ (sat(Kx))′Rsat(Kx) ≤ (Kx)′RKx ∀x ∈ Rn

It follows that (2.39) and, hence, (2.38) are satisfied. Therefore, with
Vf (·) as defined previously, Xf := Rn, and `(·) as defined previously,
Assumptions 2.12, 2.13, and 2.16(b) are satisfied. Summarizing, we
have:

If these assumptions on Vf (·), Xf , and `(·) hold, and As-
sumption 2.3 is satisfied, then Assumptions 2.12, 2.13, and
2.16(b) are satisfied, and XN = Xf = Rn. It follows from
Theorem 2.24 that the origin is globally exponentially sta-
ble for the controlled system x+ = Ax + BκN(x).

Because Vf (·) is not quadratic, the optimal control problem PN(x) is
no longer a quadratic program.
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2.5.3 Systems with Control and State Constraints

We turn now to the consideration of systems with control and state
constraints. In this situation determination of a global CLF is usually
difficult if not impossible. Hence we show how local CLFs may be de-
termined together with an invariant region in which they are valid.

2.5.3.1 Linear Systems

The system to be controlled is x+ = Ax + Bu where A is not neces-
sarily stable, the control u is subject to the constraint u ∈ U where
U is compact and contains the origin in its interior, and the state x
is subject to the constraint x ∈ X where X is closed and contains the
origin in its interior. The stage cost is `(x,u) = (1/2)(x′Qx + u′Ru)
where Q and R are positive definite. Because of the constraints, it is
difficult to obtain a global CLF. Hence we restrict ourselves to the more
modest goal of obtaining a local CLF and proceed as follows. If (A, B) is
stabilizable, the solution to the infinite horizon unconstrained optimal
control problem Puc

∞ (x) is known; the value function for this problem
is Vuc

∞ (x) = (1/2)x′Px where P is the unique (in the class of positive
semidefinite matrices) solution to the discrete algebraic Riccati equa-
tion

P = A′KPAK +Q∗

in which AK := A + BK, Q∗ := Q + K′RK, and u = Kx, in which K is
defined by

K := −(B′PB + R)−1B′PA′

is the optimal controller. The value function Vuc
∞ (·) for the infinite

horizon unconstrained optimal control problem Puc
∞ (x) satisfies

Vuc
∞ (x) =min

u
{`(x,u)+ Vuc

∞ (Ax + Bu)} = `(x,Kx)+ Vuc
∞ (AKx)

It is known that P is positive definite. We define the terminal cost Vf (·)
by

Vf (x) := Vuc
∞ (x) = (1/2)x′Px

If X and U are polyhedral, problem PN(x) is a parametric quadratic pro-
gram that may be solved online using standard software. The terminal
cost function Vf (·) satisfies

Vf (AKx)+ (1/2)x′Q∗x − Vf (x) ≤ 0 ∀x ∈ Rn
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The controlleru = Kx does not necessarily satisfy the control and state
constraints, however. The terminal constraint set Xf must be chosen
with this requirement in mind. We may choose Xf to be the maximal
invariant constraint admissible set for x+ = AKx; this is the largest set
W with respect to inclusion6 satisfying: (a) W ⊆ {x ∈ X | Kx ∈ U}, and
(b) x ∈ W implies x(i) = AiKx ∈ W for all i ≥ 0. Thus Xf , defined this
way, is control invariant7 for x+ = Ax + Bu, u ∈ U. If the initial state
x of the system is in Xf , the controller u = Kx maintains the state
in Xf and satisfies the state and control constraints for all future time
(x(i) = AiKx ∈ Xf ⊂ X and u(i) = Kx(i) ∈ U for all i ≥ 0). Hence, with
Vf (·), Xf , and `(·) as defined previously, Assumptions 2.12, 2.13, and
2.16(b) are satisfied. Summarizing, we have:

If these assumptions on Vf (·), Xf , and `(·) hold, and As-
sumption 2.3 is satisfied, then Assumptions 2.12, 2.13, and
2.16(b) are satisfied, and Xf contains the origin in its inte-
rior. Hence, by Theorem 2.24, the origin is asymptotically
stable with a region of attraction XN for the controlled sys-
tem x+ = Ax + BκN(x), and exponentially stable with a
region of attraction any sublevel set of V0

N(·).

It is, of course, not necessary to choose K and Vf (·) as above. Any
K such that AK = A + BK is stable may be chosen, and P may be
obtained by solving the Lyapunov equation A′KPAK + Q = P . With
Vf (x) := (1/2)x′Px and Xf the maximal constraint admissible set for
x+ = AKx, the origin may be shown, as above, to be asymptotically
stable with a region of attraction XN for x+ = Ax + BκN(x), and ex-
ponentially stable with a region of attraction any sublevel set of V0

N(·).
The optimal control problem is, again, a quadratic program. The ter-
minal set Xf may be chosen, as above, to be the maximal invariant
constraint admissible set for x+ = AKx, or it may be chosen to be a
suitably small sublevel set of Vf (·); by suitably small, we mean small
enough to ensure Xf ⊆ X and KXf ⊆ U. The set Xf , if chosen this way,
is ellipsoidal, a subset of the maximal constraint admissible set, and
is positive invariant for x+ = AKx. The disadvantage of this choice
is that PN(x) is no longer a quadratic program, though it remains a
convex program for which software exists.

6W ∈W is the largest set inW with respect to inclusion ifW ′ ⊆ W for anyW ′ ∈W .
7A set X is positive invariant for x+ = f(x) if x ∈ X implies x+ = f(x) ∈ X; a set X

is control invariant for x+ = f(x,u), u ∈ U if x ∈ X implies the existence of a u ∈ U
such that x+ = f(x,u) ∈ X.
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The choice Vf (·) = Vuc
∞ (·) results in an interesting property of the

closed-loop system x+ = Ax + BκN(x). Generally, the terminal con-
straint set Xf is not positive invariant for the controlled system x+ =
Ax + BκN(x). Thus, in solving PN(x) for an initial state x ∈ Xf , the
“predicted” state sequence x0(x) = {x0(0;x),x0(1;x), . . . , x0(N;x)}
starts and ends in Xf but does not necessarily remain in Xf . Thus
x0(0;x) = x ∈ Xf and x0(N;x) ∈ Xf , because of the terminal con-
straint in the optimal control problem, but, for any i ∈ I1:N−1, x0(i;x)
may lie outside of Xf . In particular, x+ = Ax + BκN(x) = x0(1;x)
may lie outside of Xf ; Xf is not necessarily positive invariant for the
controlled system x+ = Ax + BκN(x).

Consider now the problem Puc
N (x) defined in the same way as PN(x)

except that all constraints are omitted so that UN(x) = RNm

Puc
N (x) : Vuc

N (x) =min
u
VN(x,u)

in which VN(·) is defined as previously by

VN(x,u) :=
N−1∑
i=0

`(x(i),u(i))+ Vf (x(N))

with Vf (·) the value function for the infinite horizon unconstrained
optimal control problem, i.e., Vf (x) := Vuc

∞ (x) = (1/2)x′Px. With
these definitions, it follows that

Vuc
N (x) = Vuc

∞ (x) = Vf (x) = (1/2)x′Px
κuc
N (x) = Kx, K = −(B′PB + R)−1B′PA

for all x ∈ Rn; u = Kx is the optimal controller for the unconstrained
infinite horizon problem. But Xf is positive invariant for x+ = AKx.

We now claim that with Vf (·) chosen to equal to Vuc
∞ (·), the terminal

constraint setXf is positive invariant for x+ = Ax+BκN(x). We do this
by showing that V0

N(x) = Vuc
N (x) = Vuc

∞ (x) for all x ∈ Xf , so that the
associated control laws are the same, i.e., κN(x) = Kx. First, because
Puc
N (x) is identical with PN(x) except for the absence of all constraints,

we have

Vuc
N (x) = Vf (x) ≤ V0

N(x) ∀x ∈ XN ⊇ Xf

Second, from Lemma 2.15,

V0
N(x) ≤ Vf (x) ∀x ∈ Xf
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Hence V0
N(x) = Vuc

N (x) = Vf (x) for all x ∈ Xf . That κN(x) = Kx for all
x ∈ Xf follows from the uniqueness of the solutions to the problems
PN(x) and Puc

N (x). Summarizing, we have:

If Vf (·) is chosen to be the value function for the uncon-
strained infinite horizon optimal control problem, if u =
Kx is the associated controller, and if Xf is invariant for
x+ = AKx, then Xf is also positive invariant for the con-
trolled system x+ = Ax + BκN(x). Also κN(x) = Kx for all
x ∈ Xf .

2.5.3.2 Nonlinear Systems

The system to be controlled is

x+ = f(x,u)

in which f(·) is assumed to be twice continuously differentiable. The
system is subject to state and control constraints

x ∈ X u ∈ U

in which X is closed and U is compact; each set contains the origin in
its interior. The cost function is defined by

VN(x,u) =
N−1∑
i=0

`(x(i),u(i))+ Vf (x(N))

in which, for each i, x(i) := φ(i;x,u), the solution of x+ = f(x,u) at
time i if the initial state is x at time 0 and the control is u. The stage
cost `(·) is defined by

`(x,u) := (1/2)(|x|2Q + |u|2R)

in which Q and R are positive definite. The optimal control problem
PN(x) is defined by

PN(x) : V0
N(x) =min

u
{VN(x,u) | u ∈ UN(x)}

in whichUN(x) is defined by (2.6) and includes the terminal constraint
x(N) = φ(N;x,u) ∈ Xf (in addition to the state and control con-
straints). Our first task is to choose the ingredients Vf (·) and Xf of
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the optimal control problem to ensure asymptotic stability of the ori-
gin for the controlled system. We proceed as in Section 2.5.1.3, i.e., we
linearize the system at the origin to obtain the linear model

x+ = Ax + Bu

in which A = fx(0,0) and B = fu(0,0) and assume, as before, that
(A, B) is stabilizable. We choose any controller u = Kx such that AK is
stable. ChooseQ∗ := (Q+K′RK) and let P be defined by the Lyapunov
equation

A′KPAK + 2Q∗ = P
The terminal cost function Vf (·) is again chosen to be

Vf (x) := (1/2)x′Px

andXf is chosen to be a sublevel setW(a) := levaVf := {x | Vf (x) ≤ a}
for some suitably chosen constanta. As shown in Section 2.5.1.3, under
the assumptions made previously, there exists an a > 0 such that

Vf (f (x,Kx))+ `(x,Kx)− Vf (x) ≤ 0 ∀x ∈ Xf := W(a)

in which x+ = f(x,Kx) describes the nonlinear system if the linear
controller u = Kx is employed. To take into account the state and
control constraints, we reduce a if necessary to satisfy, in addition,

Xf ⊆ X KXf ⊆ U

With f(·), `(·), and Vf (·) defined thus, PN(x) is a constrained para-
metric nonlinear optimization problem for which global solutions can-
not necessarily be obtained online; we temporarily ignore this prob-
lem. Because Xf is a sublevel set of Vf (·), it is positive invariant for
x+ = f(x,Kx). It follows that Vf (·) and Xf satisfy Assumptions 2.12
and 2.13. Summarizing, we have:

If these assumptions on Vf (·), Xf , and `(·) hold, and As-
sumptions 2.2 and 2.3 are satisfied, then Assumptions 2.12,
2.13, and 2.16(b) are satisfied, and Xf contains the origin in
its interior. Hence, by Theorem 2.24(b), the origin is asymp-
totically stable for x+ = f(x, κN(x)) in XN and exponen-
tially stable for x+ = f(x, κN(x)) in any sublevel set of
V0
N(·).

Asymptotic stability of the origin in XN may also be established when
Xf := {0} if Assumption 2.23 is invoked.
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2.6 Is a Terminal Constraint Set Xf Necessary?

While addition of a terminal cost Vf (·) does not materially affect the
optimal control problem, addition of a terminal constraint x(N) ∈ Xf ,
which is a state constraint, may have a significant effect. In particular,
problems with only control constraints are usually easier to solve. So
if state constraints are not present or if they are handled by penalty
functions (soft constraints), it is highly desirable to avoid the addition
of a terminal constraint. Moreover, it is possible to establish continuity
of the value function for a range of optimal control problems if there
are no state constraints; continuity of the value function ensures a de-
gree of robustness (see Chapter 3). It is therefore natural to ask if the
terminal constraint can be omitted without affecting stability. There
are several answers to this question.

2.6.1 Replacing the Terminal Constraint by a Terminal Cost

A reasonably simple procedure is to replace the terminal constraint
x(N) ∈ Xf by a terminal cost that is sufficiently large to ensure auto-
matic satisfaction of the terminal constraint.

We assume, as in the examples of MPC discussed in Section 2.5, that
the terminal cost function Vf (·), the constraint set Xf , and the stage
cost `(·) for the optimal control problem PN(x) are chosen to satisfy
Assumptions 2.12, 2.13 and 2.16 so that there exists a local control law
κf : Xf → U such that Xf ⊆ {x ∈ X | κf (x) ∈ U} is positive invariant
forx+ = f(x, κf (x)) and Vf (f (x, κf (x)))+`(x, κf (x)) ≤ Vf (x) for all
x ∈ Xf . We assume that the function Vf (·) is defined on X even though
it possesses the property Vf (f (x, κf (x)))+ `(x, κf (x)) ≤ Vf (x) only
in Xf . In many cases, even if the system being controlled is nonlinear,
Vf (·) is quadratic and positive definite, and κf (·) is linear. The set Xf
may be chosen to be a sublevel set of Vf (·) so that Xf = W(a) := {x |
Vf (x) ≤ a} for some a > 0. We discuss in the sequel a modified form
of the optimal control problem PN(x) in which the terminal cost Vf (·)
is replaced by βVf (·) and the terminal constraint Xf is omitted, and
show that if β is sufficiently large the solution of the modified optimal
control problem is such that the optimal terminal state nevertheless
lies in Xf so that terminal constraint is implicitly satisfied.

For allβ ≥ 1, letPβN(x) denote the modified optimal control problem
defined by

V̂βN(x) =min
u
{VβN(x,u) | u ∈ ÛN(x)}
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in which the cost function to be minimized is now

VβN(x,u) :=
N−1∑
i=0

`(x(i),u(i))+ βVf (x(N))

in which, for all i, x(i) = φ(i;x,u), the solution at time i of x+ =
f(x,u) when the initial state is x and the control sequence is u. The
control constraint set ÛN(x) ensures satisfaction of the state and con-
trol constraints, but not the terminal constraint, and is defined by

ÛN(x) := {u | u(i) ∈ U, x(i) ∈ X, i ∈ I0,N−1, x(N) ∈ X}

The cost function VβN(·) with β = 1 is identical to the cost function
VN(·) employed in the standard problem PN considered previously.
Let X̂N := {x ∈ X | ÛN(x) ≠∅} denote the domain of V̂β(·); let uβ(x)
denote the solution of PβN(x); and let xβ(x) denote the associated op-
timal state trajectory. Thus

uβ(x) = {uβ(0;x),uβ(1;x), . . . , uβ(N − 1;x)}
xβ(x) = {xβ(0;x),xβ(1;x), . . . , xβ(N;x)}

where xβ(i;x) := φ(i;x,uβ(x)) for all i. The implicit MPC control law
is κβN(·)where κβN(x) := uβ(0;x). Neither ÛN(x) nor X̂N depend on the
parameter β. It can be shown (Exercise 2.11) that the pair (βVf (·),Xf )
satisfies Assumptions 2.12 and 2.13 if β ≥ 1, since these assumptions
are satisfied by the pair (Vf (·),Xf ). The absence of the terminal con-

straint x(N) ∈ Xf in problem PβN(x), which is otherwise the same as
the normal optimal control problem PN(x) when β = 1, ensures that
V̂1
N(x) ≤ V0

N(x) for all x ∈ XN and that XN ⊆ X̂N where V0
N(·) is the

value function for PN(x) and XN is the domain of V0
N(·).

The next task is to show the existence of aβ ≥ 1 such thatxβ(N;x) =
φ(N;x,uβ) ∈ Xf for all x in some compact set, also to be deter-
mined. To proceed, let the terminal equality constrained optimal prob-
lem PcN(x) be defined by

V cN(x) =min
u
{JN(x,u) | u ∈ UcN(x)}

in which JN(·) and UcN(·) are defined by

JN(x,u) :=
N−1∑
i=0

`(x(i),u(i))

UcN(x) := ÛN(x)∩ {u | φ(N;x,u) = 0}



2.6 Is a Terminal Constraint Set Xf Necessary? 149

In the definition of JN(·), x(i) := φ(i;x,u). Let uc denote the solution
of PcN(x) and let XcN := {x ∈ X | UcN(x) ≠ ∅} denote the domain of
V cN(·). We assume that XcN is compact and contains the origin in its
interior. Clearly UcN(x) ⊆ ÛN(x) and XcN ⊆ XN . We also assume that
there exists aK∞ function αc(·) such that

V cN(x) ≤ αc(|x|)

for all x ∈ XcN ; this is essentially a controllability assumption. The

value function for the modified problem PβN(x) satisfies

V̂βN(x) = JN(x,u
β
N(x))+ βVf (x

β
N(N;x))

≤ JN(x,ucN(x)) = V cN(x) ≤ αc(|x|)

for all x ∈ XcN where the first inequality follows from the fact that

βVf (xcN(N;x)) = 0 and ucN is not optimal for PβN(x); here xcN(N;x) :=
φ(N;x,uc(x)). Hence

βVf (x
β
N(N;x)) ≤ αc(|x|)

for all x ∈ XcN . Since XcN is compact, there exists a finite β such that

Vf (x
β
N(N;x)) ≤ a for all x ∈ XcN . Hence, there exists a finite β > 1

such that xβN(N;x) ∈ Xf for all x ∈ XcN .

Suppose then that β is sufficiently large to ensure xβN(N;x) ∈ Xf for
all x ∈ XcN . Then the origin is asymptotically or exponentially stable

for x+ = f(x, κβN(x)) with a region of attraction XcN .

2.6.2 Omitting the Terminal Constraint

A related procedure is merely to omit the terminal constraint and to re-
quire that the initial state lies in a subset ofXN that is sufficiently small
or that N is sufficiently large to ensure that the origin is asymptotically
stable for the resultant controller. In either approach, the terminal cost
may be modified. Here we examine the first alternative and assume,
in the sequel, that Vf (·), Xf and `(·) satisfy Assumptions 2.12, 2.13,
and 2.16, and that Xf := {x | Vf (x) ≤ a} for some a > 0. Problem

PβN(x) and the associated MPC control law κβN(·) are defined in Section
2.6.1. Limon, Alamo, Salas, and Camacho (2006) show that the origin
is asymptotically stable for x+ = f(x, κβN(x)) and each β ≥ 1, with a
region of attraction that depends on the parameter β by establishing
the following results.
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Lemma 2.38 (Entering the terminal region). Suppose uβ(x) is optimal
for the terminally unconstrained problem PβN(x), β ≥ 1, and that xβ(x)
is the associated optimal state trajectory. Ifxβ(N;x) ∉ Xf , thenxβ(i;x) ∉
Xf for all i ∈ I0:N−1.

Proof. Since, as shown in Exercise 2.11, βVf (f (x, κf (x))) ≤ βVf (x)−
`(x, κf (x)) and f(x, κf (x)) ∈ Xf for all x ∈ Xf , all β ≥ 1, it follows
that for all x ∈ Xf and all i ∈ I0:N−1

βVf (x) ≥
N−1∑
j=i
`(xf (j;x, i),uf (j;x, i))+ βVf (xf (N;x, i)) ≥ V̂βN−i(x)

in which xf (j;x, i) is the solution of x+ = f(x, κf (x)) at time j if the
initial state is x at time i, uf (j;x, i) = κf (xf (j;x, i)), and κf (·) is the
local control law that satisfies the stability assumptions. The second
inequality follows from the fact that the control sequence {uf (j;x, i) |
i ∈ Ii:N−1} is feasible for PβN(x) if x ∈ Xf . Suppose contrary to what
is to be proved, that there exists a i ∈ I0:N−1 such that xβ(i;x) ∈ Xf .
By the principle of optimality, the control sequence {uβ(i;x),uβ(i +
1;x), . . . , uβ(N − 1;x)} is optimal for PβN−i(x

β(i;x)). Hence

βVf (xβ(i;x)) ≥ V̂βN−i(xβ(i;x)) ≥ βVf (xβ(N;x)) > βa

since xβ(N;x) ∉ Xf contradicting the fact that xβ(i;x) ∈ Xf . This
proves the lemma. �

For all β ≥ 1, let the set ΓβN be defined by

ΓβN := {x | V̂βN(x) ≤ Nd+ βa}

We assume in the sequel that there exists a d > 0 such `(x,u) ≥ d for
all x ∈ X \Xf and all u ∈ U. The following result is due to Limon et al.
(2006).

Theorem 2.39 (MPC stability; no terminal constraint). The origin is
asymptotically or exponentially stable for the closed-loop system x+ =
f(x, κβN(x)) with a region of attraction ΓβN . The set ΓβN is positive invari-

ant for x+ = f(x, κβN(x)).

Proof. From the Lemma, xβ(N;x) ∉ Xf implies xβ(i;x) ∉ Xf for all
i ∈ I0:N . This, in turn, implies

V̂βN(x) > Nd+ βa
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so that x ∉ ΓβN . Hence x ∈ ΓβN implies xβ(N;x) ∈ Xf . It then follows,
since βVf (·) and Xf satisfy Assumptions 2.12 and 2.13, that the origin

is asymptotically or exponentially stable for x+ = f(x, κβN(x)) with a

region of attraction ΓβN . It also follows that x ∈ ΓβN(x) implies

V̂βN(x
β(1;x)) ≤ V̂βN(x)− `(x, κ

β
N(x)) ≤ V̂

β
N(x) ≤ Nd+ βa

so that xβ(1;x) = f(x, κβN(x)) ∈ Γ
β
N . Hence ΓβN is positive invariant for

x+ = f(x, κβN(x)). �

Limon et al. (2006) then proceed to show that ΓβN increases with β
or, more precisely, that β1 ≤ β2 implies that Γβ1

N ⊆ Γβ2
N . They also show

that for any x steerable to the interior of Xf by a feasible control, there

exists a β such that x ∈ ΓβN .
An attractive alternative is described by Hu and Linnemann (2002)

who merely require that the state and control constraint sets, X and U
respectively, are closed. Their approach uses, as usual, a terminal cost
function Vf : Xf → R, a terminal constraint set Xf , and a stage cost
`(·) that satisfy Assumptions 2.12, 2.13, and 2.16. Let Xf be a sublevel
set of Vf (·) defined by

Xf := {x ∈ X | Vf (x) ≤ a}

for some a > 0. Then the extended function V ef : Rn → R is defined by

V ef (x) :=

Vf (x) x ∈ Xf
a x ∉ Xf

The function V ef (·) is continuous but not continuously differentiable;
we show later how the definition may be modified to ensure continuous
differentiability, a desirable property for optimization algorithms. The
optimization problem PeN(x) solved online is defined by

V̂ eN(x) :=min
u
{V eN(x,u) | u ∈ ÛN(x)}

in which, with x(N) := φ(N;x,u),

V eN(x,u) := JN(x,u)+ V ef (x(N))

and JN(·) and ÛN(x) are defined in Section 2.6.1. Let ue(x) denote the
solution of PeN(x) and xe(x) the associated state trajectory where

ue(x) = {ue(0;x),ue(1;x), . . . , ue(N − 1;x)}
xe(x) = {xe(0;x),xe(1;x), . . . , xe(N;x)}
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The implicit MPC control law is κeN(·) defined by

κeN(x) := ue(0;x)

We now define a restricted set XeN of initial states by

XeN := {x | xe(N;x) ∈ Xf }

Hence, the terminal state of any optimal state trajectory with initial
state x ∈ XeN lies in Xf . It follows, by the usual arguments, that for all
x ∈ XeN

V̂ eN(x
+) ≤ V̂ eN(x)− `(x, κeN(x))

where x+ := f(x, κeN(x)) = xe(1;x). If XeN is positive invariant for
x+ = f(x, κeN(x)), the origin is asymptotically stable for the system
x+ := f(x, κeN(x)) with a region of attraction XeN . Note, however, that
x ∈ XeN does not necessarily imply that x+ = f(x, κeN(x)) ∈ XeN . Hu
and Linnemann (2002) show that x ∈ XeN implies

V ef (x
e(N;x+)) ≤ V ef (xe(N − 1;x+))− `(xe(N − 1;x+),ue(N − 1;x+))

The proof of this inequality is Exercise 2.12. If xe(N − 1;x+) = 0, then
xe(N;x+) = 0 ∈ Xf so that x+ ∈ XeN . On the other hand, if xe(N −
1;x+) ≠ 0, then, from the last inequality, V ef (x

e(N;x+)) < V ef (x
e(N −

1;x+)). It follows from the definition of V ef (·) that xe(N;x+) ∈ Xf ,
which implies that x+ ∈ XeN . Hence XeN is positive invariant for x+ =
f(x, κeN(x)). It follows that the origin is asymptotically stable for x+ =
f(x, κeN(x)) with a region of attraction XeN .

For implementation, it is desirable that V ef (·) be continuously differ-
entiable; standard optimization algorithms usually require this prop-
erty. The essential property that V ef (·) should have to ensure asymp-
totic stability of the origin is that, for any x ∈ XeN , V ef (y) − V ef (x) ≤
−`(x,u) for all u ∈ U implies that y ∈ Xf . Suppose, then, that we
choose V ef (·) to be a continuously differentiable K function that is
equal to Vf (·) in Xf and is bounded by a+ d/2 outside Xf where d is
such that `(x,u) ≥ d for all x ∉ Xf , all u ∈ U. We consider two cases.

(a) Suppose x ∈ XeN \ Xf and V ef (y) − V ef (x) ≤ −`(x,u). Then
V ef (y) − V ef (x) ≤ −`(x,u) ≤ −d for any u ∈ U. Suppose, con-
trary to what we wish to prove, that y ∉ Xf . The definition of
V ef (·) implies that |V ef (y)−V ef (x)| ≤ d/2, a contradiction. Hence
y ∈ Xf .
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(b) Suppose x ∈ Xf and V ef (y) − V ef (x) ≤ −`(x,u). Then V ef (y) ≤
Vf (x) ≤ a which implies that y ∈ Xf .

Hence the continuously differentiable version of V ef (·) has the essen-
tial property stated above so that XeN is positive invariant for x+ =
f(x, κeN(x)) and the origin is asymptotically stable forx+ = f(x, κeN(x))
with a region of attraction XeN .

If Vf (x) is equal to the optimal infinite horizon cost for all x ∈ Xf ,
then V eN(x) is also equal to the optimal infinite horizon cost for all
x ∈ XeN .

2.7 Stage Cost `(·) not Positive Definite

In the analysis above we assume that the function (x,u) , `(x,u)
is positive definite; more precisely, we assume that there exists a K∞
function α1(·) such that `(x,u) ≥ α1(|x|) for all (x,u). Often we as-
sume that `(·) is quadratic, satisfying `(x,u) = (1/2)(x′Qx +u′Ru)
whereQ and R are positive definite. In this section we consider the case
where the stage cost is `(y,u) where y = h(x) and the function h(·)
is not necessarily invertible. An example is the quadratic stage cost
`(y,u) = (1/2)(|y|2 + u′Ru) where y = Cx and C is not invertible;
hence the stage cost is (1/2)(x′Qx +u′Ru) where Q = C′C is merely
positive semidefinite. Since now `(·) does not satisfy `(x,u) ≥ α1(|x|)
for all (x,u) and some K∞ function α1(·), we have to make an addi-
tional assumption in order to establish asymptotic stability of the origin
for the closed-loop system. An appropriate assumption is detectabil-
ity, or input/output-to-state-stability (IOSS) that ensures the state goes
to zero as the output and input go to zero. We recall Definition B.42,
restated here.

Definition 2.40 (Input/output-to-state stable (IOSS)). The system x+ =
f(x,u), y = h(x) is IOSS if there exist functions β(·) ∈ KL and
γ1(·), γ2(·) ∈ K such that for every initial state x0 ∈ Rn, every control
sequence u, and all i ≥ 0.

|x(i)| ≤max{β(|x|, i), γ1(‖u‖0:i−1), γ2(‖y‖0:i)}

where x(i) := φ(i;x,u), the solution of x+ = f(x,u) at time i if the
initial state is x and the input sequence is u; y(i) := h(x(i)), ‖u‖0:i−1

is the max norm of the sequence {u(0),u(1), . . . , u(i − 1)} and ‖y‖0:i
is the max norm of the sequence {y(0),y(1), . . . , y(i)}.
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We assume, as usual, that Assumptions 2.2, 2.3, 2.12, and 2.13 are
satisfied but in place of Assumption 2.16 we assume that there exists
K∞ functions α1(·) and α2(·) such that

`(y,u) ≥ α1(|y|)+α1(|u|) Vf (x) ≤ α2(|x|)

for all (y,u) and all x. We also assume that the system x+ = f(x,u),
y = h(x) is IOSS and that Xf has an interior. Under these assumptions,
the value function V0

N(·) has the following properties

V0
N(x) ≥ α1|h(x)| ∀x ∈ XN
V0
N(f (x, κN(x))) ≤ V0

N(x)−α1(|h(x)|) ∀x ∈ XN
V0
N(x) ≤ α2(|x|) ∀x ∈ Xf

That V0
N(f (x, κN(x))) ≤ V0

N(x)−`(h(x), κN(x)) follows from the basic
stability assumption. The fact that h(x) appears in the first and second
inequalities instead of x complicates analysis and makes it necessary
to assume the IOSS property. We require the following result:

Proposition 2.41 (Convergence of state under IOSS). Assume that the
system x+ = f(x,u), y = h(x) is IOSS and that u(i)→ 0 and y(i)→ 0
as i→∞. Then x(i) = φ(i;x,u)→ 0 as i→∞ for any initial state x.

This proof of this result is discussed in Exercise 2.16.
Given the IOSS property, one can establish that the origin is at-

tractive for closed-loop system with a region of attraction XN . For all
x ∈ XN , all i ∈ I≥0, let x(i;x) := φ(i;x,κN(·)), the solution at time i
of x+ = f(x, κN(x)) if the initial state is x, y(i;x) := h(x(i;x)) and
u(i;x) := κN(x(i;x)). It follows from the properties of the value func-
tion that, for any initial state x ∈ XN , the sequence {V0

N(x(i;x))} is
nonincreasing and bounded below by zero, so that V0

N(x(i;x))→ c ≥ 0
as i→∞. Since V0

N(x(i+1)) ≤ V0
N(x(i))−`(x(i;x),y(i;x)), it follows

that `(y(i;x),u(i;x))→ 0 and, hence, thaty(i;x)→ 0 andu(i;x)→ 0
as i → ∞. From Proposition 2.41, x(i;x) → 0 as i → ∞ for any initial
state x ∈ XN .

The stability property also is not difficult to establish. Suppose
the initial state x satisfies |x| ≤ δ where δ is small enough to en-
sure that δB ⊂ Xf . Then V0

N(x) ≤ α2(|x|) and, since {V0
N(x(i;x))} is

nonincreasing, V0
N(x(i;x)) ≤ α2(|x|) for all i ∈ I≥0. Since α2(|x|) ≥

V0
N(x(i;x)) ≥ `(y(i;x),u(i;x)) ≥ α1(|y(i;x)|)+α1(|u(i;x)|), it fol-

lows that |y(i;x)| ≤ α3(|x|) and |u(i;x)| ≤ α3(|x|) for all x ∈ XN ,
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all i ∈ I≥0 where α3(·) is a K function defined by α3 := α−1
1 ◦ α2, i.e.,

α3(r) = α−1
1 (α2(r)) for all r ≥ 0. Hence x(i;x) satisfies

|x(i;x)| ≤max{β(δ, i),α3(δ)} ≤max{β(δ,1),α3(δ)}

for all x ∈ XN , all i ∈ I≥0. Thus, for all ε > 0, there exists a δ > 0,
such that |x| ≤ δ implies |x(i;x)| ≤ ε for all i ∈ I≥0. We have estab-
lished stability of the origin for x+ = f(x, κN(x)). Hence the origin
is asymptotically stable for the closed-loop system x+ = f(x, κN(x))
with a region of attraction XN .

In earlier MPC literature, observability rather than detectability was
often employed as the extra assumption required to establish asymp-
totic stability. Exercise 2.15 discusses this approach.

2.8 Suboptimal MPC

There is a significant practical problem that we have not addressed,
namely that if the optimal control problem PN(x) solved online is not
convex, which is usually the case when the system is nonlinear, the
global minimum of VN(x,u) in UN(x) cannot usually be determined.
Since we assume, in the stability theory given previously, that the global
minimum is achieved, we have to consider the impact of this unpalat-
able fact. It is possible, as we show in this section, to achieve stability
without requiring globally optimal solutions of PN(x). Roughly speak-
ing, all that is required is at state x, a feasible solution u ∈ UN(x) is
found giving a cost VN(x,u) lower than the cost VN(w,v) at the previ-
ous state w due to the previous control sequence v ∈ UN(w).

Consider then the usual optimal control problem with the terminal
cost Vf (·) and terminal constraint set Xf satisfying Assumptions 2.12
and 2.13; the state constraint set X is assumed to be closed and the
control constraint set U to be compact. In addition, we assume that
Vf (·) satisfies Vf (x) ≥ αf (|x|) and Vf (x) ≤ γf (|x|) for all x ∈ Xf
where αf (·) and γf (·) are K∞ functions. These conditions are satis-
fied, for example, if Vf (·) is a positive definite quadratic function and
Xf is a sublevel set of Vf (·). The set Xf is assumed to be a sublevel
set of Vf (·), i.e., Xf = {x | Vf (x) ≤ r} for some r > 0. We also
make the standard Assumption 2.16(a) that `(x,u) ≥ α1(|x|) for all
(x,u) ∈ X× U where α1(·) is a K∞ function, which is satisfied if `(·)
is a positive definite quadratic function. Let XN denote, as before, the
set of x for which a control sequence u exists that satisfies the state,
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control and terminal constraints, i.e., XN := {x ∈ X | UN(x) ≠ ∅}
where UN(x) is defined by (2.6).

The basic idea behind the suboptimal model predictive controller is
simple. Suppose that the current state isx and that u = {u(0),u(1), . . . ,
u(N − 1)} ∈ UN(x) is a feasible control sequence for PN(x). The
first element u(0) of u is applied to the system x+ = f(x,u). In the
absence of uncertainty, the next state is equal to the predicted state
x+ = f(x,u(0)). Consider the control sequence u+ defined by

u+ = {u(1),u(2), . . . , u(N − 1), κf (x(N))} (2.40)

in which x(N) = φ(N;x,u) and κf (·) is a local control law with the
property that u = κf (x) satisfies Assumption 2.12 for all x ∈ Xf . The
existence of such a κf (·), which is usually of the form κf (x) = Kx,
is implied by Assumption 2.12. Then, as shown in Section 2.4.3, the
control sequence u+ ∈ UN(x) satisfies

VN(x+,u+)+ `(x,u(0)) ≤ VN(x,u) (2.41)

and, hence
VN(x+,u+) ≤ VN(x,u)−α1(|x|) (2.42)

No optimization is required to get the cost reduction `(x,u(0)) given
by (2.41); in practice the control sequence u+ can be improved by sev-
eral iterations of an optimization algorithm. Inequality (2.42) is remi-
niscent of the inequality V0

N(x+) ≤ V0
N(x)− `(x, κN(x)) that provides

the basis for establishing asymptotic stability of the origin for the con-
trolled systems previously analyzed and suggests that the simple al-
gorithm described previously, which places very low demands on the
online optimization algorithm, may also ensure asymptotic stability of
the origin. This is almost true. The obstacle to applying standard Lya-
punov theory is that there is no obvious Lyapunov function because,
at each state x+, there exist many control sequences u+ satisfying
VN(x+,u+) ≤ VN(x,u) − α1(|x|). The function (x,u) , VN(x,u) is
not a function of x only and may have many different values for each
x; therefore it cannot play the role of the function V0

N(x) used previ-
ously. Moreover, the controller can generate, for a given initial state,
many different trajectories, all of which have to be considered.

Global attractivity of the origin inXN , however, may be established.
For all x(0) ∈ XN , let {(x(0),u(0)), (x(1),u(1)), . . .} denote any infi-
nite sequence generated by the controlled system and satisfying, there-
fore, VN(x(i+1),u(i+1)) ≤ VN(x(i),u(i))−α1(|x(i)|) for all i. Then



2.8 Suboptimal MPC 157

{VN(x(i),u(i)) | i ∈ I≥0} is a nonincreasing sequence bounded below
by zero. Hence VN(x(i),u(i)) → V∗N ≥ 0 so that VN(x(i + 1),u(i +
1)) − VN(x(i),u(i)) → 0 as i → ∞. We deduce, from (2.42), that
α1(|x(i)|)→ 0 so that x(i)→ 0 as i→∞.

Establishing stability of the origin is more difficult for reasons given
previously and requires a minor modification of the controller when the
statex is close to the origin. The modification we make to the controller
is to require that u satisfies the following requirement when x lies in
Xf

VN(x,u) ≤ Vf (x) f(x,u(0)) ∈ Xf (2.43)

where u(0) is the first element in u. Stability of the origin can be estab-
lished using (2.42), (2.43) and the properties of Vf (·) as shown subse-
quently. Inequality (2.43) is achieved quite simply by using the control
law u = κf (x) to generate the control u when x ∈ Xf . Let x(x;κf ) and
u(x;κf ) denote the state and control sequences generated in this way
when the initial state is x; these sequences satisfy

x+ = f(x, κf (x)) u = κf (x)

with initial condition x(0) = x, so that x(0;x,κf ) = x, x(1;x,κf ) =
f(x, κf (x)), x(2;x,κf ) = f(x(1;x,κf )), κf (x(1;x,κf )), etc. Since
Assumption 2.12 is satisfied,

Vf (x) ≥ `(x, κf (x))+ Vf (f (x, κf (x)))

which, when used iteratively, implies

Vf (x) ≥
N−1∑
i=0

`(x(i;x,κf ), κf (x(i;x,κf )))+ Vf (x(N;x,κf ))

Hence, for all x ∈ Xf

VN(x,u(x;κf )) =
N−1∑
i=0

`(x(i;x,κf ), κf (x(i;x,κf )))+ Vf (x(N;x,κf ))

≤ Vf (x)

as required. Also, it follows from Assumption 2.12 and the definition
of κf (·) that x+ = f(x,u(0)) ∈ Xf if x ∈ Xf . Thus the two conditions
in (2.43) are satisfied by u(x;κf ). If desired, u(x;κf ) may be used for
the current control sequence u or as a “warm start” for an optimization
algorithm yielding an improved control sequence. In any case, if (2.43)
is satisfied, stability of the origin may be established as follows.



158 Model Predictive Control — Regulation

Let δ > 0 be arbitrary but small enough to ensure δB ⊂ Xf . Suppose
the initial state x(0) satisfies |x(0)| ≤ δ so that x(0) ∈ Xf . As before,
let {(x(i),u(i))} denote any state-control sequence with initial state
x(0) ∈ δB generated by the suboptimal controller. From (2.42) and
(2.43) we deduce that VN(x(i),u(i)) ≤ VN(x(0),u(0)) ≤ Vf (x(0)) ≤
γf (|x(0)|) ≤ γf (δ) for all i ∈ I≥0, all x(0) ∈ δB. It follows from our
assumption on `(·) that VN(x,u) ≥ α1(|x|) for all x ∈ XN , all u ∈ UN .
Hence

α1(|x(i)|) ≤ VN(x(i),u(i)) ≤ γf (δ)

so that |x(i)| ≤ (α−1
1 ◦γf )(δ) for all i ∈ I≥0. Hence, for all ε > 0, there

exists a δ = (α−1
1 ◦ γf )−1(ε) = (γ−1

f ◦ α1)(ε) > 0 such that |x(0)| ≤
δ implies |x(i)| ≤ ε for all i ∈ I≥0. The origin is, therefore, stable
and, hence, asymptotically stable with a region of attractionXN for the
controlled system.

Suboptimal control algorithm.

Data: Integer Niter.

Input: Current state x, previous state sequence w = {w(0),w(1), . . . ,
w(N)}, previous control sequence v = {v(0), v(1), . . . , v(N−1)}.

Step 1: If x ∉ Xf , use {v(1), v(2), . . . , v(N − 1), κf (w(N))} as a warm
start for an optimization algorithm. PerformNiter iterations of the
algorithm to obtain an improved control sequence u ∈ UN(x).
Apply control u = u(0) to the system being controlled.

Step 2: If x ∈ Xf , set u = κf (x) and apply u to the system being
controlled; or perform Niter steps of an optimization algorithm
using u(x, κf ), defined previously, as a warm start to obtain an
improved control sequence u ∈ UN(x) satisfying (2.43) and as-
sociated state sequence w.

A nominally stabilizing controller with very low online computa-
tional demands may be obtained by merely using the warm starts de-
fined in the algorithm. Improved performance is obtained by usingNiter

iterations of an optimization algorithm to improve the warm start. It
is more important to employ optimization in Step 1 when x ∉ Xf since
the warm start when x ∈ Xf has good performance if κf (·) is designed
properly.
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2.9 Tracking

In preceding sections we were concerned with regulation to the origin
and the determination of conditions that ensure stability of the origin
for the closed-loop system. In this section we consider the problem
of tracking a constant reference signal, i.e., regulation to a set point.
Assume that the system to be controlled satisfies

x+ = f(x,u) y = h(x)

and is subject to the constraints

x ∈ X u ∈ U

in which X is closed and U is compact. If the constant reference signal
is r , then we wish to steer the initial state x to a state x̄ satisfying
h(x̄) = r so that y = r .

2.9.1 No Uncertainty

We assume initially that there is no model error and no disturbance.
The target state and associated steady-state control are obtained by
minimizing |ū|2 with respect to (x,u) subject to the equality con-
straints

x = f(x,u)
r = h(x)

and the inequality constraints x ∈ X and u ∈ U. We assume that a
solution exists and denote the solution by (x̄(r), ū(r)); this notation
indicates the dependence of the target state and its associated control
on the reference variable r . We require the dimension of r to be less
than or equal to m, the dimension of u.

MPC may then be achieved by solving online the optimal control
problem PN(x, r) defined by

V0
N(x, r) =min

u
{VN(x, r ,u) | u ∈ UN(x, r)}

in which the cost function VN(·) and the constraint set are defined by

VN(x, r ,u) :=
N−1∑
i=0

`(x(i)− x̄(r),u(i)− ū(r))+ Vf (x, r)

UN(x, r) := {u | x(i) ∈ X, u(i) ∈ U,∀i ∈ I0:N−1;x(N) ∈ Xf (r)}
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In these definitions, x(i) = φ(i;x,u), the solution at time i of x+ =
f(x,u) if the initial state isx and the control sequence is u. Let u0(x, r)
denote the solution of PN(x, r). The MPC control law is κN(x, r),
the first control in the sequence u0(x, r). The terminal cost function
Vf (·, r ) and constraint set Xf (r) must be chosen to satisfy suitably
modified stabilizing conditions. Since both depend on r , the simplest
option is to choose a terminal equality constraint so that

Vf (x̄(r), r) = 0 Xf (r) = {x̄(r)} ⊂ X

If the system is linear, i.e., if x+ = Ax + Bu, an alternative choice is

Vf (x, r) = V ′f (x − x̄(r)) Xf (r) = {x̄(r)} ⊕ X′f ⊂ X

in which V ′f (·) and X′f are, respectively, the terminal cost function and
terminal constraint set derived in Section 2.5.3.1; the reference r must
satisfy the constraint that Xf (r) ⊂ X. With this choice, Vf (x̄(r), r) = 0
and Xf (r) is control invariant for x+ = Ax + Bu. It is easily shown,
with either choice and appropriate assumptions, that the point x̄(r) is
asymptotically, or exponentially, stable for the controlled system with
a region of attraction XN(r) := {x | UN(x, r) ≠∅}.

2.9.2 Offset-Free MPC

If uncertainty is present, in the form of model error or an unknown con-
stant disturbance, the tracking error y − r may converge to a nonzero
constant vector, called the offset, rather than to the origin. It is pos-
sible to ensure zero offset by augmenting the system with a model of
the disturbance.

We therefore assume that the system to be controlled satisfies

x+ = f(x,u)
d+ = d
y = h(x)+ d+ ν

in which ν is measurement noise. If we assume, as we do everywhere
in this chapter, that the state x is known, then a simple filter may be
used to obtain an estimate d̂ of the unknown, but constant disturbance
d. The filter is described by

d̂+ = d̂+ L(y − h(x)− d̂)
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in which y−h(x)may be regarded as a noisy measurement of d, since
y − h(x) = d + ν . The difference equation for the estimation error

d̃ := d− d̂ is
d̃
+
= ALd̃− Lν

in which L is chosen to ensure that AL := I − L is stable. If there
is zero measurement noise, d̃(i) → 0 exponentially as i → ∞. Since
y − h(x) = d+ ν , the difference equation for d̂ may be written as

d̂+ = d̂+ L(d̃+ ν)

Since d is unknown, we have to use d̂ for control. Hence, for the pur-
pose of control we employ the difference equations

x+ = f(x,u)

d̂+ = d̂+ L(d̃+ ν)

If d̂ is the current estimate of d, our best estimate of d at any time in
the future is also d̂. Given the current state (x, d̂) of the composite
system and the current reference r , we determine the target state and
associated control by minimizing |u|2 with respect to (x,u) subject to
the equality constraints

x = f(x,u)
r = h(x)+ d̂

and the inequality constraints x ∈ X andu ∈ U. We assume that a solu-
tion to this problem exists and denote the solution by (x̄(r , d̂), ū(r , d̂)).

MPC may then be achieved by solving online the optimal control
problem PN(x, r , d̂) defined by

V0
N(x, r , d̂) =min

u
{VN(x, r ,u) | u ∈ UN(x, r , d̂)}

in which the cost function VN(·) and the constraint set are defined by

VN(x, r , d̂,u) :=
N−1∑
i=0

`(x(i)− x̄(r , d̂),u(i)− ū(r , d̂))+ Vf (x, r , d̂)

UN(x, r , d̂) := {u | x(i) ∈ X, u(i) ∈ U,∀i ∈ I0:N−1;x(N) ∈ Xf (r , d̂)}

In these definitions, x(i) = φ(i;x,u), the solution at time i of x+ =
f(x,u) if the initial state is x and the control sequence is u. Let
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u0(x, r , d̂) denote the solution of PN(x, r , d̂). The MPC control law is
κN(x, r , d̂), the first control in the sequence u0(x, r , d̂). The terminal
cost function Vf (·, r , d̂) and constraint set Xf (r , d̂)must be chosen to
satisfy suitably modified stabilizing conditions. Since both depend on
(r , d̂), the simplest option is to choose a terminal equality constraint
so that

Vf (x̄(r , d̂), r , d̂) = 0 Xf (r , d̂) = {x̄(r , d̂)} ⊂ X

This constraint is equivalent to requiring that the terminal state is equal
to x̄(r , d̂) in the optimal control problem PN(x, r , d̂).

If d̂ is constant, standard MPC theory shows, under suitable as-
sumptions, that the constant target state x̄(r , d̂) is asymptotically sta-
ble for x+ = f(x, κN(x, r , d̂)) with a region of attraction XN(r , d̂) :=
{x | UN(x, r , d̂) ≠ ∅}. In particular, the state x(i) of the controlled
system at time i converges to x̄(r , d̂) as i → ∞. We now assume
that the disturbance ν(i) → 0 and, consequently, that d̂(i) → ds ,
x(i) → xs := x̄(r , ds), and u(i) → us := ū(r , ds) as i → ∞. Hence
y(i) = h(x(i)) + d̂(i) + ν(i) → h(xs) + ds as i → ∞. It follows from
the difference equations for x and d̂ that

xs = f(xs , us) L(ys − h(xs)− ds) = 0

If L is invertible (y and d have the same dimension), it follows that

xs = f(xs , us) ys = h(xs)+ ds

But, since xs := x̄(r , ds) and us := ū(r , ds), it follows, by definition,
that

h(xs)+ ds = r

Hence y(i)→ ys = r as i→∞; the offset is asymptotically zero.
If we do not assume that d̂ converges to a constant value, how-

ever, uncertainty in the evolution of d̂ may cause the value function
V0
N(x, r , d̂) to increase sufficiently often to destroy stability. Robust

output MPC, discussed in Chapter 5, may have to be employed to en-
sure stability of a set rather than a point.

2.9.3 Unreachable Setpoints

In process control, steady-state optimization is often employed to de-
termine an optimal setpoint, and MPC to steer the state of the system to
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this setpoint. Because of nonzero process disturbances and discrepan-
cies between the models employed for steady-state optimization and
for control, the optimal setpoint may be unreachable. Often an un-
reachable setpoint is then replaced by a reachable steady-state target
that is closest to it. This standard procedure is suboptimal, however,
and does not minimize tracking error. We show in this section that by
defining performance relative to the unreachable setpoint rather than
to the closest reachable target, it is possible to achieve improved perfor-
mance. Standard MPC theory can no longer be used to analyze stability,
however, because the value function for the new problem does not nec-
essarily decrease along trajectories of the controlled system. With an
infinite horizon, the cost function for the optimal control problem that
yields MPC is unbounded.

Suppose the system to be controlled is described by

x+ = Ax + Bu

with control constraint u ∈ U, in which U is convex and compact. The
setpoint pair (xsp, usp) is not necessarily reachable. The cost function
V(·) for the optimal control problem is

VN(x,u) :=
N−1∑
i=0

`(x(i),u(i))

in which x(i) := φ(i;x,u), the solution of the dynamic system at
time i if the initial state at time 0 is x and the control sequence is
u := {u(0),u(1), . . . , u(N − 1)}. The stage cost `(·) is defined to be a
quadratic function of the distance from the setpoint

`(x,u) := (1/2)
(
|x − xsp|2Q + |u−usp|2R

)
in which Q and R are positive definite. For simplicity of exposition, a
terminal constraint x(N) = xs , in which xs is defined subsequently, is
included in the optimal control problem PN(x) whose solution yields
the model predictive controller; problem PN(x) is therefore defined by

V0
N(x) =min

u
{VN(x,u) | u ∈ UN(x)}

in which the control sequence constraint set UN(x) is defined by

UN(x) := {u | u(i) ∈ U, i = 0,1, . . . ,N − 1, φ(N;x,u) = xs}
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The domain of V0
N(·), i.e., the set of feasible initial states for PN(x), is

XN defined by

XN := {x | UN(x) ≠∅}

For all x ∈ XN , the constraint set UN(x) is compact. The set XN is
thus the set of states that can be steered to xs in N steps by a control
sequence u that satisfies the control constraint. It follows from its
definition that XN is closed and is compact if A is invertible. Because
VN(·) is continuous, andUN(x) is compact for each x ∈ XN , it follows
that for each x ∈ XN , u , VN(x,u) achieves its minimum, V0

N(x),
in UN(x). Let u0(x) = {u0(0;x),u0(1;x), . . . , u0(N − 1;x)} denote
the solution of PN(x). Following usual practice, the model predictive
control at state x is κN(x) := u0(0;x), the first element of the optimal
control sequence u0(x).

The optimal steady state (xs , us) is defined to be the solution of the
optimization problem Ps

(xs , us) := arg min
x,u
{`(x,u) | x = Ax + Bu, u ∈ U}

This problem has a solution if 0 ∈ U since then (0,0) satisfies the
constraints. Since Q,R > 0, the minimizer (xs , us) is unique. Clearly
`(xs , us) > 0 unless the setpoint (xsp, usp) is feasible for Ps; it is this
fact that requires a nonstandard method for establishing asymptotic
stability of (xs , us). The following theorem is proved in (Rawlings,
Bonné, Jørgensen, Venkat, and Jørgensen, 2008)

Theorem 2.42 (MPC stability with unreachable setpoint). The optimal
steady state xs is asymptotically stable with a region of attraction XN
for the closed-loop system x+ = Ax + BκN(x) using setpoint MPC.

This paper also discusses relaxing the terminal constraint and using
instead a terminal penalty based on a terminal controller.

Example 2.43: Unreachable setpoint MPC

An example is presented to illustrate the advantages of the proposed
setpoint tracking MPC (sp-MPC) compared to traditional target tracking
MPC (targ-MPC). The regulator cost function for the proposed sp-MPC,
is

V sp
N (x,u) =

1
2

N−1∑
j=0

∣∣x(j)− xsp
∣∣2
Q+

∣∣u(j)−usp
∣∣2
R +

∣∣u(j + 1)−u(j)
∣∣2
S
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Performance targ-MPC sp-MPC ∆ index (%)
measure (a=targ) (a=sp)

Vau 0.016 2.2× 10−6 99.98
Vay 3.65 1.71 53
Va 3.67 1.71 54

Table 2.3: Comparison of controller performance for Example 2.43.

in whichQ > 0, R, S ≥ 0, at least one of R, S > 0, and x(j) = φ(j;x,u).
This system can be put in the standard form defined for terminal con-
straint MPC by using the augmented state x̃(k) := (x(k),u(k − 1))
discussed in Section 1.2.5. The regulator cost function in traditional
targ-MPC is

V targ
N (x,u) = 1

2

N−1∑
j=0

∣∣x(j)− xs∣∣2
Q +

∣∣u(j)−us∣∣2
R +

∣∣u(j + 1)−u(j)
∣∣2
S

The controller performance is assessed using the following three closed-
loop control performance measures

Vau =
1

2k∆

k−1∑
j=0

∣∣u(j)−usp
∣∣2
R +

∣∣u(j + 1)−u(j)
∣∣2
S

Vay =
1

2k∆

k−1∑
j=0

∣∣x(j)− xsp
∣∣2
Q

Va = Vau + Vay a = (sp, targ)

in which ∆ is the process sample time, and x(j) and u(j) are the
state and control at time j of the controlled system using either tar-
get (a=targ) or setpoint (a=sp) tracking MPC for a specified initial state.
For each of the indices defined previously, we define the percentage
improvement of sp-MPC compared with targ-MPC by

∆ index (%) = V
targ − V sp

V targ
× 100

Consider the single-input, single-output system with transfer function
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Figure 2.6: Closed-loop performance of sp-MPC and targ-MPC.

and state space realization

G(s) = −0.2623
60s2 + 59.2s + 1

A =
[

0.857252 0.884179
−0.014736 −0.015139

]

B =
[

8.56490
0.88418

]
C =

[
−0.0043717 0

]
sampled with ∆ = 10 s. The input u is constrained |u| ≤ 1. The de-
sired output setpoint isysp = 0.25, which corresponds to a steady-state
input value of −0.953. The regulator parameters are Qy = 10, R =
0, S = 1,Q = C′QyC + 0.01I2. A horizon length of N = 80 is used.
In time intervals 50–130, 200–270, and 360–430, a state disturbance
dx = [17.1,1.77]′ causes the input to saturate at its lower limit. The
output setpoint is unreachable under the influence of this state dis-



2.10 Concluding Comments 167

turbance. The closed-loop performance of sp-MPC and targ-MPC under
the described disturbance scenario are shown in Figure 2.6. The closed-
loop performance of the two control formulations are compared in Ta-
ble 2.3.

In the targ-MPC framework, the controller tries to reject the state
disturbance and minimize the deviation from the new steady-state tar-
get. This requires a large, undesirable control action that forces the
input to move between the upper and lower constraints. The sp-MPC
framework, on the other hand, attempts to minimize the deviation from
setpoint and subsequently the input just rides the lower input con-
straint.

The greater cost of control action in targ-MPC is shown by the cost
index Vu in Table 2.3. The cost of control action in targ-MPC exceeds
that of sp-MPC by nearly 100%. The control in targ-MPC causes the out-
put of the system to move away from the (unreachable) setpoint faster
than the corresponding output of sp-MPC. Since the control objective
is to be close to the setpoint, this undesirable behavior is eliminated by
sp-MPC. �

2.10 Concluding Comments

MPC is an implementation, for practical reasons, of receding horizon
control (RHC), in which offline determination of the RHC law κN(·) is
replaced by online determination of its value κN(x), the control action,
at each state x encountered during its operation. Because the optimal
control problem that defines the control is a finite horizon problem,
neither stability nor optimality of the cost function is achieved by a
receding horizon or model predictive controller. This chapter shows
how stability may be achieved by adding a terminal cost function and a
terminal constraint to the optimal control problem. Adding a terminal
cost function adds little or no complexity to the optimal control prob-
lem that has to be solved online and usually improves performance.
Indeed, the infinite horizon value function V0

∞(·) for the constrained
problem would be an ideal choice for the terminal penalty because the
value function V0

N(·) for the online optimal control problem would then
be equal to V0

∞(·) and the controller would inherit the performance
advantages of the infinite horizon controller. In addition, the actual
trajectories of the controlled system would be precisely equal, in the
absence of uncertainty, to those predicted by the online optimizer. Of
course, if we knew V0

∞(·), the optimal infinite horizon controller κ∞(·)
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could be determined and there would be no reason to employ MPC.
The infinite horizon cost V0

∞(·) is known globally only for special cases,
however, such as the linear quadratic unconstrained problem. For more
general problems in which constraints and/or nonlinearity are present,
its value, or approximate value, in a neighborhood of the setpoint can
usually be obtained and the use of this local CLF should, in general,
enhance performance. Adding a terminal cost appears to be generally
advantageous.

The reason for the terminal constraint is precisely the fact that the
terminal penalty is usually merely a local CLF requiring the terminal
state to lie in the region where the CLF is valid. Unlike the addition
of a terminal penalty, however, addition of a terminal constraint may
increase complexity considerably. Because efficient programs exist for
solving QPs, in which the cost function to be minimized is quadratic
and the constraints polyhedral, there is an argument for using poly-
hedral constraints. Indeed, a potential terminal constraint set for the
constrained linear quadratic optimal control problem is the maximal
constraint admissible set, which is polyhedral. This set is complex,
however, i.e., defined by many linear inequalities, and would appear to
be unsuitable for the complex control problems routinely encountered
in industry.

A terminal constraint set that is considerably simpler is a suitable
sublevel set of the terminal penalty, which is often a simple positive
definite quadratic function resulting in a convex terminal constraint
set. A disadvantage is that the terminal constraint set is now ellipsoidal
rather than polytopic and conventional quadratic programs cannot be
employed for the linear quadratic constrained optimal control problem.
This does not appear to be a serious disadvantage, however, because
the optimal control problem remains convex, so interior point methods
may be readily employed.

In the nonlinear case, adding an ellipsoidal terminal constraint set
does not appreciably affect the complexity of the optimal control prob-
lem. In any case, it is possible to replace the ellipsoidal terminal con-
straint set by a suitable modification of the terminal penalty as shown
in Section 2.6.1. A more serious problem, when the system is nonlin-
ear, is that the optimal control problem is then usually nonconvex so
that global solutions, on which many theoretical results are predicated,
are usually too difficult to obtain. A method for dealing with this dif-
ficulty, which also has the advantage of reducing online complexity, is
suboptimal MPC described in Section 2.8.



2.11 Notes 169

This chapter also presents some results that contribute to an under-
standing of the subject but do not provide practical tools. For example,
it is useful to know that the domain of attraction for many of the con-
trollers described here is XN , the set of initial states controllable to
the terminal constraint set, but this set cannot usually be computed.
The set is, in principle, computable using the DP equations presented
in this chapter, and may be computed if the system is linear and the
constraints, including the terminal constraint, are polyhedral, provided
that the state dimension and the horizon length are suitably small, con-
siderably smaller than in problems routinely encountered in industry.
In the nonlinear case, this set cannot usually be computed. Computa-
tion difficulties are not resolved ifXN is replaced by a suitable sublevel
set of the value function V0

N(·). Hence, in practice, both for linear and
nonlinear MPC, this set has to be estimated by simulation.

2.11 Notes

MPC has an unusually rich history, making it impossible to summarize
here the many contributions that have been made. Here we restrict
attention to a subset of this literature that is closely related to the ap-
proach adopted in this book. A fuller picture is presented in the review
paper (Mayne, Rawlings, Rao, and Scokaert, 2000).

The success of conventional MPC derives from the fact that for de-
terministic problems (no uncertainty), feedback is not required so the
solution to the open-loop optimal control problem solved online for a
particular initial state is the same as that obtained by solving the feed-
back problem using DP, for example. Lee and Markus (1967) pointed
out the possibility of MPC in their book on optimal control

One technique for obtaining a feedback controller synthe-
sis is to measure the current control process state and then
compute very rapidly the open-loop control function. The
first portion of this function is then used during a short
time interval after which a a new measurement of the pro-
cess state is made and a new open-loop control function is
computed for this new measurement. The procedure is then
repeated.

Even earlier, Propoi (1963) proposed a form of MPC utilizing linear pro-
gramming, for the control of linear systems with hard constraints on
the control. A big surge in interest in MPC occurred when Richalet,
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Rault, Testud, and Papon (1978b) advocated its use for process con-
trol. A whole series of papers, such as Richalet, Rault, Testud, and
Papon (1978a), Cutler and Ramaker (1980), Prett and Gillette (1980),
Garćıa and Morshedi (1986), and Marquis and Broustail (1988) helped
cement its popularity in the process control industries, and MPC soon
became the most useful method in modern control technology for con-
trol problems with hard constraints with thousands of applications to
its credit.

The basic question of stability, an important issue since optimizing
a finite horizon cost does not necessarily yield a stabilizing control,
was not resolved in this early literature. Early academic research in
MPC, reviewed in Garćıa, Prett, and Morari (1989), did not employ Lya-
punov theory and therefore restricted attention to control of uncon-
strained linear systems, studying the effect of control and cost hori-
zons on stability. Similar studies appeared in the literature on gener-
alized predictive control (GPC) (Ydstie, 1984; Peterka, 1984; De Keyser
and Van Cauwenberghe, 1985; Clarke, Mohtadi, and Tuffs, 1987) that
arose to address deficiencies in minimum variance control. Interest-
ingly enough, earlier research on RHC (Kleinman, 1970; Thomas, 1975;
Kwon and Pearson, 1977) had shown indirectly that the imposition of a
terminal equality constraint in the finite horizon optimal control prob-
lem ensured closed-loop stability for linear unconstrained systems.
That a terminal equality constraint had an equally beneficial effect for
constrained nonlinear discrete time systems was shown by Keerthi and
Gilbert (1988) and for constrained nonlinear continuous time systems
by Chen and Shaw (1982) and Mayne and Michalska (1990). In each of
these papers, Lyapunov stability theory was employed in contrast to
the then current literature on MPC and GPC.

The next advance showed that incorporation of a suitable termi-
nal cost and terminal constraint in the finite horizon optimal control
problem ensured closed-loop stability; the terminal constraint set is
required to be control invariant, and the terminal cost function is re-
quired to be a local CLF. Perhaps the earliest proposal in this direction
is the brief paper by Sznaier and Damborg (1987) for linear systems
with polytopic constraints; in this prescient paper the terminal cost is
chosen to be the value function for the unconstrained infinite horizon
optimal control problem, and the terminal constraint set is the maxi-
mal constraint admissible set (Gilbert and Tan, 1991) for the optimal
controlled system.8 A suitable terminal cost and terminal constraint

8If the optimal infinite horizon controlled system is described by x+ = AKx and if
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set for constrained nonlinear continuous time systems was proposed
in Michalska and Mayne (1993) but in the context of dual mode MPC.
In a paper that has had considerable impact, Chen and Allgöwer (1998)
showed that similar “ingredients” may be employed to stabilize con-
strained nonlinear continuous time systems when conventional MPC
is employed. Related results were obtained by Parisini and Zoppoli
(1995), and De Nicolao, Magni, and Scattolini (1996).

Stability proofs for the form of MPC proposed, but not analyzed,
in Sznaier and Damborg (1987) were finally provided by Chmielewski
and Manousiouthakis (1996) and Scokaert and Rawlings (1998). These
papers also showed that optimal control for the infinite horizon con-
strained optimal control problem with a specified initial state is achieved
if the horizon is chosen sufficiently long. A terminal constraint is not
required if a global, rather than a local, CLF is available for use as a
terminal cost function. Thus, for the case when the system being con-
trolled is linear and stable, and subject to a convex control constraint,
Rawlings and Muske (1993) showed, in a paper that raised consider-
able interest, that closed-loop stability may be obtained if the terminal
constraint is omitted and the infinite horizon cost using zero control is
employed as the terminal cost. The resultant terminal cost is a global
CLF.

The basic principles ensuring closed-loop stability in these and many
other papers including De Nicolao, Magni, and Scattolini (1998), and
Mayne (2000) were distilled and formulated as “stability axioms” in the
review paper Mayne et al. (2000); they appear as Assumptions 2.12,
2.13 and 2.16 in this chapter. These assumptions provide sufficient
conditions for closed-loop stability for a given horizon. There is an
alternative literature that shows that closed-loop stability may often
be achieved if the horizon is chosen to be sufficiently long. Contribu-
tions in this direction include Primbs and Nevistíc (2000), Jadbabaie, Yu,
and Hauser (2001), as well as Parisini and Zoppoli (1995), Chmielewski
and Manousiouthakis (1996), and Scokaert and Rawlings (1998) already
mentioned. An advantage of this approach is that it avoids addition of a
terminal constraint, although this may be avoided by alternative means
as shown in Section 2.6.

the constraints are u ∈ U and x ∈ X, then the maximal constraint admissible set is
{x | AiKx ∈ X, KAiKx ∈ U ∀i ∈ I≥0}.
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2.12 Exercises

Exercise 2.1: Discontinuous MPC

Compute, for Example 2.8, U3(x), V0
3 (x) and κ3(x) at a few points on the unit circle.

Exercise 2.2: Boundedness of discrete time model

Complete the proof of Proposition 2.21 by showing that f(·) and f−1
Z (·) are bounded

on bounded sets.

Exercise 2.3: Destabilization with state constraints

Consider a state feedback regulation problem with the origin as the setpoint (Muske
and Rawlings, 1993). Let the system be

A =
[

4/3 −2/3
1 0

]
B =

[
1
0

]
C = [−2/3 1]

and the controller objective function tuning matrices be

Q = I R = I N = 5

(a) Plot the unconstrained regulator performance starting from initial condition

x(0) =
[
3 3

]′
.

(b) Add the output constraint y(k) ≤ 0.5. Plot the response of the constrained
regulator (both input and output). Is this regulator stabilizing? Can you modify
the tuning parameters Q,R to affect stability as in Section 1.3.4?

(c) Change the output constraint to y(k) ≤ 1 + ε, ε > 0. Plot the closed-loop re-
sponse for a variety of ε. Are any of these regulators destabilizing?

(d) Set the output constraint back to y(k) ≤ 0.5 and add the terminal constraint
x(N) = 0. What is the solution to the regulator problem in this case? Increase
the horizon N. Does this problem eventually go away?

Exercise 2.4: Computing the projection of Z onto XN
Given a polytope

Z := {(x,u) ∈ Rn ×Rm | Gx +Hu ≤ ψ}
write an Octave or MATLAB program to determine X, the projection of Z onto Rn

X = {x ∈ Rn | ∃u ∈ Rm such that (x,u) ∈ Z}

Use algorithms 3.1 and 3.2 in Keerthi and Gilbert (1987).
To check your program, consider a system

x+ =
[

1 1
0 1

]
x +

[
0
1

]
u

subject to the constraints X = {x | x1 ≤ 2} and U = {u | −1 ≤ u ≤ 1}. Consider the
MPC problem with N = 2, u = (u(0),u(1)), and the set Z given by

Z = {(x,u) | x,φ(1;x,u),φ(2;x,u) ∈ X and u(0),u(1) ∈ U}
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Verify that the set

X2 := {x ∈ R2 | ∃u ∈ R2 such that (x,u) ∈ Z}

is given by

X2 = {x ∈ R2 | Px ≤ p} P =

1 0
1 1
1 2

 p =

2
2
3


Exercise 2.5: Computing the maximal output admissible set

Write an Octave or MATLAB program to determine the maximal constraint admissible
set for the system x+ = Fx,y = Hx subject to the hard constraint y ∈ Y in which
Y = {y | Ey ≤ e}. Use algorithm 3.2 in Gilbert and Tan (1991).

To check your program, verify for the system

F =
[

0.9 1
0 0.09

]
H =

[
1 1

]
subject to the constraint Y = {y | −1 ≤ y ≤ 1}, and that the maximal output admissi-
ble set is given by

O∞ = {x ∈ R2 | Ax ≤ b} A =


1 1
−1 1
0.9 1.01
−0.9 −1.01

 b =


1
1
1
1


Show that t∗, the smallest integer t such that Ot = O∞ satisfies t∗ = 1.

What happens to t∗ as F22 increases and approaches 1. What do you conclude for
the case F22 ≥ 1?

Exercise 2.6: Terminal constraint and region of attraction

Consider the system
x+ = Ax + Bu

subject to the constraints
x ∈ X u ∈ U

in which

A =
[

2 1
0 2

]
B =

[
1 0
0 1

]
X = {x ∈ R2 | x1 ≤ 5} U = {u ∈ R2 | −1 ≤ u ≤ 1}

and 1 ∈ R2 is a vector of ones. The MPC cost function is

VN(x,u) =
N−1∑
i=0

`(x(i),u(i))+ Vf (x(N))

in which

`(x,u) = (1/2)
(
|x|2Q + |u|2

)
Q =

[
α 0
0 α

]
and Vf (·) is the terminal penalty on the final state.

(a) Implement unconstrained MPC with no terminal cost (Vf (·) = 0) for a few values
of α. Choose a value of α for which the resultant closed loop is unstable. Try
N = 3.
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Figure 2.7: Region of attraction (shaded region) for constrained MPC
controller of Exercise 2.6.

(b) Implement constrained MPC with no terminal cost or terminal constraint for the
value of α obtained in the previous part. Is the resultant closed loop stable or
unstable?

(c) Implement constrained MPC with terminal equality constraint x(N) = 0 for the
same value of α. Find the region of attraction for the constrained MPC controller
using the projection algorithm from Exercise 2.4. The result should resemble
Figure 2.7.

Exercise 2.7: Infinite horizon cost to go as terminal penalty

Consider the system
x+ = Ax + Bu

subject to the constraints
x ∈ X u ∈ U

in which

A =
[

2 1
0 2

]
B =

[
1 0
0 1

]
and

X = {x ∈ R2 | −5 ≤ x1 ≤ 5} U = {u ∈ R2| − 1 ≤ u ≤ 1}
The cost is

VN(x,u) :=
N−1∑
i=0

`(x(i),u(i))+ Vf (x(N))

in which

`(x,u) = (1/2)(|x|2Q + |u|2) Q =
[
α 0
0 α

]
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Figure 2.8: The region Xf , in which the unconstrained LQR control
law is feasible for Exercise 2.7.

and Vf (·) is the terminal penalty on the final state and 1 ∈ R2 is a vector of all ones.
Use α = 10−5 and N = 3 and terminal cost Vf (x) = (1/2)x′Πx where Π is the solution
to the steady-state Riccati equation.

(a) Compute the infinite horizon optimal cost and control law for the unconstrained
system.

(b) Find the region Xf , the maximal constraint admissible set using the algorithm in
Exercise 2.5 for the system x+ = (A+BK)x with constraints x ∈ X and Kx ∈ U.
You should obtain the region shown in Figure 2.8.

(c) Add a terminal constraint x(N) ∈ Xf and implement constrained MPC. FindXN ,
the region of attraction for the MPC problem with Vf (·) as the terminal cost and
x(N) ∈ Xf as the terminal constraint. Contrast it with the region of attraction
for the MPC problem in Exercise 2.6 with a terminal constraint x(N) = 0.

(d) Estimate X̄N , the set of initial states for which the MPC control sequence for
horizon N is equal to the MPC control sequence for an infinite horizon.
Hint: x ∈ X̄N if and only if x0(N;x) ∈ int(Xf ). Why?

Exercise 2.8: Terminal penalty with and without terminal constraint

Consider the system
x+ = Ax + Bu

subject to the constraints
x ∈ X u ∈ U
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Figure 2.9: The region of attraction for terminal constraint x(N) ∈
Xf and terminal penalty Vf (x) = (1/2)x′Πx and the es-
timate of X̄N for Exercise 2.8.

in which

A =
[

2 1
0 2

]
B =

[
1 0
0 1

]
and

X = {x ∈ R2 | −15 ≤ x1 ≤ 15} U = {u ∈ R2| − 5 · 1 ≤ u ≤ 5 · 1}
The cost is

VN(x,u) =
N−1∑
i=0

`(x(i),u(i))+ Vf (x(N))

in which

`(x,u) = (1/2)(|x|2Q + |u|)2 Q =
[
α 0
0 α

]
Vf (·) is the terminal penalty on the final state, and 1 ∈ R2 is a vector of ones.

Use α = 10−5 and N = 3 and terminal cost Vf (x) = (1/2)x′Πx where Vf (·) is the
infinite horizon optimal cost for the unconstrained problem.

(a) Add a terminal constraint x(N) ∈ Xf , in which Xf is the maximal constraint
admissible set for the system x+ = (A + BK)x and K is the optimal controller
gain for the unconstrained problem. Using the code developed in Exercise 2.7,
estimate XN , the region of attraction for the MPC problem with this terminal
constraint and terminal cost. Also estimate X̄N , the region for which the MPC
control sequence for horizon N is equal to the the MPC control sequence for
infinite horizon. Your results should resemble Figure 2.9

(b) Remove the terminal constraint and estimate the domain of attraction X̂N (by
simulation). Compare this X̂N with XN and X̄N obtained previously.
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(c) Change the terminal cost to Vf (x) = (3/2)x′Πx and repeat the previous part.

Exercise 2.9: Decreasing property for the time-varying case

Prove Lemma 2.32.

Exercise 2.10: Terminal cost bound for the time-varying case

Prove Lemma 2.33.

Exercise 2.11: Modification of terminal cost

Refer to Section 2.6.1. Show that the pair (βVf (·),Xf ) satisfies Assumptions 2.12 and
2.13 if (Vf (·),Xf ) satisfies these assumptions, β ≥ 1, and `(·) satisfies Assumption
2.16.

Exercise 2.12: Terminal inequality

Refer to Section 2.6.2 where the terms V eN(·), V̂ eN(·), V ef (·) and XeN are defined. Prove
that the control sequence

{ue(0;x),ue(0;x+),ue(1;x+), . . . , ue(N − 2;x+)}

is feasible for problem PeN(x). Use this result and the fact that xe(N;x) lies in Xf to
establish that

V ef (x
e(N;x+)) ≤ V ef (x

e(N − 1;x+))− `(xe(N − 1;x+),ue(N − 1;x+))

in which x+ := f(x,ue(0;x)).

Exercise 2.13: A Lyapunov theorem for asymptotic stability

Prove the asymptotic stability result for Lyapunov functions.

Theorem 2.44 (Lyapunov theorem for asymptotic stability). Given the dynamic system

x+ = f(x) 0 = f(0)

The origin is asymptotically stable if there existK-functions α, β, γ, and r > 0 such that
Lyapunov function V satisfies for x ∈ rB

α(|x|) ≤ V(x) ≤ β(|x|)
V(f(x))− V(x) ≤ −γ(|x|)

Exercise 2.14: An MPC stability result

Given the following nonlinear model and objective function

x+ = f(x,u), 0 = f(0,0)
x(0) = x

VN(x,u) =
N−1∑
k=0

`(x(k),u(k))

Consider the terminal constraint MPC regulator

min
u
VN(x,u)
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subject to
x+ = f(x,u) x(0) = x x(N) = 0

and denote the first move in the optimal control sequence as u0(x). Given the closed-
loop system

x+ = f(x,u0(x))

(a) Prove that the origin is asymptotically stable for the closed-loop system. State
the cost function assumption and controllability assumption required so that
the control problem is feasible for some set of defined initial conditions.

(b) What assumptions about the cost function `(x,u) are required to strengthen the
controller so that the origin is exponentially stable for the closed-loop system?
How does the controllability assumption change for this case?

Exercise 2.15: Stability using observability instead of IOSS

Assume that the system x+ = f(x,u), y = h(x) is `-observable, i.e., there exists a
α ∈ K and an integer No ≥ 1 such that

No−1∑
j=0

`(y(i),u(i)) ≥ α(|x|)

for all x and all u; here x(i) := φ(i;x,u) and y(i) := h(x(i)). Prove the result given
in Section 2.7 that the origin is asymptotically stable for the closed-loop system x+ =
f(x, κN(x)) using the assumption that x+ = f(x,u), y = h(x) is `-observable rather
than IOSS. Assume that N ≥ No.

Exercise 2.16: Input/output-to-state stability (IOSS) and convergence

Prove Proposition 2.41. Hint: consider the solution at time k+ l using the state at time
k as the initial state.

Exercise 2.17: Equality for quadratic functions

Prove the following result which is useful for analyzing the unreachable setpoint prob-
lem.

Lemma 2.45 (An equality for quadratic functions). Let X be a nonempty compact subset
of Rn, and let `(·) be a strictly convex quadratic function on X defined by `(x) :=
(1/2)x′Qx + q′x + c, Q > 0. Consider a sequence {x(i) | i ∈ I1:P} with mean x̄P :=
(1/P)

∑P
i=1 x(i). Then the following holds

P∑
i=1

`(x(i)) = (1/2)
P∑
i=1

|x(i)− x̄P |2Q + P`(x̄P )

It follows from this lemma that `(x̄P ) ≤ (1/P)
∑P
i=1 `(x(i)), which is Jensen’s

inequality for the special case of a quadratic function.

Exercise 2.18: Unreachable setpoint MPC and evolution in a compact set

Prove the following lemma, which is useful for analyzing the stability of MPC with an
unreachable setpoint.
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Lemma 2.46 (Evolution in a compact set). Suppose x(0) = x lies in the set XN . Then
the state trajectory {x(i)} where, for each i, x(i) = φf (i;x) of the controlled system
x+ = f(x) evolves in a compact set.

Exercise 2.19: MPC and multivariable, constrained systems

Consider a two-input, two-output process with the following transfer function

G(s) =


2

10s + 1
2
s + 1

1
s + 1

− 4
s + 1


(a) Consider a unit setpoint change in the first output. Choose a reasonable sample

time, ∆. Simulate the behavior of an offset-free discrete time MPC controller
with Q = I, S = I and large N.

(b) Add the constraint −1 ≤ u(k) ≤ 1 and simulate the response.

(c) Add the constraint −0.1 ≤ ∆u/∆ ≤ 0.1 and simulate the response.

(d) Add significant noise to both output measurements (make the standard devia-
tion in each output about 0.1). Retune the MPC controller to obtain good perfor-
mance. Describe which controller parameters you changed and why.

Exercise 2.20: LQR versus LAR

We are now all experts on the linear quadratic regulator (LQR), which employs a linear
model and quadratic performance measure. Let’s consider the case of a linear model
but absolute value performance measure, which we call the linear absolute regulator
(LAR)9

min
u

N−1∑
k=0

(
q |x(k)| + r |u(k)|

)
+ q(N) |x(N)|

For simplicity consider the following one-step controller, in which u and x are scalars

min
u(0)

V(x(0),u(0)) = |x(1)| + |u(0)|

subject to
x(1) = Ax(0)+ Bu(0)

Draw a sketch of x(1) versus u(0) (recall x(0) is a known parameter) and show
the x-axis and y-axis intercepts on your plot. Now draw a sketch of V(x(0),u(0))
versus u(0) in order to see what kind of optimization problem you are solving. You
may want to plot both terms in the objective function individually and then add them
together to make your V plot. Label on your plot the places where the cost function V
suffers discontinuities in slope. Where is the solution in your sketch? Does it exist for
all A,B,x(0)? Is it unique for all A,B,x(0)?

The motivation for this problem is to change the quadratic program (QP) of the
LQR to a linear program (LP) in the LAR, because the computational burden for LPs is
often smaller than QPs. The absolute value terms can be converted into linear terms
with a standard trick involving slack variables.

9Laplace would love us for making this choice, but Gauss would not be happy.
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Figure 2.10: Inconsistent setpoint (xsp, usp), unreachable stage cost
`(x,u), and optimal steady states (xs , us), and stage
costs `s(x,u) for constrained and unconstrained sys-
tems.

Exercise 2.21: Unreachable setpoints in constrained versus unconstrained
linear systems

Consider the linear system with input constraint

x+ = Ax + Bu u ∈ U

We examine here both unconstrained systems in which U = Rm and constrained sys-
tems in which U ⊂ Rm is a convex polyhedron. Consider the stage cost defined in terms
of setpoints for state and input xsp, usp

`(x,u) = (1/2)
(
|x − xsp|2Q + |u−usp|2R

)
in which we assume for simplicity that Q,R > 0. For the setpoint to be unreachable in
an unconstrained problem, the setpoint must be inconsistent, i.e., not a steady state of
the system, or

xsp ≠ Axsp + Busp

Consider also using the stage cost centered at the optimal steady state (xs , us)

`s(x,u) = (1/2)
(
|x − xs |2Q + |u−us |2R

)
The optimal steady state satisfies

(xs , us) = arg min
x,u

`(x,u)

subject to [
I −A −B

][x
u

]
= 0 u ∈ U

Figure 2.10 depicts an inconsistent setpoint, and the optimal steady state for uncon-
strained and constrained systems.

(a) For unconstrained systems, show that optimizing the cost function with terminal
constraint

V(x,u) :=
N−1∑
k=0

`(x(k),u(k))
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Figure 2.11: Stage cost versus time for the case of unreachable set-
point. The cost V 0(x(k)) is the area under the curve to
the right of time k.

subject to
x+ = Ax + Bu x(0) = x x(N) = xs

gives the same solution as optimizing the cost function

Vs(x,u) :=
N−1∑
k=0

`s(x(k),u(k))

subject to the same model constraint, initial condition, and terminal constraint.

Therefore, there is no reason to consider the unreachable setpoint problem fur-
ther for an unconstrained linear system. Shifting the stage cost from `(x,u) to
`s(x,u) provides identical control behavior and is simpler to analyze.

Hint. First define a third stage cost l(x,u) = `(x,u)−λ′((I−A)x−
Bu), and show, for any λ, optimizing with l(x,u) as stage cost is
the same as optimizing using `(x,u) as stage cost. Then set λ =
λs , the optimal Lagrange multiplier of the steady-state optimization
problem.

(b) For constrained systems, provide a simple example that shows optimizing the
cost function V(x,u) subject to

x+ = Ax + Bu x(0) = x x(N) = xs u(k) ∈ U for all k ∈ I0:N−1

does not give the same solution as optimizing the cost function Vs(x,u) sub-
ject to the same constraints. For constrained linear systems, these problems
are different and optimizing the unreachable stage cost provides a new design
opportunity.

Exercise 2.22: Filing for patent

An excited graduate student shows up at your office. He begins, “Look, I have discov-
ered a great money-making scheme using MPC.” You ask him to tell you about it. “Well,”
he says, “you told us in class that the optimal steady state is asymptotically stable even
if you use the stage cost measuring distance from the unreachable setpoint, right?” You
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reply, “Yes, that’s what I said.” He continues, “OK, well look at this little sketch I drew,”
and he shows you a picture like Figure 2.11. “So imagine I use the infinite horizon cost
function so the open-loop and closed-loop trajectories are identical. If the best steady
state is asymptotically stable, then the stage cost asymptotically approaches `(xs , us),
right?” You reply, “I guess that looks right.” He then says, “OK, well if I look at the
optimal cost using state x at time k and state x+ at time k + 1, by the principle of
optimality I get the usual cost decrease”

V0(x+) ≤ V0(x)− `(x,u0(x)) (2.44)

You interrupt, “Wait, these V0(·) costs are not bounded in this case!” Unfazed, the
student replies, “Yeah, I realize that, but this sketch is basically correct regardless.
Say we just make the horizon really long; then the costs are all finite and this equation
becomes closer and closer to being true as we make the horizon longer and longer.” You
start to feel a little queasy at this point. The student continues, “OK, so if this inequality
basically holds, V0(x(k)) is decreasing with k along the closed-loop trajectory, it is
bounded below for all k, it converges, and, therefore, `(x(k),u0(x(k))) goes to zero
as k goes to∞.” You definitely don’t like where this is heading, and the student finishes
with, “But `(x,u) = 0 implies x = xsp and u = usp, and the setpoint is supposed to
be unreachable. But I have proven that infinite horizon MPC can reach an unreachable
setpoint. We should patent this!”

How do you respond to this student? Here are some issues to consider.

(a) Does the principle of optimality break down in the unreachable setpoint case?

(b) Are the open-loop and closed-loop trajectories identical in the limit of an infinite
horizon controller with an unreachable setpoint?

(c) Does inequality (2.44) hold as N →∞? If so, how can you put it on solid footing?
If not, why not, and with what do you replace it?

(d) Do you file for patent?
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3
Robust Model Predictive Control

3.1 Introduction

3.1.1 Types of Uncertainty

Robust control concerns control of systems that are uncertain in some
sense so that predicted behavior based on the nominal system is not
identical to actual behavior. Uncertainty may arise in different ways.
The system may have an additive disturbance that is unknown, the state
of the system may not be perfectly known, or the model of the system
that is used to determine control may be inaccurate.

A system with additive disturbance satisfies the following difference
equation

x+ = f(x,u)+w

The disturbance w in constrained optimal control problems is usually
assumed to be bounded since it is impossible to ensure that a sys-
tem with unbounded disturbances satisfies the usual state and control
constraints. More precisely, we usually assume that w satisfies the
constraint w ∈ W where W is a compact subset of Rn containing the
origin.

The situation in which the state is not perfectly measured may be
treated in several ways. In the stochastic optimal control literature,
where the measured output is y = Cx + v and the disturbance w and
measurement noise v are usually assumed to be Gaussian white noise
processes, the state or hyperstate of the optimal control problem is the
conditional density of the state x at time k given prior measurements
{y(0),y(1), . . . , y(k − 1)}. Because this density is usually difficult to
compute and use, except in the linear case when it is provided by the
Kalman filter, a suboptimal procedure is often adopted. In this subop-
timal approach, the state x is replaced by its estimate x̂ in a control law
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determined under the assumption that the state is accessible. This pro-
cedure is usually referred to as certainty equivalence, a term that was
originally employed for the linear quadratic Gaussian (LQG) or similar
cases when this procedure did not result in loss of optimality. When
f(·) is linear, the evolution of the state estimate x̂ may be expressed
by a difference equation

x̂+ = f(x̂,u)+ ξ

in which ξ is the innovation process. In controlling x̂, we should ensure
that the actual state x, which, if the innovation process is bounded,
lies in a bounded, possibly time-varying neighborhood of x̂, satisfies
the constraints of the optimal control problem.

Finally, a system that has parametric uncertainty may be modeled
as

x+ = f(x,u, θ)
in which θ represents parameters of the system that are known only
to the extent that they belong to a compact set Θ. A much studied
example is

x+ = Ax + Bu
in which θ := (A, B) may take any value in Θ := co{(Ai, Bi) | i ∈ I}
where I = {1,2, . . . , I}, say, is an index set.

It is possible, of course, for all these types of uncertainty to occur
in a single application. In this chapter we focus on the first and third
types of uncertainty, namely, additive disturbance and parameter un-
certainty. Output MPC, where the controller employs an estimate of
the state, rather than the state itself, is treated in Chapter 5.

3.1.2 Feedback Versus Open-Loop Control

It is well known that feedback is required only when uncertainty is
present; in the absence of uncertainty, feedback control and open-loop
control are equivalent. Indeed, when uncertainty is not present, as for
the systems studied in Chapter 2, the optimal control for a given initial
state may be computed using either dynamic programming (DP) that
provides an optimal control policy or sequence of feedback control
laws, or an open-loop optimal control that merely provides a sequence
of control actions. A simple example illustrates this fact. Consider the
deterministic linear dynamic system defined by

x+ = x +u
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The optimal control problem, with horizon N = 3, is

P3(x) : V0
3 (x) =min

u3
V3(x,u)

in which u = {u(0),u(1),u(2)}

V3(x,u) := (1/2)
2∑
i=0

[(x(i)2 +u(i)2)]+ (1/2)x(3)2

where, for each i, x(i) = φ(i;x,u) = x + u(0) + u(1) + . . . + u(i −
1), the solution of the difference equation x+ = x + u at time i if
the initial state is x(0) = x and the control (input) sequence is u =
{u(0),u(1),u(2)}; in matrix operations u is taken to be the column
vector [u(0),u(1),u(2)]′. Thus

V3(x,u) = (1/2)
[
x2 + (x +u(0))2 + (x +u(0)+u(1))2+

(x +u(0)+u(1)+u(2))2 +u(0)2 +u(1)2 +u(2)2
]

= (3/2)x2 + x
[
3 2 1

]
u+ (1/2)u′P3u

in which

P3 =

 4 2 1
2 3 1
1 1 2


The vector form of the optimal open-loop control sequence for an initial
state of x is, therefore,

u0(x) = −P−1
3

[
3 2 1

]′
x = −

[
0.615 0.231 0.077

]′
x

The optimal control and state sequences are, therefore,

u0(x) = {−0.615x,−0.231x,−0.077x}
x0(x) = {x,0.385x,0.154x,0.077x}

To compute the optimal feedback control, we use the DP recursions

V0
i (x) =min

u∈R
{x2/2+u2/2+ V0

i−1(x +u)}

κ0
i (x) = arg min

u∈R
{x2/2+u2/2+ V0

i−1(x +u)}

with boundary condition

V0
0 (x) = (1/2)x2
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This procedure gives the value function V0
i (·) and the optimal control

law κ0
i (·) at each i where the subscript i denotes time to go. Solving

the DP recursion, for all x ∈ R, all i ∈ {1,2,3}, yields

V0
1 (x) = (3/4)x2 κ0

1(x) = −(1/2)x
V0

2 (x) = (4/5)x2 κ0
2(x) = −(3/5)x

V0
3 (x) = (21/26)x2 κ0

3(x) = −(8/13)x

Starting at state x at time 0, and applying the optimal control laws
iteratively to the deterministic system x+ = x + u (recalling that at
time i the optimal control law is κ0

3−i(·) since, at time i, 3 − i is the
time to go) yields

x0(0) = x u0(0) = −(8/13)x

x0(1) = (5/13)x u0(1) = −(3/13)x

x0(2) = (2/13)x u0(2) = −(1/13)x

x0(3;x) = (1/13)x

so that the optimal control and state sequences are, respectively,

u0(x) = {−(8/13)x,−(3/13)x,−(1/13)x}
x0(x) = {x, (5/13)x, (2/13)x, (1/13)x}

which are identical with the optimal open-loop values computed above.
Consider next an uncertain version of the dynamic system in which

uncertainty takes the simple form of an additive disturbance w; the
system is defined by

x+ = x +u+w
in which the only knowledge of w is that it lies in the compact set
W := [−1,1]. Let φ(i;x,u,w) denote the solution of this system at
time i if the initial state is x at time 0, and the input and disturbance
sequences are, respectively, u and w := {w(0),w(1),w(2)}. The cost
now depends on the disturbance sequence — but it also depends, in
contrast to the deterministic problem discussed above, on whether the
control is open-loop or feedback. To discuss the latter case, we define
a feedback policy µ to be a sequence of control laws

µ := {µ0(·), µ1(·), µ2(·)}

in which µi : R→ R, i = 0,1,2; under policy µ, if the state at time i is x,
the control is µi(x). Let M denote the class of admissible policies, for
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example those policies for which each control law µi(·) is continuous.
Then, φ(i;x,µ,w) denotes the solution at time i ∈ {0,1,2,3} of the
following difference equation

x(i+ 1) = x(i)+ µi(x(i))+w(i) x(0) = x

An open-loop control sequence u = {u(0),u(1),u(2)} is then merely a
degenerate policy µ = {µ0(·), µ1(·), µ2(·)}where each control law µi(·)
satisfies

µi(x) = u(i)

for all x ∈ R and all i ∈ {0,1,2}. The cost V3(·) may now be defined

V3(x,µ,w) := (1/2)
2∑
i=0

[(x(i)2 +u(i)2)]+ (1/2)x(3)2

where, now, x(i) = φ(i;x,µ,w) and u(i) = µi(x(i)). Since the distur-
bance is unpredictable, the value of w is not known at time 0, so the
optimal control problem must “eliminate” it in some meaningful way
so that the solution µ0(x) does not depend on w. To eliminate w, the
optimal control problem P∗3 (x) is defined by

P∗3 (x) : V0
3 (x) := inf

µ∈M
J3(x,µ)

in which the cost J3(·) is defined in such a way that it does not depend
on w; inf is used rather than min in this definition since the minimum
may not exist. The most popular choice for J3(·) in the MPC literature
is

J3(x,µ) := max
w∈W

V3(x,µ,w)

in which the disturbance w is assumed to lie in W a bounded class
of admissible disturbance sequences. Alternatively, if the disturbance
sequence is random, the cost J3(·) may be chosen to be

J3(x,µ) := EV3(x,µ,w)

in which E denotes “expectation” or average, over random disturbance
sequences. For our purpose here, we adopt the simple cost

J3(x,µ) := V3(x,µ,0)

in which 0 := {0,0,0} is the zero disturbance sequence. In this case,
J3(x,µ) is the nominal cost, i.e., the cost associated with the nominal
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Figure 3.1: Open-loop and feedback trajectories.

system x+ = x+u in which the disturbance is neglected. With this cost
function, the solution to P∗3 (x) is the DP solution, obtained previously,
to the deterministic nominal optimal control problem.

We now compare two solutions to P3(x): the open-loop solution
in which M is restricted to be the set of control sequences, and the
feedback solution in which M is the class of admissible policies. The
solution to the first problem is the solution to the deterministic prob-
lem discussed previously; the optimal control sequence is

u0(x) = {−(8/13)x,−(3/13)x,−(1/13)x}

in which x is the initial state at time 0. The solution to the second
problem is the sequence of control laws determined previously, also for
the deterministic problem, using dynamic programming; the optimal
policy is µ0 = {µ0

0(·), µ0
1(·), µ2(·)} where the control laws (functions)

µi(·), i = 0,1,2, are defined by

µ0
0(x) := κ0

3(x) = −(8/13)x ∀x ∈ R

µ0
1(x) := κ0

2(x) = −(3/5)x ∀x ∈ R

µ0
2(x) := κ0

1(x) = −(1/2)x ∀x ∈ R

The two solutions, u0(·) and µ0, when applied to the uncertain system
x+ = x + u +w do not yield the same trajectories for all disturbance
sequences. This is illustrated in Figure 3.1 for the three disturbance
sequences, w0 := {0,0,0}, w1 := {1,1,1}, and w2 := {−1,−1,−1};
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and initial state x = 1 for which the corresponding state trajectories,
denoted x0, x1, and x2, are

Open-loop solution.

x0 = {1, (5/13), (2/13), (1/13)}
x1 = {1, (18/13), (28/13), (40/13)}
x2 = {1,−(8/13),−(24/13),−(38/13)}

Feedback solution.

x0 = {1, (5/13), (2/13), (1/13)}
x1 = {1, (18/13), (101/65), (231/130)}
x2 = {1,−(8/13),−(81/65),−(211/130)}

Even for the short horizon of 3, the superiority of the feedback so-
lution can be seen although the feedback was designed for the de-
terministic (nominal) system and therefore did not take the distur-
bance into account. For the open-loop solution

∣∣x2(3)− x1(3)
∣∣ =

6, whereas for the feedback case
∣∣x2(3)− x1(3)

∣∣ = 3.4; the open-
loop solution does not restrain the spread of the trajectories result-
ing from the disturbance w. If the horizon length is N, for the open-
loop solution,

∣∣x2(N)− x1(N)
∣∣ = 2N, whereas for the feedback case∣∣x2(N)− x1(N)

∣∣→ 3.24 as N →∞. The obvious and well-known con-
clusion is that feedback control is superior to open-loop control when
uncertainty is present. Feedback control requires determination of a
control policy, however, which is a difficult task if nonlinearity and/or
constraints are features of the optimal control problem.

3.1.3 Robust MPC

An important feature of conventional, or deterministic, MPC discussed
in Chapter 2 is that the solution of the open-loop optimal control prob-
lem solved online is identical to that obtained by DP for the given initial
state. When uncertainty is present and the state is known or observa-
tions of the state are available, feedback control is superior to open-
loop control. The optimal control problem solved online must, there-
fore, permit feedback in order for its solution to coincide with the DP
solution. The online optimal control problem with horizon N is P∗N(x)
in which the decision variable µ is a sequence of control laws rather
than PN(x) in which the decision variable u is a sequence of control
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actions. MPC in which the decision variable is a policy has been termed
feedback MPC to distinguish it from conventional MPC. Both forms of
MPC naturally provide feedback control since the control that is imple-
mented depends on the current state x in both cases. But the control
that is applied depends on whether the optimal control problem solved
is open loop, in which case the decision variable is a control sequence,
or feedback, in which case the decision variable is a feedback policy.

In feedback MPC the solution to the optimal control problem P∗N(x)
is the policyµ0(x) = {µ0

0(·;x), µ0
1(·;x), . . . , µ0

N−1(·;x)}. The constituent
control laws are restrictions of those determined by DP and therefore
depend on the initial state x as implied by the notation. Thus only the
value u0(x) = µ0(x;x) of the control law µ0(·;x) at the initial state
x need be determined while successive laws need only be determined
over a limited range. In the example illustrated in Figure 3.1, µ0(·;x)
need only be determined at the point x = 1, µ1(·;x) need only be deter-
mined over the interval [−8/13,18/13], and µ2(·;x) over the interval
[−81/65,101/65], whereas in the DP solution these control laws are
defined over the infinite interval (−∞,∞).

While feedback MPC is superior in the presence of uncertainty, the
associated optimal control problem is vastly more complex than the
optimal control problem employed in deterministic MPC. The decision
variable µ, being a sequence of control laws, is infinite dimensional;
each law or function requires, in general, an infinite dimensional grid
to specify it. The complexity is comparable to solving the DP equation,
so that MPC, which in the deterministic case replaces DP with a solvable
open-loop optimization problem, is not easily solved when uncertainty
is present. Hence much research effort has been devoted to forms of
feedback MPC that sacrifice optimality for simplicity. As in the early
days of adaptive control, many different proposals have been made.
These proposals for robust MPC are all simpler to implement than the
optimal solution provided by DP.

At the current stage of research it is perhaps premature to select
a particular approach; we have, nevertheless, selected one approach,
tube-based MPC that we describe here and in Chapter 5. There is a
good reason for our choice. It is well known that standard mathemat-
ical optimization algorithms may be used to obtain an optimal open-
loop control sequence for an optimal control problem. What is less well
known is that there exist algorithms, the second variation algorithms,
which provide not only an optimal control sequence but also a local
time-varying feedback law of the formu(k) = v(k)+K(k)(x(k)−z(k))
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where {v(k)} is the optimal open-loop control sequence and {z(k)} the
corresponding optimal open-loop state sequence. This policy provides
feedback control for states x(k) close to the nominal states z(k). The
second variation algorithms are too complex for routine use in MPC be-
cause they require computation of the second derivatives with respect
to (x,u) of f(·) and `(·). When the system is linear, the cost quadratic,
and the disturbance additive, however, the optimal control law for the
unconstrained infinite horizon case is u = Kx. This result may be ex-
pressed as a time-varying control law u(k) = v(k) + K(x(k) − z(k))
where the state and control sequences {z(k)} and {v(k)} satisfy the
nominal difference equations z+ = Az+Bv , v = Kz, i.e., the sequences
{z(k)} and {v(k)} are optimal open-loop solutions for zero distur-
bance and some initial state. The time-varying control law u(k) =
v(k) + K(x(k) − z(k)) is clearly optimal in the unconstrained case;
it remains optimal for the constrained case in the neighborhood of the
nominal trajectory {z(k)} if {z(k)} and {v(k)} lie in the interior of
their respective constraint sets.

These comments suggest that a time-varying policy of the form
u(x, k) = v(k)+K(x − z(k)) might be adequate, at least when f(·) is
linear. The nominal control and state sequences, {v(k)} and {z(k)},
respectively, can be determined by solving a standard open-loop op-
timal control problem of the form usually employed in MPC, and the
feedback matrix K can be determined offline. We show that this form
of robust MPC has the same order of online complexity as that conven-
tionally used for deterministic systems. It requires a modified form of
the online optimal control problem in which the constraints are simply
tightened to allow for disturbances, thereby constraining the trajecto-
ries of the uncertain system to lie in a tube centered on the nominal
trajectories. Offline computations are required to determine the mod-
ified constraints and the feedback matrix K. We also present, in the
last section of this chapter, a modification of this tube-based proce-
dure for nonlinear systems for which a nonlinear local feedback policy
is required.

A word of caution is necessary. Just as nominal model predictive
controllers presented in Chapter 2 may fail in the presence of uncer-
tainty, the controllers presented in this chapter may fail if the actual
uncertainty does not satisfy our assumptions, such as when a distur-
bance that we assume to be bounded exceeds the assumed bounds; the
controlled systems are robust only to the specified uncertainties. As al-
ways, online fault diagnosis and safe recovery procedures are required
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to protect the system from unanticipated events.

3.1.4 Tubes

The approach that we adopt is motivated by the following observa-
tion. Both open-loop and feedback control generate, in the presence
of uncertainty, a bundle or tube of trajectories, each trajectory in the
bundle or tube corresponding to a particular realization of the un-
certainty. In Figure 3.1(a), the tube corresponding to u = u0(x) and
initial state x = 1, is {X0, X1, X2, X3} where X0 = {1}; for each i,
Xi = {φ(i;x,u,w) | w ∈ W}, the set of states at time i generated by
all possible realizations of the disturbance sequence. State constraints
must be satisfied by every trajectory in the tube. Control of uncertain
systems is best viewed as control of tubes rather than trajectories; the
designer chooses, for each initial state, a tube in which all realizations
of the state trajectory are controlled to lie. By suitable choice of the
tube, satisfaction of state and control constraints may be guaranteed
for every realization of the disturbance sequence.

Determination of an exact tube {X0, X1, . . .} corresponding to a given
initial state x and policy µ is difficult even for linear systems, however,
and virtually impossible for nonlinear systems. Hence, in the sequel, we
show how simple tubes that bound all realizations of the state trajec-
tory may be constructed. For example, for linear systems with convex
constraints, a tube {X0, X1, . . . , }, where for each i, Xi = {z(i)}⊕Z , z(i)
is the state at time i of a deterministic system, Xi is a polytope, and Z is
a positive invariant set, may be designed to bound all realizations of the
state trajectory. The exact tube lies inside this simple approximation.
Using this construction permits robust model predictive controllers to
be designed with not much more computation than that required for
deterministic systems.

3.1.5 Difference Inclusion Description of Uncertain Systems

Here we introduce some notation that will be useful in the sequel. A
deterministic discrete time system is usually described by a difference
equation

x+ = f(x,u) (3.1)

We useφ(k;x, i,u) to denote the solution of (3.1) at time kwhen the ini-
tial state at time i is x and the control sequence is u = {u(0),u(1), . . .};
if the initial time i = 0, we write φ(k;x,u) in place of φ(k; (x,0),u).
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Similarly, an uncertain system may be described by the difference equa-
tion

x+ = f(x,u,w) (3.2)

in which the variable w that represents the uncertainty takes values
in a specified set W. We use φ(k;x, i,u,w) to denote the solution
of (3.2) when the initial state at time i is x and the control and dis-
turbance sequences are, respectively, u = {u(0),u(1), . . .} and w =
{w(0),w(1), . . .}. The uncertain system may alternatively be described
by a difference inclusion of the form

x+ ∈ F(x,u)

in which F(·) is a set-valued map. We use the notation F : Rn ×Rm �
Rn or1 F : Rn × Rm → 2R

n
to denote a function that maps points in

Rn × Rm into subsets of Rn. If the uncertain system is described by
(3.2), then

F(x,u) = f(x,u,W) := {f(x,u,w) | w ∈W}

If x is the current state, and u the current control, the successor state
x+ lies anywhere in the set F(x,u). If a control policy µ := {µ0(·),
µ1(·), . . .} is employed, the state evolves according to

x+ ∈ F(x, µk(x)) (3.3)

in which x is the current state, k the current time, and x+ the successor
state at time k+1. The system described by (3.3) does not have a single
solution for a given initial state; it has a solution for each possible
realization w of the disturbance sequence. We use S(x, i) to denote the
set of solutions of (3.3) if the initial state is x at time i. Ifφ(·) ∈ S(x, i)
then

φ(t) = φ(t;x, i,µ,w)

for some admissible disturbance sequence w where φ(t;x, i,µ,w) de-
notes the solution at time t of

x+ = f(x, µk(x),w)

when the initial state is x at time i and the disturbance sequence is w.
The policy µ is defined, as before, to be the sequence {µ0(·), µ1(·), . . . ,

1For any set X, 2X denotes the set of subsets of X.
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µN−1(·)} of control laws. The tube X = {X0, X1, . . .}, discussed in Sec-
tion 3.4, generated when policy µ is employed, satisfies

Xk+1 = F(Xk, µk(·)) := {f(x, µk(x),w) | x ∈ Xk,w ∈W}

in which F maps sets into sets.

3.2 Nominal (Inherent) Robustness

3.2.1 Introduction

Because feedback MPC is complex, it is natural to inquire if nominal
MPC, i.e., MPC based on the nominal system ignoring uncertainty, is
sufficiently robust to uncertainty. Before proceeding with a detailed
analysis, a few comments may be helpful.

MPC uses, as a Lyapunov function, the value function of a paramet-
ric optimal control problem. Often the value function is continuous,
but this is not necessarily the case, especially if state and/or terminal
constraints are present. It is also possible for the value function to be
continuous but the associated control law to be discontinuous; this can
happen, for example, if the minimizing control is not unique.

It is important to realize that a control law may be stabilizing but
not robustly stabilizing; arbitrary perturbations, no matter how small,
can destabilize the system. Teel (2004) illustrates this point with the
following discontinuous autonomous system (n = 2, x = (x1, x2))

x+ = f(x) f(x) =

(0, |x|) x1 ≠ 0

(0,0) otherwise

If the initial state is x = (1,1), then φ(1;x) = (0,
√

2) and φ(2;x) =
(0,0), with similar behavior for other initial states. In fact, all solutions
satisfy

φ(k;x) ≤ β(|x|, k)

in which β, defined by

β(|x|, k) := |x|max{2− k,0}

is a KL function, so that the origin is globally asymptotically stable.
Consider now a perturbed system satisfying

x+ =
[

δ
|x| + δ

]
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in which δ > 0 is a constant perturbation that causes x1 to remain
strictly positive. If the initial state is x = ε(1,1), then x1(k) = δ for
k ≥ 1, and x2(k) > ε

√
2 + kδ → ∞ as k → ∞, no matter how small δ

and ε are. Hence the origin is unstable in the presence of an arbitrarily
small perturbation; global asymptotic stability is not a robust property
of this system.

This example may appear contrived but, as Teel (2004) points out,
it can arise in receding horizon optimal control of a continuous system.
Consider the following system

x+ =
[
x1(1−u)
|x|u

]

in which the control u is constrained to lie in the set U = [−1,1]. Sup-
pose we choose a horizon length N = 2 and choose Xf to be the origin.
If x1 ≠ 0, the only feasible control sequence steering x to 0 in two
steps is u = {1,0}; the resulting state sequence is {x, (0, |x|), (0,0)}.
Since there is only one feasible control sequence, it is also optimal, and
κ2(x) = 1 for all x such that x1 ≠ 0. If x1 = 0, then the only optimal
control sequence is u = {0,0} and κ2(x) = 0. The resultant closed-loop
system satisfies

x+ = f(x) :=
[
x1(1− κ2(x))
|x|κ2(x)

]

in which κ2(x) = 1 if x1 ≠ 0, and κ2(x) = 0 otherwise. Thus

f(x) =

(0, |x|) x1 ≠ 0

(0,0) otherwise
(3.4)

The system x+ = f(x) is the discontinuous system analyzed previ-
ously. Thus, receding horizon optimal control of a continuous system
has resulted in a discontinuous system that is globally asymptotically
stable but has no robustness.

3.2.2 Difference Inclusion Description of Discontinuous Systems

Consider a discontinuous system

x+ = f(x)

in which f(·) is not continuous. An example of such a system occurred
in the previous subsection where f(·) satisfies (3.4). Solutions of this
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system are very sensitive to the value of x1. An infinitesimal change
in x1 at time 0, say, from 0 can cause a substantial change in the sub-
sequent trajectory resulting, in this example, in a loss of robustness.
To design a robust system, one must take into account, in the design
process, the system’s extreme sensitivity to variations in state. This
can be done by regularizing the system (Teel, 2004). If f(·) is locally
bounded,2 the regularization x+ = f(x) is defined to be

x+ ∈ F(x) :=
⋂
δ>0

f({x} ⊕ δB)

in which B is the closed unit ball so that {x} ⊕ δB̄ = {z | |z − x| ≤ δ}
and A denotes the closure of set A. At points where f(·) is continuous,
F(x) = {f(x)}, i.e., F(x) is the single point f(x). If f(·) is piecewise
continuous, e.g., if f(x) = x if x < 1 and f(x) = 2x if x ≥ 1, then
F(x) = {limxi→x f(xi)}, the set of all limits of f(xi) as xi → x. For
our example immediately above, F(x) = {x} if x < 1 and F(x) = {2x}
if x > 1. When x = 1, the limit of f(xi) as xi → 1 from below is 1 and
the limit of f(xi) as x → 1 from above is 2, so that F(1) = {1,2}. The
regularization of x+ = f(x) where f(·) is defined in (3.4) is x+ ∈ F(x)
where F(·) is defined by

F(x) =
{[

0
|x|

]}
x1 ≠ 0 (3.5)

F(x) =
{[

0
|x|

]
,
[

0
0

]}
x1 = 0 (3.6)

If the initial state is x = (1,1), as before, then the difference inclusion
generates the following tube

X0 =
{[

1
1

]}
, X1 =

{[
0√
2

]}
, X2 =

{[
0√
2

]
,
[

0
0

]}
, . . .

withXk = X2 for all k ≥ 2. The setXk of possible states clearly does not
converge to the origin even though the trajectory generated by the orig-
inal system does. The regularization reveals that small perturbations
can destabilize the system.

3.2.3 When Is Nominal MPC Robust?

The discussion in Section 2.1 shows that nominal MPC is not necessar-
ily robust. It is therefore natural to ask under what conditions nominal

2A function f : Rp → Rn is locally bounded if, for every x ∈ Rp , there exists a
neighborhoodN of x and a c > 0 such that |f(z)| ≤ c for all z ∈N .
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MPC is robust. To answer this, we have to define robustness precisely.
In Appendix B, we define robust stability, and robust asymptotic sta-
bility, of a set. We employ this concept later in this chapter in the
design of robust model predictive controllers that for a given initial
state in the region of attraction, steer every realization of the state
trajectory to this set. Here, however, we address a slightly different
question: when is nominal MPC that steers every trajectory in the re-
gion of attraction to the origin robust? Obviously, the disturbance will
preclude the controller from steering the state of the perturbed sys-
tem to the origin; the best that can be hoped for is that the controller
will steer the state to some small neighborhood of the origin. Let the
nominal (controlled) system be described by x+ = f(x) where f(·) is
not necessarily continuous, and let the perturbed system be described
by x+ = f(x + e) +w. Also let Sδ(x) denote the set of solutions for
the perturbed system with initial state x and perturbation sequences
e := {e(0), e(1), e(2), . . .} and w := {w(0),w(1),w(2), . . .} satisfying
max{‖e‖ ,‖w‖} ≤ δ where, for any sequence ν, ‖ν‖ denotes the sup
norm, supk≥0 |ν(k)|. The definition of robustness that we employ is
(Teel, 2004):

Definition 3.1 (Robust global asymptotic stability (GAS)). LetA be com-
pact, and let d(x,A) := mina{|a− x| |a ∈ A}, and |x|A := d(x,A).
The set A is robust GAS for x+ = f(x) if there exists a class KL-
function β(·) such that for each ε > 0 and each compact set C , there
exists a δ > 0 such that for each x ∈ C and eachφ ∈ Sδ(x), there holds
|φ(k;x)|A ≤ β(|x|A, k)+ ε for all k ∈ I≥0.

Taking the set A to be the origin (A = {0}) so that |x|A = |x|, we
see that if the origin is robustly asymptotically stable for x+ = f(x),
then, for each ε > 0, there exists a δ > 0 such that every trajectory of
the perturbed system x+ = f(x+e)+w with max{‖e‖ ,‖w‖} ≤ δ con-
verges to εB (B is the closed unit ball); this is the attractivity property.
Also, if the initial state x satisfies |x| ≤ β−1(ε,0), then |φ(k;x)| ≤
β(β−1(ε,0),0)+ ε = 2ε for all k ∈ I≥0 and for all φ ∈ Sδ, which is the
Lyapunov stability property. Here the function β−1(·,0) is the inverse
of the function α , β(α,0).

We return to the question: under what conditions is asymptotic
stability robust? This is answered by the following important result
(Teel, 2004; Kellet and Teel, 2004):

Theorem 3.2 (Lyapunov function and robust GAS). Suppose A is com-
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pact and that f(·) is locally bounded.3 The set A is robustly globally
asymptotically stable for the system x+ = f(x) if and only if the system
admits a continuous global Lyapunov function forA.

It is shown in Appendix B that for the system x+ = f(x), V : Rn →
R≥0 is a global Lyapunov function for setA if there existK∞ functions
α1(·) and α2(·), and a continuous positive definite function ρ(·), such
that for all x ∈ Rn

α1(|x|A) ≤ V(x) ≤ α2(|x|A)
V(f(x)) ≤ V(x)− ρ(|x|A)

in which |x|A := d(x,A), the distance of x from the set A. In MPC,
the value function of the finite horizon optimal control problem that is
solved online is used as a Lyapunov function. In certain cases, such as
linear systems with polyhedral constraints, the value function is known
to be continuous; see Proposition 7.13. Theorem 3.2, suitably modified
because the region of attraction is not global, shows that asymptotic
stability is robust, i.e., that asymptotic stability is not destroyed by
small perturbations.

This result, though important, is limited in its use for applications in
that it merely states the existence of a δ > 0 that specifies the permitted
magnitude of the perturbations; in practice its value would be required.
In the next section we show how the performance of an uncertain sys-
tem with disturbances of a specified magnitude may be estimated.

Theorem 3.2 characterizes robust stability of the setA for the sys-
tem x+ = f(x) in the sense that it shows robust stability is equiva-
lent to the existence of a continuous global Lyapunov function for the
system. It is also possible to characterize robustness of x+ = f(x)
by global asymptotic stability of its regularization x+ ∈ F(x). It is
shown in Appendix B that for the system x+ ∈ F(x), the set A is
globally asymptotically stable if there exists a KL-function β(·) such
that for each x ∈ Rn and each φ(·) ∈ S(x), i.e., for each solution of
x+ ∈ F(x) with initial state x, φ(k) ≤ β(|x|, k) for all k ∈ I≥0. The
following alternative characterization of robust stability of A for the
system x+ = f(x) appears in (Teel, 2004).

Theorem 3.3 (Robust GAS and regularization). Suppose A is compact
and that f(·) is locally bounded. The setA is robust GAS for the system

3A function f : X → Y is locally bounded if, for every x ∈ X, there exists a neigh-
borhoodN of x such that the set f(N ) in Y is bounded.
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x+ = f(x) if and only if the set A is globally asymptotically stable for
x+ ∈ F(x), the regularization of x+ = f(x).

We saw previously that for f(·) and F(·) defined respectively in
(3.4) and (3.6), the origin is not globally asymptotically stable for the
regularization x+ ∈ F(x) of x+ = f(x) since not every solution of
x+ ∈ F(x) converges to the origin. Hence the origin is not robust GAS
for the system x+ = f(x).

3.2.4 Input-to-State Stability

When an uncertain system is nominally asymptotically stable, it is some-
times possible to establish input-to-state stability (ISS) as shown in Sec-
tion B.6 in Appendix B. We consider the uncertain system described by

x+ = f(x,u,w) (3.7)

in whichw is a bounded additive disturbance. The constraints that are
required to be satisfied are

x(i) ∈ X u(i) ∈ U

for all i ∈ I≥0 := {0,1,2, . . .}, the set of nonnegative integers. The
disturbance w may take any value in the set W. As before, u denotes
the control sequence {u(0),u(1), . . .} and w the disturbance sequence
{w(0),w(1), . . .}; φ(i;x,u,w) denotes the solution of (3.7) at time i if
the initial state is x, and the control and disturbance sequences are,
respectively, u and w.

The nominal system is described by

x+ = f̄ (x,u) := f(x,u,0) (3.8)

and φ̄(i;x,u) denotes the solution of the nominal system (3.8) at time
i if the initial state is x and the control sequence is u. The nominal
control problem, defined subsequently, includes, for reasons discussed
in Chapter 2, a terminal constraint

x(N) ∈ Xf

The nominal optimal control problem is

PN(x) : V0
N(x) =min

u
{VN(x,u) | u ∈ UN(x)}

u0(x) = arg min
u
{VN(x,u) | u ∈ UN(x)}
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in which u0(x) = {u0
0(x),u

0
1(x), . . . , u

0
N−1(x)} and the nominal cost

VN(·) is defined by

VN(x,u) :=
N−1∑
i=0

`(x(i),u(i))+ Vf (x(N)) (3.9)

In (3.9) and (3.10), x(i) := φ̄(i;x,u) for all i ∈ I0:N−1 = {0,1,2, . . . ,N −
1}; the set of admissible control sequences UN(x) is defined by

UN(x) := {u | u(i) ∈ U, x(i) ∈ X ∀i ∈ I0:N−1, x(N) ∈ Xf } (3.10)

which is the set of control sequences such that the nominal system
satisfies the control, state, and terminal constraints when the initial
state at time 0 is x. Thus, UN(x) is the set of feasible controls for the
nominal optimal control problem PN(x). The set XN ⊂ Rn, defined by

XN := {x ∈ X | UN(x) ≠∅}

is the domain of the value function V0
N(·), i.e., the set of x ∈ X for

which PN(x) has a solution; XN is also the domain of the minimizer
u0(x). The value of the nominal model predictive control at state x
is u0(0;x), the first control in the sequence u0(x). Hence the implicit
nominal MPC control law is κN : XN → U defined by

κN(x) = u0(0;x)

We assume, as before, that `(·) and Vf (·) are defined by

`(x,u) := (1/2)(x′Qx +u′Ru) Vf (x) := (1/2)x′Pfx

in which Q, R, and Pf are all positive definite. We also assume that
Vf (·) and Xf satisfy the standard assumption that, for x ∈ Xf , there
exists a u ∈ U such that Vf (f̄ (x,u)) ≤ Vf (x)− `(x,u) and that XN is
compact. Under these assumptions, as shown in Chapter 2, there exist
positive constants c1 and c2, c2 > c1, satisfying

c1|x|2 ≤ V0
N(x) ≤ c2|x|2 (3.11)

V0
N(f̄ (x, κN(x))) ≤ V0

N(x)− c1|x|2 (3.12)

for all x ∈ XN . We also assume:

Assumption 3.4 (Lipschitz continuity of value function). The value
function V0

N(·) is Lipschitz continuous on bounded sets.
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Assumption 3.4 is satisfied, as shown in Proposition 7.13, if f(·) is
affine, `(·) and Vf (·) are quadratic and positive definite, X is poly-
hedral, and Xf and U are polytopic. Assumption 3.4 is also satis-
fied, as shown in Theorem C.29, if VN(·) is Lipschitz continuous on
bounded sets, U is compact, and there are no state constraints, i.e., if
X = Xf = Rn. It follows from (3.11) and (3.12) that for the nominal
system under MPC, the origin is exponentially stable, with a region of
attraction XN ; the nominal system under MPC satisfies

x+ = f̄ (x, κN(x)) (3.13)

It also follows that there exists a γ ∈ (0,1) such that

V0
N(f̄ (x, κN(x))) ≤ γV0

N(x)

for all x ∈ XN so that V0
N(x(i)) decays exponentially to zero as i→∞,

where x(i) is the state of the controlled system at time i when there is
no disturbance. In fact, V0

N(x(i)) ≤ γiV0
N(x(0)) for all i ∈ I≥0.

We now examine the consequences of applying the nominal model
predictive controller κN(·) to the uncertain system (3.7). The controlled
uncertain system satisfies the difference equation

x+ = f(x, κN(x),w) (3.14)

in which w can take any value in W. It is obvious that the state x(i)
of the controlled system (3.14) cannot tend to the origin as i → ∞; the
best that can be hoped for is that x(i) tends to and remains in some
neighborhood of the origin. We shall establish this, if the disturbance
w is sufficiently small, using the value function V0

N(·) of the nomi-
nal optimal control problem as an input-to-state stable (ISS) Lyapunov
function for the controlled uncertain system (3.14). As before, V0

N(·)
satisfies (3.11) and (3.12). Let

Rc := levcV0
N = {x | V0

N(x) ≤ c}

be the largest sublevel set of V0
N(·) contained in XN ; the set Rc is com-

pact. Hence there exists a finite Lipschitz constantd for V0
N(·) inRc×W.

Since Rc ⊂ XN , the state constraint x ∈ X is satisfied everywhere in
Rc . Because the uncertain system satisfies (3.14) rather than (3.13),
the value function evolves along trajectories of the uncertain system
according to

V0
N(f (x, κN(x),w)) − V0

N(x) ≤ V0
N(f̄ (x, κN(x))) − V0

N(x) + d|w|
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for all w ∈W, i.e., according to

V0
N(f (x, κN(x),w)) ≤ γV0

N(x)+ d|w| (3.15)

where γ ∈ (0,1). In contrast to the nominal case, the value function
does not necessarily decrease along trajectories of the uncertain sys-
tem; indeed, at the origin (x = 0), the value function increases un-
less w = 0. The origin is not asymptotically stable for the uncertain
system. If W is sufficiently small, however, a sublevel set Rb = {x |
V0
N(x) ≤ b} ⊂ Rc of V0

N(·) satisfying b < c is robust positive invariant
for x+ = f(x, κN(x),w), w ∈ W, which we show next. We assume,
therefore,

Assumption 3.5 (Restricted disturbances). Let e := maxw{|w| | w ∈
W}; e ≤ (ρ − γ)b/d for some ρ ∈ (γ,1).

The first consequence of this assumption is that Rb is robust pos-
itive invariant for x+ = f(x, κN(x),w), w ∈ W. Suppose x ∈ Rb so
that V0

N(x) ≤ b. Then

V0
N(f (x, κN(x),w)) ≤ γV0

N(x)+ d|w| ≤ γb + (ρ − γ)b ≤ ρb

so that x+ ∈ Rb for all w ∈ W. A second consequence is that Rc
is robust positive invariant and that any x ∈ Rc \ Rb is steered by the
controller into Rb in finite time since Assumption 3.5 implies V0

N(x+) ≤
ρV0

N(x) for all x+ = f(x, κN(x),w), all x ∈ Rc \ Rb, all w ∈ W. Any
trajectory with an initial state x in Rc remains in Rc and enters, in finite
time, the set Rb where it then remains.

It also follows from (3.11), (3.12) and (3.15) that V0
N(·) andRc satisfy

Definition B.37 so that V0
N(·) is an ISS-Lyapunov function in Rc for the

uncertain system x+ = f(x, κN(x),w), w ∈ W. By Lemma B.38, the
system x+ = f(x, κN(x),w), w ∈ W is ISS in Rc satisfying, therefore,
for some β(·) ∈ KL∞, some σ(·) ∈ K,

|φ(i;x,wi)| ≤ β(|x|, i)+ σ(‖wi‖) ≤ β(|x|, i)+ σ(e)

for all i ∈ I≥0 whereφ(i;x,wi) is the solution at time i if the initial state
at time 0 is x and the disturbance sequence is wi := {w(0),w(1), . . . ,
w(i− 1)}.

The next section describes how DP may be used, in principle, to
achieve robust receding horizon control (RHC). The purpose of this
section is to provide some insight into the problem of robust control;
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Figure 3.2: The sets XN , Rb, and Rc .

the section does not show how to obtain robust model predictive con-
trollers that are implementable. Readers whose main concern is im-
plementable robust MPC may prefer to proceed directly to Section 3.4.

3.3 Dynamic Programming Solution

3.3.1 Introduction

In this section we show how robust RHC may be obtained, in principle,
using DP. Our concern is to use DP to gain insight. The results we obtain
here are not of practical use for complex systems, but reveal the nature
of the problem and show what the ideal optimal control problem solved
online should be.

In Section 3.2 we examined the inherent robustness of an asymp-
totically stable system. If uncertainty is present, and it always is, it is
preferable to design the controller to be robust, i.e., able to cope with
some uncertainty. In this section we discuss the design of a robust
controller for the system

x+ = f(x,u,w) (3.16)

in which a bounded disturbance input w models the uncertainty. The
disturbance is assumed to satisfy w ∈ W where W is compact con-
vex, and contains the origin in its interior. The controlled system is
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required to satisfy the same state and control constraints as above,
namely x ∈ X and u ∈ U, as well as a terminal constraint x(N) ∈ Xf .
The solution at time k of (3.16) with control and disturbance sequences
u = {u(0), . . . , u(N − 1)} and w = {w(0), . . . ,w(N − 1)} if the initial
state is x at time 0 is x(k;x,u,w). Similarly, the solution at time k
due to feedback policy µ and disturbance sequence w is denoted by
x(k;x,µ,w). As discussed previously, the cost may be taken to be that
of the nominal trajectory, or the average, or maximum taken over all
possible realizations of the disturbance sequence. Here we employ, as
is common in the literature, the maximum over all realizations of the
disturbance sequence w, and define the cost due to policy µ with initial
state x to be

VN(x,µ) :=max
w
{JN(x,µ,w) | w ∈W} (3.17)

in which W = WN is the set of admissible disturbance sequences, and
JN(x,µ,w) is the cost due to an individual realization w of the distur-
bance process and is defined by

JN(x,µ,w) :=
N−1∑
i=0

`(x(i),u(i),w(i))+ Vf (x(N)) (3.18)

in whichµ = {u(0), µ1(·), . . . , µN−1(·)}, x(i) = φ(i;x,µ,w), andu(i) =
µi(x(i)). LetM(x) denote the set of feedback policiesµ that for a given
initial state x satisfy: the state and control constraints, and the termi-
nal constraint for every admissible disturbance sequence w ∈W . The
first element u(0) in µ is a control action rather than a control law be-
cause the initial state x is known, whereas future states are uncertain.
ThusM(x) is defined by

M(x) :=
{
µ |u(0) ∈ U

φ(i;x,µ,w) ∈ X, µi(φ(i;x,µ,w)) ∈ U ∀i ∈ I0:N−1

φ(N;x,µ,w) ∈ Xf ∀w ∈W
}

The robust optimal control problem is

PN(x) : inf
µ
{VN(x,µ) | µ ∈M(x)} (3.19)

The solution to PN(x), if it exists, is the policy µ0(x)

µ0(x) = {u0(0;x), µ0
1(·;x), . . . , µ0

N−1(·, x)}
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and the value function is V0
N(x) = VN(x,µ0(x)). As in conventional

MPC, the control applied to the system if the state is x is u0(0;x), the
first element in µ0(x); the implicit model predictive feedback control
law is κN(·) defined by

κN(x) := u0(0;x)

3.3.2 Preliminary Results

As in conventional MPC, the value function and implicit control law
may, in principle, be obtained by DP. But DP is, in most cases, im-
possible to use because of its large computational demands. There
are, of course, important exceptions such as H2 and H∞ optimal con-
trol for unconstrained linear systems with quadratic cost functions.
DP also can be used for low dimensional constrained optimal control
problems when the system is linear, the constraints are affine, and
the cost is affine or quadratic. Even when DP is computationally pro-
hibitive, however, it remains a useful tool because of the insight it pro-
vides. Because of the cost definition, min-max DP is required. For each
i ∈ {0,1, . . . ,N}, let V0

i (·) and κi(·) denote, respectively, the partial
value function and the optimal solution to the optimal control problem
Pi defined by (3.19) with i replacing N. The DP recursion equations for
computing these functions are

V0
i (x) =min

u∈U
max
w∈W

{`(x,u,w)+ V0
i−1(f (x,u,w)) | f(x,u,W) ⊆ Xi−1}

κi(x) = (arg min
u∈U

)max
w∈W

{`(x,u,w)+ V0
i−1(f (x,u)) | f(x,u,W) ⊆ Xi−1}

Xi = {x ∈ X | ∃ u ∈ U such that f(x,u,W) ⊆ Xi−1}

with boundary conditions

V0
0 (x) = Vf (x) X0 = Xf

In these equations, the subscript i denotes the time to go. For each i,
Xi is the domain of V0

i (·) (and κi(·)) and is therefore the set of states
x for which a solution to problem Pi(x) exists. Thus Xi is the set of
states that can be robustly steered by state feedback, i.e., by a policy
µ ∈ M(x), to Xf in i steps or less satisfying all constraints for all
disturbance sequences. It follows from these definitions that

V0
i (x) =max

w∈W
{`(x, κi(x),w)+ V0

i−1(f (x, κi(x),w))} (3.20)

as discussed in Exercise 3.1.
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As in the deterministic case studied in Chapter 2, we are interested
in obtaining sufficient conditions that ensure that the RHC law κN(·)
is stabilizing. We wish to replace the stabilizing Assumptions 2.12
and 2.13 in Section 2.4.3 of Chapter 2 by conditions appropriate to
the robust control problem. The presence of a disturbance requires us
to generalize some earlier definitions; we therefore define the terms
robust control invariant and robust positive invariant that generalize
our previous definitions of control invariant and positive invariant re-
spectively.

Definition 3.6 (Robust control invariance). A set X ⊆ Rn is robust con-
trol invariant for x+ = f(x,u,w), w ∈ W if, for every x ∈ X, there
exists a u ∈ U such that f(x,u,W) ⊆ X.

Definition 3.7 (Robust positive invariance). A set X is robust positive
invariant for x+ = f(x,w), w ∈W if, for every x ∈ X, f(x,W) ⊆ X.

Stabilizing conditions are imposed on the ingredients `(·), Vf (·)
and Xf of the optimal control problem to ensure that the resultant con-
trolled system has desirable stability properties. Our generalization of
the stabilizing Assumptions 2.12 and 2.13 that we wish to employ, at
least for certain problems, are the following Assumptions 3.8 and 3.9.

Assumption 3.8 (Basic stability assumption; robust case).

(a) For all x ∈ Xf

min
u∈U

max
w∈W

[∆Vf + `](x,u,w) ≤ 0

in which ∆Vf (x,u,w) = Vf (f (x,u,w))− Vf (x).4

(b) Xf ⊆ X.

Assumption 3.8 implicitly requires that for eachx ∈ Xf , there exists
a u ∈ U such that f(x,u,W) ⊆ Xf , i.e., Assumption 3.8 implicitly
implies Assumption 3.9.

Assumption 3.9 (Implied stability assumption; robust case). The set
Xf is robust control invariant for x+ = f(x,u,w), w ∈W.

Before proceeding to analyze stability, we should ask if there are any
examples that satisfy these conditions. There is at least one important

4Generalizing, for any real-valued function V(·), ∆V(x,u,w) is defined to be
∆V(x,u,w) := V(f(x,u,w))− V(x).
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example. Assume that f(x,u,w) = Ax + Bu + Gw is linear and the
cost is

`(x,u) = (1/2)
(
|x|2Q + |u|2R − ρ2 |w|2

)
(3.21)

in which Q = C′C , R is positive definite and |x|2Q and |u|2R denote,
respectively, x′Qx and u′Ru. In the absence of constraints, problem
P∞(x) becomes a standard infinite horizon, linear quadratic H∞ opti-
mal control problem. If (A, B,C) has no zeros on the unit circle, which
is the case if Q and R are positive definite, the conditions required in
Appendix B of Green and Limebeer (1995) for the full information case
are satisfied so that there exists a ρ̃ > 0 such that a positive definite
solution Pf to the associated (generalized) H∞ algebraic Riccati equa-
tion exists for all ρ > ρ̃. Suppose ρf > ρ̃ and that Pf is the solution of
the H∞ algebraic Riccati equation, then the associated optimal control
and disturbance laws are u = Kux andw = Kwx, respectively, and the
matrices Af := A+ BKu and Ac := A+ BKu +GKw are both stable. We
define the terminal cost function Vf (·) by

Vf (x) := (1/2)|x|2Pf

The terminal cost function Vf (·) is the infinite horizon value function,
defined globally in Rn and satisfying Vf (x) = maxw{`(x,Kux,w) +
Vf (f (x,Kux,w))}, so that

[∆Vf + `](x,Kux,w) ≤ 0

for all (x,w). Hence Assumptions 3.8 and 3.9 are satisfied with Xf cho-
sen to be any robust positive invariant set for x+ = (A+ BKu)x +Gw,
w ∈W, that satisfies Xf ⊆ X and KuXf ⊆ U, provided such a set exists.
Since a positive invariant set for x+ = (A+BKu)x+Gw increases with
W, and since {0} is positive invariant if W = {0}, a suitable Xf exists if
W is sufficiently “small.” A similar result can be obtained for a nonlin-
ear system x+ = f(x,u,w)with `(·) defined as in (3.21), provided that
f(·) is continuously differentiable, and A := fx(0,0,0), B := fu(0,0,0)
and G := fw(0,0,0); see Section 2.5.3.2 of Chapter 2.

Since Assumptions 3.8 and 3.9 appear to be similar to Assump-
tions 2.12 and 2.13, we would expect to obtain stability results anal-
ogous to those obtained in Chapter 2. We do obtain preliminary re-
sults that are similar, but the stability properties of the closed-loop
system are quite different. Before stating the preliminary results, we
note that Assumptions 3.8 and 3.9 imply the existence of a termi-
nal control law κf : Xf → U with the following four properties: (i)
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[∆Vf + `](x, κf (x),w) ≤ 0 for all x ∈ Xf , all w ∈ W, (ii) Xf is ro-
bust positive invariant for x+ = f(x, κf (x),w), (iii) Xf ⊆ X, and (iv)
κf (Xf ) ⊆ U.

Theorem 3.10 (Recursive feasibility of control policies). Suppose As-
sumptions 3.8 and 3.9 hold. Then:

(a) XN ⊇ XN−1 ⊇ . . . ⊇ X1 ⊇ X0 = Xf .

(b) Xi is robust control invariant for x+ = f(x,u,w)∀i ∈ {0,1, . . . ,N}.

(c) Xi is robust positive invariant for x+ = f(x, κi(x),w) ∀i ∈ {0,1,
. . . , N}.

(d) V0
i (x) ≤ V0

i−1(x) ∀x ∈ Xi−1 ∀i ∈ {1, . . . ,N}.

(e) V0
N(x) ≤ Vf (x) ∀ x ∈ Xf .

(f) [∆V0
N + `](x, κN(x),w) ≤ [V0

N − V0
N−1](f (x, κN(x),w)) ≤ 0

∀(x,w) ∈ XN ×W.

(g) For anyx ∈ XN , {κN(x), κN−1(·), . . . , κ1(·), κf (·)} is a feasible policy
forPN+1(x), and, for anyx ∈ XN−1, {κN−1(x), κN−2(·), . . . , κ1(·), κf (·)}
is a feasible policy for PN(x).

Proof.

(a)–(c) Suppose, for some i, Xi is robust control invariant so that any
point x ∈ Xi can be robustly steered into Xi. By construction, Xi+1

is the set of all points x that can be robustly steered into Xi. Hence
Xi+1 ⊇ Xi and Xi+1 is robust control invariant. But X0 = Xf is robust
control invariant. Both (a) and (b) follow by induction. Part (c) follows
from (b).

(d) Assume V0
i (x) ≤ V0

i−1(x) for all x ∈ Xi−1. Then from (3.20) we have

[V0
i+1 − V0

i ](x) =max
w∈W

{`(x, κi+1(x),w)+ V0
i (f (x, κi+1(x),w))}

−max
w∈W

{`(x, κi(x),w)+ V0
i−1(f (x, κi(x),w))}

≤max
w∈W

{`(x, κi(x),w)+ V0
i (f (x, κi(x),w))}

−max
w∈W

{`(x, κi(x),w)+ V0
i−1(f (x, κi(x),w))}

for all x ∈ Xi since κi(·) may not be optimal for problem Pi+1(x). We
now use the fact that maxw{a(w)} −maxw{b(w)} ≤ maxw{a(w) −
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b(w)}, which is discussed in Exercise 3.2, to obtain

[V0
i+1 − V0

i ](x) ≤max
w∈W

{[V0
i − V0

i−1](f (x, κi(x),w))}

for all (x,w) ∈ Xi ×W. Also, for all x ∈ X0 = Xf ,

[V0
1 − V0

0 ](x) =min
u∈U

max
w∈W

{`(x,u,w)+ Vf (f (x,u,w))− Vf (x)}

=min
u∈U

max
w∈W

[∆Vf + `](x,u,w)

≤ 0

in which the last inequality follows from Assumption 3.8. By induction,
V0
i (x) ≤ V0

i−1(x) ∀x ∈ Xi−1, ∀i ∈ {1, . . . ,N}; this is the monotonic-
ity property of the value function for a constrained min-max optimal
control problem.

(e) This result is a direct consequence of (a) and (d).

(f) For all x ∈ XN , for all w ∈W.

[∆V0
N + `](x, κN(x),w) = V0

N(f (x, κN(x),w))− V0
N(x)+ `(x, κN(x),w)

≤ V0
N(f (x, κN(x),w)+ `(x, κN(x),w))

− `(x, κN(x),w)− V0
N−1(f (x, κN(x),w))

= [V0
N − V0

N−1](f (x, κN(x),w))
≤ 0

in which the last inequality follows from (d) since f(x, κN(x),w) ∈
XN−1. The result clearly holds with N replaced by any i ∈ {1, . . . ,N}.

(g) Suppose x ∈ XN . Then µ0(x) = {κN(x), κN−1(·), . . . , κ1(·)} is a
feasible and optimal policy for problem PN(x), and steers every tra-
jectory emanating from x into X0 = Xf in N time steps. Because
Xf is positive invariant for x+ = f(x, κf (x),w), w ∈ W, the pol-
icy {κN(x), κN−1(·), . . . , κ1(·), κf (·)} is feasible for problem PN+1(x).
Similarly, the policy {κN−1(x), κN−2(·), . . . , κ1(·)} is feasible and opti-
mal for problem PN−1(x), and steers every trajectory emanating from
x ∈ XN−1 into X0 = Xf in N − 1 time steps. Therefore the pol-
icy {κN−1(x), κN−2(·), . . . , κ1(·), κf (·)} is feasible for PN(x) for any
x ∈ XN−1. �

3.3.3 Stability of Min-Max Receding Horizon Control

We consider in this subsection the stability properties of min-max RHC
for the system x+ = f(x,u,w) with PN(x) defined in (3.19) with
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`(x,u,w) := (1/2)(|x|2Q+|u|2R)−(ρ2/2)|w|2 and Vf (x) := (1/2)|x|2Pf
whereQ, R and Pf are positive definite. In Section 3.3.2, we showed that
maxw∈W[∆V0

N + `](x, κN(x),w) ≤ 0 for all x ∈ XN provided that As-
sumption 3.8 holds. We used the condition [∆V0

N+`](x, κN(x),w) ≤ 0
to establish asymptotic stability of the origin for a deterministic sys-
tem in Chapter 2. Can we do so for the problem considered here? The
answer is no; the disturbance w prevents convergence of state trajec-
tories to the origin.

The obstacle appears in theoretical analysis as follows. Our usual
conditions for establishing asymptotic stability of the origin for this
problem are the existence of a Lyapunov function V(·) satisfying for
all x ∈ XN

(a) V(x) ≥ α1(|x|)

(b) V(x) ≤ α2(|x|)

(c) maxw∈W∆V(x, κN(x),w) ≤ −α3(|x|)

in which α1(·) and α2(·) areK∞ functions and α3(·) is a positive def-
inite, continuous function.

Choosing V(·) to be the value function V0
N(·), we see that (a) is

satisfied because V0
N(x) = minµmaxw JN(x,µ,w) ≥ JN(x,µ0(x),0) ≥

`(x, κN(x),0) ≥ (1/2)|x|2Q ≥ α1(|x|) for some α1(·) ∈ K∞ where 0 =
{0,0, . . . ,0} is a sequence of zeros and Q is positive definite. Also (b)
is satisfied for all x ∈ Xf because V0

N(x) ≤ Vf (x) = (1/2)|x|2Pf where

Pf is positive definite, yielding V0
N(x) ≤ α2(|x|) for all x ∈ Xf , some

α2(·) ∈ K∞. The region of validity may be extended, as in Chapter 2,
to x ∈ XN if XN is bounded. The stumbling block is condition (c). We
have

∆V0
N(x, κN(x),w) ≤ −`(x, κN(x),w)

for all (x,w) ∈ XN×W. Thus V0
N(·) has the following properties; there

existK∞ functions α1(·) and α2(·) such that

V0
N(x) ≥ α1(|x|)
V0
N(x) ≤ α2(|x|)
∆V0

N(x, κN(x),w) ≤ −`(x, κN(x),w) ≤ −α1(|x|)+ (ρ2/2)|w|2

for all (x,w) ∈ XN×W ifXN is bounded. The last property, because of
the term (ρ2/2)|w|2, prevents us from establishing asymptotic stabil-
ity of the origin: the disturbance w prevents convergence of x to the
origin. We have to employ alternative notions of stability.
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Finite `2 gain. Suppose Assumptions 3.8 and 3.9 hold. It follows from
Theorem 3.10 that

∆V0
N(x, κN(x),w) ≤ −`(x, κN(x),w) (3.22)

for all (x,w) ∈ XN×W. Let x = {x(0), x(1), x(2), . . .}, x(0) = x ∈ XN ,
denote any infinite sequence (state trajectory) of the closed-loop system
with receding horizon control; x satisfies

x(i+ 1) = f(x(i), κN(x(i)),w(i))

for some admissible disturbance sequence w = {w(0),w(1), . . .} in
which w(i) ∈ W for all i. Using (3.22), which implies V0

N(x(i + 1)) ≤
V0
N(x(i))−`(x(i), κN(x(i)),w(i)) for all i, we deduce that for any pos-

itive integer M > 0

V0
N(x(M)) ≤ V0

N(x(0))−
M−1∑
i=0

`(x(i), κN(x(i)),w(i))

If we express `(·) in the form

`(x,u,w) = (1/2)|y|2 − (ρ2/2)w2 y :=
[
Cx
Du

]
in which Q = C′C and R = D′D, we obtain

M−1∑
i=0

|y(i)|2 ≤ ρ2
M−1∑
i=0

|w(i)|2 + 2V0
N(x)

for any positive integer M . If w ∈ `2 (
∑∞
i=1 |w(i)|2 <∞), then

∞∑
i=0

|y(i)|2 ≤ ρ2
∞∑
i=0

|w(i)|2 + 2V0
N(x)

and the closed-loop systemx+ = f(x, κN(x),w) has finite `2 gain from
w to y .

We showed above that there exist K∞ functions α1(·) and α2(·)
such that

V0
N(x) ≥ α1(|x|)
V0
N(x) ≤ α2(|x|)
∆V0

N(f (x, κN(x),w)) ≤ −α1(|x|)+ (ρ2/2)|w|2

for all x ∈ XN , ifXN is bounded, and allw ∈W. Sincew , (ρ2/2)|w|2
is a K∞ function, the closed-loop system x+ = f(x, κN(x),w) is also
ISS with w as the input as discussed in Lemma B.38.
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Asymptotic stability of the origin. As noted previously, the presence
of a bounded disturbance prevents trajectories of the closed-loop sys-
tem x+ = f(x, κN(x),w) from converging to the origin. We show next
that asymptotic stability of the origin is possible, however, if the con-
troller κN(·) is determined on the basis that the disturbance is bounded
(w ∈W), but the disturbance is either zero or converges to zero as the
state tends to the origin.

We showed previously that the value function V0
N(·) obtained on the

basis that w ∈W satisfies

V0
N(x) ≥ α1(|x|)
V0
N(x) ≤ α2(|x|)
∆V0

N(f (x, κN(x),w)) ≤ −α1(|x|)+ (ρ2/2)|w|2

for all x ∈ XN , if XN is bounded, all w ∈ W where α1(·) := (1/2)|x|2Q
and α2(·) areK∞ functions. Since ∆V0

N(x, κN(x),w) is not necessarily
negative, the origin is not necessarily asymptotically stable. If, how-
ever, the disturbance w is identically zero, then

∆V0
N(f (x, κN(x),w)) ≤ −α1(|x|)

for all x ∈ XN . This condition, together with the lower and upper
bounds on V0

N(·), is sufficient to establish asymptotic stability of the
origin with a domain of attraction XN .

As the condition ∆V0
N(f (x, κN(x),w)) ≤ −α1(|x|) + (ρ2/2)|w|2

suggests, however, it is possible for the origin to be asymptotically
stable even if some disturbance is present, providing that it decays
sufficiently rapidly to zero as the state tends to the origin. We recall
that

`(x,u,w) = (1/2)|x|2Q + (1/2)|u|2R − (ρ2/2)|w|2

Suppose that w satisfies (ρ2/2)|w|2 ≤ |x|2Q/4, or |w| ≤ |x|Q/(ρ
√

2)
for all x ∈ XN . Then

∆V0
N(f (x, κN(x),w)) ≤ −α1(|x|)/2

for all x ∈ XN , all w ∈ W satisfying |w| ≤ |x|Q/(ρ
√

2). Since α1/2
is a K∞ function, asymptotic stability of the origin with a domain of
attraction XN follows.
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Asymptotic stability of an invariant set. In the deterministic case
the origin is control invariant since there exists a control, namelyu = 0,
such that x+ = f(0,0) = 0. When bounded disturbances are present,
asymptotic stability of the origin must, in general, be replaced by asymp-
totic stability of an invariant set O that replaces the origin. Hence,
when bounded disturbances are present, we make the following as-
sumption:

Assumption 3.11 (Existence of robust control invariant set).

(a) There exists a compact set O ⊆ X that contains the origin and is
robust control invariant for x+ = f(x,u,w) so that for all x ∈ O there
exists a u ∈ U such that f(x,u,w) ∈ O for all w ∈W.

(b) ρ = 0.

Assumption 3.11(a) implies the existence of a control law κO : O → U
such that O is robust positive invariant for x+ = f(x, κO(x),w), i.e.,
f(x, κO(x),w) ∈ O and κO(x) ∈ U for all x ∈ O, all w ∈ W. We
assume ρ = 0 for simplicity; the term −ρ2|w|2 in `(·) is needed in
unconstrained problems to make maximization with respect to the dis-
turbance sequence well defined and is not needed when the constraint
w ∈ W is present. Accordingly, we replace `(x,u,w) by `(x,u). Re-
turning to the discussion in Section 3.3.2, we now assume that O has
properties analogous to those of the origin in the deterministic case.
Specifically we assume:

Assumption 3.12 (Properties of robust control invariant set).

(a) O ⊆ Xf .

(b) Vf (x) = 0 for all x ∈ O.

(c) `(x, κO(x)) = 0 for all x ∈ O.

(d) κf (x) = κO(x) for all x ∈ O.

(e) There exists a K∞ function α1(·) such that `(x,u) ≥ α1(|x|O) for
all (x,u) ∈ X× U.

Since Theorem 3.10 remains true when ρ = 0, it is possible to
demonstrate, under Assumption 3.12, the assumptions of Section 3.3.2,
and the assumption thatXN is bounded, the existence ofK∞ functions
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α1(·) and α2(·) such that

V0
N(x) ≥ α1(|x|O)
V0
N(x) ≤ α2(|x|O)
∆V0

N(f (x, κN(x),w)) ≤ −α1(|x|O)

for all x ∈ XN ,w ∈ W. These bounds differ from those in Proposi-
tion 2.19 of Chapter 2 in that |x| is replaced by |x|O and the term (ρ2/2)
in the last bound is absent. It follows from these bounds that, as shown
in Theorem B.23 of Appendix B, the invariant set O is asymptotically
stable for x+ = f(x, κN(x),w), w ∈W with a region of attraction XN .

3.3.4 “Feedback” MPC

The DP solution yields the receding horizon control law κN(·) but re-
quires extensive computation. In the deterministic case discussed in
Chapter 2, κN(x), the MPC action for a given state x (usually the cur-
rent state), can be obtained by solving an open-loop optimal control
problem. For a given state x, the solutions obtained by DP and by
solving the open-loop optimal control problem are identical, in which
“open-loop” means the decision variable is the control sequence u =
{u(0),u(1), . . . , u(N−1)}. Our first task is to find out if there is a sim-
ilar relationship when uncertainty is present. DP may again be used
to determine the receding horizon control law κN(·) as shown in Sec-
tion 3.3. The question arises: does there exist an optimal control prob-
lem PN(x), parameterized by the state x, the solution of which yields
κN(x), the value of the control law at x? The answer is “yes,” but
the problem is, unfortunately, no longer an open-loop optimal control
problem.

In the deterministic case when x+ = f(x,u), the decision variable is
u = {u(0),u(1), . . . , u(N −1)}, a sequence of control actions, and, if x
is the initial state at time 0, a state sequence x = {x(0), x(1), . . . , x(N)},
where x(0) = x and x(i) = φ(i;x,u), is generated. In the uncertain
case when x+ = f(x,u,w), the decision variable is a control policy
µ = {u(0), µ1(·)., . . . , µN−1(·)}; if x is the initial state, the policy µ gen-
erates a state tube X(x,µ) = {X(0;x),X(1;x,µ), . . . , X(N;x,µ)} where
X(0;x) = {x} and, for all i ∈ I≥0, X(i;x,µ) = {φ(i;x,µ,w) | w ∈W}.
The tube X(x,µ) is a bundle of state trajectories, one for each admissi-
ble disturbance sequence w; see Figure 3.3. In Figure 3.3(b), the central
trajectory corresponds to the disturbance sequence w = {0,0,0}. The
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Figure 3.3: State trajectory and state tube.

tube X may be regarded as the solution of the set difference equation

X(i+ 1) = F(X(i), µi(·)) X(0) = {x}

in which F(X,µi(·)) := {f(x, µi(x),w) | x ∈ X,w ∈W}.
If we define VN(·) and JN(·) as in (3.17) and (3.18), respectively,

then the MPC problem PN(x) at state x is, as before

PN(x) : inf
µ
{VN(x,µ) | µ ∈M(x)}

in which M(x) is the set of feedback policies µ = {u(0), µ1(·), . . . ,
µN−1(·)} that, for a given initial state x, satisfy the state and con-
trol constraints u(0) ∈ U, φ(i;x,µ,w) ∈ X, φ(N;x,µ,w) ∈ Xf , and
µi(φ(i;x,µ,w)) ∈ U, for all i ∈ {1, . . . ,N−1} and every admissible dis-
turbance sequence w ∈W . This is precisely the problem solved by DP
in Section 3.3. So the solution obtained by solving PN(x) for the given
state x, rather than for every state x ∈ XN as provided by DP, is indeed
the DP solution restricted to the sets X0(i;x) := {φ(i;x,µ0(x),w) |
w ∈ W}, i ∈ {0,1, . . . ,N}. More precisely, the DP solution yields, for
each i ∈ {0,1, . . . ,N}, the value function V0

i (z) and optimal control law
κi(z) for each z ∈ Xi, whereas the solution to the MPC problem PN(x)
yields, for each i ∈ {0,1, . . . ,N}, the value function V0

i (z) and optimal
control law κi(z) for each z ∈ X0(i;x).

While it is satisfying to know that one may pose an MPC problem for
a given initial state x whose solution is identical to a restriction of the
DP solution, this result is of theoretical interest only because, unlike in
the deterministic case where the MPC problem is simple enough to solve
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online, in the uncertain case PN(x) is much too complex. One reason
for the complexity is that optimization of a bundle of trajectories is
required in which each trajectory must satisfy all constraints. A second,
even more important, reason is the complexity of the decision variable
µ which is infinite dimensional because it is a sequence of control laws.

3.4 Tube-Based Robust MPC

3.4.1 Introduction

To proceed realistically we need to sacrifice optimality for simplicity.
Many methods for doing so have been proposed in the literature. We
outline next one procedure that achieves this objective and that yields
robust MPC by solving online an optimal control problem that has the
same order of complexity as that employed for conventional MPC. We
simplify the decision variable that, ideally, is a policy by replacing it
with a finite-dimensional parameterization that consists of an open-
loop control sequence and a simple local feedback controller. In addi-
tion, we replace the tube, whose exact determination is difficult, by a
simply determined outer-bounding tube. The underlying idea is quite
simple. We generate the “center” of the tube by using conventional MPC
with tighter constraints on the nominal system, and restrict the “size”
of the tube by using local feedback that attempts to steer all trajec-
tories of the uncertain system to the central trajectory. The resultant
controller may be regarded as a “two degrees of freedom” controller.
The local feedback around the nominal trajectory is the inner loop and
attenuates disturbances while MPC is used in the outer loop.

In this section we address robust MPC of constrained linear systems.
To do so, we make use of some concepts in set algebra. Given two sub-
sets A and B of Rn, we define set addition, set subtraction (sometimes
called Minkowski or Pontryagin set subtraction), set multiplication and
Hausdorff distance between two sets as follows.

Definition 3.13 (Set algebra and Hausdorff distance).

(a) Set addition: A⊕ B := {a+ b | a ∈ A,b ∈ B}.

(b) Set subtraction: A	 B := {x ∈ Rn | {x} ⊕ B ⊆ A}.

(c) Set multiplication: Let K ∈ Rm×n. Then KA := {Ka | a ∈ A}.

(d) The Hausdorff distance dH(·) between two subsets A and B of Rn
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is defined by

dH(A, B) :=max{sup
a∈A

d(a, B), sup
b∈B

d(b,A)}

in which d(x, S) denotes the distance of a point x ∈ Rn from a set
S ⊂ Rn and is defined by

d(x, S) := inf
y
{d(x,y) | y ∈ S} d(x,y) := |x −y|

In these definitions, {x} denotes the set consisting of a single point
x and {x} ⊕ B therefore denotes the set {x + b | b ∈ B}; the set A	 B
is the largest set C such that B ⊕ C ⊆ A. A sequence {x(i)} is said to
converge to a set S if d(x(i), S) → 0 as i → ∞. If dH(A, B) ≤ ε, then
the distance of every point a ∈ A from B is less than or equal to ε and
that the distance of every point b ∈ B from A is less than or equal to
ε. We say that the sequence of sets {A(i)} converges, in the Hausdorff
metric, to the set B if dH(A(i), B)→ 0 as i→∞.

Our first task is to generate an outer-bounding tube. An excellent
background for the following discussion is provided in Kolmanovsky
and Gilbert (1998).

3.4.2 Outer-Bounding Tubes for Linear Systems with Additive Dis-
turbances

Consider the following linear system

x+ = Ax + Bu+w

in which w ∈ W, a compact convex subset of Rn containing the ori-
gin. We assume that either W contains the origin in its interior, or, if
not, w = Gξ where ξ ∈ Rp, p < n lies in the compact convex set Ξ
that contains the origin in its interior and (A,G) is controllable. Let
φ(i;x,u,w) denote the solution of x+ = Ax + Bu+w at time i if the
initial state at time 0 is x, and the control and disturbance sequences
are, respectively, u and w.

Let the nominal system be described by

z+ = Az + Bu

and let φ̄(i;z,u) denote the solution of z+ = Az + Bu at time i if the
initial state at time 0 is z. Then e := x − z, the deviation of the actual
state x from the nominal state z, satisfies the difference equation

e+ = Ae+w
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so that

e(i) = Aie(0)+
i−1∑
j=0

Ajw(j)

in which e(0) = x(0)− z(0). If e(0) = 0, e(i) ∈ S(i) where the set S(i)
is defined by

S(i) :=
i−1∑
j=0

AjW =W⊕AW⊕ . . .⊕Ai−1W

in which
∑

and ⊕ denote set addition. It follows from our assumptions
on W that S(i) contains the origin in its interior for all i ≥ n. Let
us first consider the tube X(x,u) generated by the open-loop control
sequence u when x(0) = z(0) = x, and e(0) = 0. It is easily seen that
X(x,u) = {X(0;x),X(1;x,u), . . . , X(N;x,u)} where

X(0;x) = {x} X(i;x,u) := {φ(i;x,u,w) | w ∈W} = {z(i)} ⊕ S(i)

and z(i) = φ̄(i;x,u), the state at time i of the nominal system, is
the center of the tube. So it is relatively easy to obtain the exact tube
generated by an open-loop control if the system is linear and has a
bounded additive disturbance, provided that one can compute the sets
S(i). If W = GV where V is convex, then S(i) is convex for all i ∈
I≥0. If, in addition, V contains the origin in its interior and (A,G) is
controllable, then S(i) contains the origin in its interior for all i ∈ I≥n.

If A is stable, then, as shown in Kolmanovsky and Gilbert (1998),
S(∞) :=

∑∞
j=0AjW exists and is positive invariant for x+ = Ax+w, i.e.,

x ∈ S(∞) implies that Ax+w ∈ S(∞) for all w ∈W; also S(i)→ S(∞)
in the Hausdorff metric as i → ∞. The set S(∞) is known to be the
minimal robust positive invariant set5 for x+ = Ax +w, w ∈ W. Also
S(i) ⊆ S(i + 1) ⊆ S(∞) for all i ∈ I≥0 so that the tube X̂(x,u) defined
by

X̂(x,u) := {X̂(0), X̂(1;x,u), . . . , X̂(N;x,u)}

in which
X̂(0) = {x} X̂(i;x,u) = {z(i)} ⊕ S

in which S = S(∞) is an outer-bounding tube with constant “cross-
section” S for the exact tube X(x,u) (X(i;x,u) ⊆ X̂(i;x,u) for all
i ∈ I≥0). It is sometimes more convenient to use the “constant cross-
section” outer-bounding tube X̂(x,u) in place of the exact tube X(x,u).

5Every other robust positive invariant set X satisfies X ⊇ S∞.
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If we restrict attention to the interval [0, N] as we do in computing
the MPC action, then setting S = S(N) yields a less conservative, con-
strained cross-section, outer-bounding tube for this interval.

While the exact tube X(x,u), and the outer-bounding tube X̂(x,u),
are easily obtained, their use may be limited for reasons discussed
earlier—the sets S(i) may be unnecessarily large simply because an
open-loop control sequence rather than a feedback policy was employed
to generate the tube. For example, if W = [−1,1] and x+ = x +u+w,
then S(i) = (i+ 1)W increases without bound as time i increases. We
must introduce feedback to contain the size of S(i), but wish to do so in
a simple way because optimizing over arbitrary policies is prohibitive.
The feedback policy we propose is

u = v +K(x − z)

in which x is the current state of the system x+ = Ax+Bu+w, z is the
current state of a nominal system defined below, and v is the current
input to the nominal system. With this feedback policy, the state x
satisfies the difference equation

x+ = Ax + Bv + BKe+w

in which e := x−z is the deviation of the actual state from the nominal
state. Letφ(i;x,v,e,w) denote the solution at time i ofx+ = Ax+Bv+
BKe+w if its initial state is x at time 0, the control sequence is v, the
disturbance sequence is w, and the error sequence is e. The nominal
system corresponding to the uncertain system x+ = Ax+Bv+BKe+w
is

z+ = Az + Bv
The deviation e now satisfies the difference equation

e+ = AKe+w AK := A+ BK

which is the same equation used previously except that A, which is
possibly unstable, is replaced by AK , which is stable by design. If K is
chosen so that AK is stable, then the corresponding uncertainty sets
SK(i) defined by

SK(i) :=
i−1∑
j=0

AjKW

can be expected to be smaller than the original uncertainty sets S(i),
i ∈ I≥0, considerably smaller if A is unstable and i is large, but not
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necessarily much smaller if A is strongly stable. Our assumptions on
W imply that SK(i), like S(i), contains the origin in its interior for each
i. Since AK is stable, the set SK(∞) :=

∑∞
j=0A

j
KW exists and is positive

invariant for e+ = AKe + w; also, SK(i) → SK(∞) in the Hausdorff
metric as i → ∞. Since K is fixed, the feedback policy u = K(x −
z) + v is simply parameterized by the open-loop control sequence v.
If x(0) = z(0) = x, the tube generated by the feedback policy µ is
X(x,v) = {X(0),X(1;x,v), . . . , X(N;x,v)} where

X(0) = {x} X(i;x,v) := {φK(i;x,v,w) | w ∈W} = {z(i)} ⊕ SK(i)

in which z(i) is the solution of the nominal system z+ = Az + Bv
at time i if the initial state is z(0) = x, and the control sequence is
v. For given initial state x and control sequence v, the solution of
x+ = Ax + B(v +Ke)+w lies in the tube X(x,v) for every admissible
disturbance sequence w. As before, SK(i) may be replaced by SK(∞)
to get an outer-bounding tube. If attention is confined to the interval
[0, N], SK(i) may be replaced by SK(N) to obtain a less conservative
outer-bounding tube. If we consider again our previous example, W =
[−1,1] and x+ = x + u +w, and choose K = −(1/2), then AK = 1/2,
SK(i) = (1+0.5+. . .+0.5i−1)W, and SK(∞) = 2W = [−2,2]. In contrast,
S(i)→ [−∞,∞] as i→∞.

In the preceding discussion, we required x(0) = z(0) so that e(0) =
0 in order to ensure e(i) ∈ S(i) or e(i) ∈ SK(i). When AK is stable,
however, it is possible to relax this restriction. This follows from the
previously stated fact that SK(∞) exists and is robust positive invariant
for e+ = AKe + w, i.e., e ∈ SK(∞) implies e+ ∈ SK(∞) for all e+ ∈
{AKe} ⊕W. Hence, if e(0) ∈ SK(∞), then e(i) ∈ SK(∞) for all i ∈ I≥0,
all w ∈Wi.

In tube-based MPC, discussed next, we ensure that z(i) → 0 as
i → ∞, so that x(i), which lies in the set {z(i)} ⊕ SK(i), converges
to the set SK(∞) as i → ∞. Even though SK(∞) is difficult to compute,
this is a useful theoretical property of the controlled system. The con-
troller is required to ensure that state and control constraints are not
transgressed. To do this, knowledge of SK(∞) is not required. If we
know that e(0) ∈ SK(∞) because, for example, z(0) is chosen to sat-
isfy z(0) = x(0), then x(i) lies in {z(i)} ⊕ SK(∞) for all i. All that is
then required, in the nominal optimal control problem P̄N , is knowl-
edge of a set S that is an outer approximation of SK(∞). If x(i) lies in
{z(i)} ⊕ SK(∞), it certainly lies in {z(i)} ⊕ S. And if {z(i)} ⊕ S ⊆ X for
all i, then x(i) ∈ {z(i)}⊕ SK(∞) certainly satisfies the state constraint
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x(i) ∈ X for all i and all admissible disturbance sequences. Of course,
choosing a large outer-approximating set S results in a degree of con-
servatism; the choice of S is a tradeoff between simplicity and conser-
vatism. The closer the set S approximates SK(∞), the less conservative
but more complex S is. If we wish to allow freedom in the choice of
z(0), we can choose S to be a robust positive invariant outer approxi-
mation of SK(∞); then x(i) ∈ {z(i)} ⊕ S for all i if x(0) ∈ {z(0)} ⊕ S.

Consider then the tube X∞(z, i) defined by

X(z,v) := {X0(z,v),X1(z,v), . . . , XN(z,v)}

in which, for each i ∈ {0,1, . . . ,N},

Xi(z,v) := {z(i)} ⊕ S z(i) := φ̄(i;z,v)

and S is an outer approximation of SK(∞) (SK(∞) ⊆ S). It follows from
the previous discussion that if x(0) ∈ {z(0)} ⊕ SK(∞) and S is merely
an outer approximation of SK(∞) or if x(0) ∈ {z(0)} ⊕ S where S
is a robust positive invariant outer approximation of SK(∞) (Rakovíc,
Kerrigan, Kouramas, and Mayne, 2005a), then e(i) lies in S for all i ∈
I≥0, and every state trajectory {x(i)} of x+ = Ax + B(v + Ke) + w,
w ∈W. In other words, each trajectory corresponding to an admissible
realization of w, lies in the tube X(z,v), as shown in Figure 3.4. An
obvious choice for z(0) that ensures e(0) ∈ SK(∞) is z(0) = x(0).
Similarly every control trajectory {u(i)} of the uncertain system lies in
the tube {{v(i)} ⊕KSK(∞)} or in the tube {{v(i)} ⊕KS}.

The fact that the state and control trajectories of the uncertain sys-
tem lie in known neighborhoods of the state and control trajectories,
{z(i)} and {v(i)} respectively, is the basis for tube-based MPC de-
scribed subsequently. It follows from this fact that if {z(i)} and {v(i)}
are chosen to satisfy {z(i)}⊕ SK(∞) ⊆ X and {v(i)}⊕KSK(∞) ⊆ V for
all i ∈ I≥0, then x(i) ∈ X and u(i) ∈ U for all i ∈ I≥0. Thus {z(i)} and
{v(i)} should be chosen to satisfy the tighter constraints z(i) ∈ Z and
v(i) ∈ V for all i ∈ I≥0 where Z := X 	 S and V := U 	 KS in which
S = SK(∞) or is an outer approximation of SK(∞). If K = 0, because
A is strongly stable, X and V should be chosen to satisfy Z = X 	 S
and V = U , i.e., there is no need to tighten the constraint on v . It
may seem that it is necessary to compute SK(∞), or a robust positive
invariant outer approximation S, which is known to be difficult, in or-
der to employ this approach. This is not the case, however; we show
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Figure 3.4: Outer-bounding tube X(z,v); Xi = {z(i)} ⊕ S.

later that the tighter constraint sets Z and V may be relatively simply
determined.

3.4.3 Tube-Based MPC of Linear Systems with Additive Disturbances

Introduction. Now that we have shown how to contain all the trajec-
tories of an uncertain system emanating from the current state within
a tube X(z,v)where z is the initial state of the nominal system and v is
an open-loop control sequence, we show how this tool may be used to
obtain robust control. We restrict attention in this subsection to con-
strained linear systems with a bounded additive disturbance. In later
sections we consider alternative forms of uncertainty such as paramet-
ric uncertainty as well as constrained robust control of constrained
nonlinear systems. Our goal is to develop forms of robust MPC that
are only marginally more complex than nominal MPC despite the un-
certainty.

In this subsection, we discuss first how to formulate an optimal
control problem, the solution of which yields a control policy that min-
imizes a cost, and ensures that the state and control satisfy the given
state and control constraints for all admissible bounded disturbances.
The basic idea is simple. Choose a trajectory {z(i)} for the nominal
trajectory depending on the initial state z and the control sequence
v, such that each trajectory {x(i)} of the system being controlled sat-
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isfies the state constraint x(i) ∈ X for all i ∈ {0,1, . . . ,N}, and the
actual control sequence {u(i)} satisfies the control constraint for all
i ∈ {0,1, . . . ,N − 1}. Recalling that the state satisfies x(i) ∈ {z(i)}⊕ S
for all i ∈ {0,1, . . . ,N} and all admissible disturbance sequences, the
state constraint is satisfied if {z(i)} ⊕ S ∈ X or, equivalently, if z(i) ∈
X 	 S for all i ∈ {0,1, . . . ,N}. Similarly the control constraint is sat-
isfied if u(i) = v(i) + Ke(i) ∈ U for all e(i) ∈ S or, equivalently, if
v(i) ∈ U	KS for all i ∈ {0,1, . . . ,N − 1}. These assertions only make
sense if the disturbance set W is sufficiently small to ensure that As-
sumption 3.14 is satisfied where:

Assumption 3.14 (Restricted disturbances for constraint satisfaction).
S ⊂ X and KS ⊂ U.

We suppose Assumption 3.14 holds in the sequel. An assumption
like this is not uncommon in robust control; ifW is too large, there is no
possibility of satisfying the constraints for all realizations of the dis-
turbance sequence w. Summarizing, the state and control constraints,
x(i) ∈ X and u(i) ∈ U, are satisfied at each time i if the time-invariant
control law u = v + K(x − z), is employed, and the nominal system
z+ = Az + Bv satisfies the tighter constraints

z(i) ∈ Z := X	 S (3.23)

v(i) ∈ V := U	KS (3.24)

for all relevant i and if, in addition,

x(0) ∈ {z(0)} ⊕ S e(0) ∈ S

in which S is robust positive invariant for e+ = AKe + w, w ∈ W.
Satisfaction of the state constraint at timeN, i.e., satisfaction ofx(N) ∈
X, is ensured if the nominal system satisfies the terminal constraint

z(N) ∈ Zf Zf ⊆ Z (3.25)

Tube-based robust predictive controller. The first requirement for
the simple tube-based model predictive controller is a suitable nomi-
nal trajectory. To obtain this, we define a finite horizon optimal control
P̄N(z) in which z is the current state of the nominal system. The op-
timal control problem is minimization of a cost function V̄N(z,v) in
which

V̄N(z,v) :=
N−1∑
k=0

`(z(k), v(k))+ Vf (z(N))
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subject to satisfaction, by the state sequence z = {z(0), z(1), . . . , z(N)}
and the control sequence v = {v(0), v(1), . . . , v(N−1)}, of the nominal
difference equation z+ = Az+Bv and the constraints (3.23)–(3.25). The
nominal optimal control problem is, therefore

P̄N(z) : V̄0
N(z) =min

v
{V̄N(z,v) | v ∈ VN(z)}

in which the constraint set VN(z), which depends, as the notation im-
plies, on the parameter z, is defined by

VN(z) := {v | v(k) ∈ V, φ̄(k;z,v) ∈ Z ∀k ∈ {0,1, . . . ,N − 1},
φ̄(N;z,v) ∈ Zf } (3.26)

In (3.26), Zf ⊆ Z is the terminal constraint set. Solution of P̄N(z) yields
the minimizing control sequence v0(z) = {v0(0;z), v0(1;z), . . . , v0(N−
1;z)}. The model predictive control applied to the nominal system at
state z is v0(0;z), the first control action in the minimizing control
sequence. The implicit nominal MPC control law is, therefore, κ̄N(·),
defined by

κ̄N(z) := v0(0;z)

Let ZN denote the domain of V̄0
N(·), and of κ̄N(·),

ZN := {z ∈ Z | VN(z) ≠∅}

We propose to control the uncertain system x+ = Ax+Bu+w by con-
straining it to lie in a tube whose center is the solution of the nominal
system obtained using the implicit nominal MPC control law κ̄N(·). The
control applied to the system being controlled is u = κN(x, z) in which
x is the current state of the system being controlled, z is the current
state of the nominal system, and κN(·) is defined by

κN(x, z) := κ̄N(z)+K(x − z)

The composite closed-loop system plus controller therefore satisfy

x+ = Ax + BκN(x, z)+w (3.27)

z+ = Az + Bκ̄N(z) (3.28)

with initial state (x,x). The center of the tube is the sequence z =
{z(0), z(1), . . .} obtained by solving (3.28) with initial state z(0) = x,
i.e., for each i ∈ I≥0, z(i) = φ̄(i;x, κ̄N(·)). Since the difference equation
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z+ = Az + Bκ̄N(z) is autonomous, the solution z may be computed
beforehand—at least up to a finite number of time steps. The control
u(i) applied to the system at time i is, then

u(i) = κN(x(i), z(i)) = v(i)+K[x(i)− z(i)]

in which v(i) = κ̄N(z(i)). The state sequence x = {x(0), x(1), . . .}
therefore satisfies

x(i+ 1) = Ax(i)+ BκN(x(i), z(i))+w(i) x(0) = x

To analyze stability of the closed-loop system, we have to consider,
since the controller is a dynamic system with state z, the composite
system whose state is (x, z) or the equivalent system whose state is
(e, z). Since (e, z) and (x, z) are related by an invertible transformation[

e
z

]
= T

[
x
z

]
T :=

[
I −I
0 I

]
the two systems are equivalent. The composite system whose state is
(x, z) satisfies, as shown previously

x+ = Ax + BκN(x, z)+w (3.29)

z+ = Az + Bκ̄N(z) (3.30)

with initial state (x(0), z(0)) = (x,x) whereas the composite system
whose state is (e, z), e := x − z, satisfies

e+ = AKe+w (3.31)

z+ = Az + Bκ̄N(z) (3.32)

with initial state (e(0), z(0)) = (0, x). The latter system is easier to
analyze. So one way to proceed is to establish exponential stability
of SK(∞)× {0} with region of attraction SK(∞)×ZN of the composite
system described by (3.31) and (3.32); we leave this as Exercise 3.6.

Instead we consider the original system described by (3.29) and (3.30).
We know, from the discussion above, that e(i) ∈ SK(∞) ⊆ S and
x(i) ∈ {z(i)} ⊕ SK(∞) ⊆ {z(i)} ⊕ S for all k ∈ I≥0 if e(0) ∈ SK(∞),
and K is such that AK is stable. Also, we know from Chapter 2 that if
the stability Assumptions 2.12 and 2.13 are satisfied for the nominal
optimal control problem P̄N(z), then the value function V̄0

N(·) satisfies

V̄0
N(z) ≥ `(z, κ̄N(z)) ∀z ∈ ZN (3.33)

∆V̄0
N(z) ≤ −`(z, κ̄N(z)) ∀z ∈ ZN (3.34)

V̄0
N(z) ≤ Vf (z) ∀z ∈ Zf (3.35)
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in which ∆V̄0
N(z) = V̄0

N(z+)− V̄0
N(z) with z+ = Az + Bκ̄N(z).

If: (i) `(z, v) = (1/2)|z|2Q+ (1/2)|v|2R in which Q and R are positive

definite, (ii) the terminal cost Vf (z) = (1/2)|z|2Pf in which Pf is positive
definite, (iii) Assumption 3.14 holds, and (iv) the terminal cost Vf (·)
and terminal constraint set Zf satisfy the stability Assumptions 2.12
and 2.13, and (v) ZN is compact, then there exist constants c1 and c2

such that (3.33)–(3.35) become

V̄0
N(z) ≥ c1|z|2 ∀z ∈ ZN (3.36)

∆V̄0
N(z) ≤ −c1|z|2 ∀z ∈ ZN (3.37)

V̄0
N(z) ≤ c2|z|2 ∀z ∈ ZN (3.38)

Hence the origin is exponentially stable for the nominal system z+ =
Az + Bκ̄N(z) with a region of attraction ZN , i.e., there exists a c > 0
and a γ ∈ (0,1) such that |z(i)| ≤ c|z(0)|γi for all i ∈ I≥0. Since
x(i) = z(i)+ e(i) where e(i) ∈ SK(∞)

|x(i)|SK(∞) = d(z(i)+ e(i), SK(∞)) ≤ d(z(i)+ e(i), e(i)) = |z(i)|

Hence, for all i ∈ I≥0,

|x(i)|SK(∞) ≤ c|z(0)|γi

LetA⊂ Rn ×Rn be defined as follows

A := SK(∞)× {0}

so that, with |(x, z)| := |x| + |z|,

|(x, z)|A = |x|SK(∞) + |z|

It follows from the previous discussion that the state (x, z) of the com-
posite system satisfies

|(x(i), z(i))|A = |x(i)|SK(∞)+|z(i)| ≤ 2c|z(0)|γi ≤ 2cγi|(x(0), z(0))|A
for all i ∈ I≥0 since |z(0)| ≤ |x(0)|SK(∞) + |z(0)| = |(x(0), z(0))|A. We
have proved:

Proposition 3.15 (Exponential stability of tube-based MPC). The set
A := SK(∞) × {0} is exponentially stable with a region of attraction
(ZN ⊕ SK(∞))×ZN for the composite system (3.29) and (3.30).

Proposition 3.15 remains true if SK(∞) is replaced by S where S ⊃
SK(∞) is robust positive invariant for e+ = AKe+w, w ∈W. The tube-
based model predictive controller is formally described by the follow-
ing algorithm in which i denotes current time.
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Tube-based model predictive controller.

Initialization: At time i = 0, set x = z = x(0) in which x(0) is the
current state.

Step 1 (Compute control): At time i and current state (x, z), solve the
nominal optimal control problem P̄N(z) to obtain the nominal
control action v = κ̄N(z) and the control action u = v+K(x−z).

Step 2 (Check): If P̄N(z) is infeasible, adopt safety/recovery procedure.

Step 3 (Apply control): Apply the control u to the system being con-
trolled.

Step 4 (Update): Measure the successor state x+ of the system being
controlled and compute the successor state z+ = f(z, v) of the
nominal system.

Step 5: Set (x, z) = (x+, z+), set i = i+ 1, and go to Step 1.

In this algorithm, κ̄N(z) is, of course, the first element in the control
sequence v0(z) obtained by solving the nominal optimal control prob-
lem P̄N(z). Step 2, the check step, is not activated if the assumptions
made previously are satisfied and, therefore, is ignored in our analysis.

Computation of Z and V. To implement the tube-based controller, we
need inner approximations Z andV to be, respectively, the sets Ẑ := X	
SK(∞) and V̂ := U	KSK(∞); computation of the set SK(∞), a difficult
task, is not necessary. Suppose we have a single state constraint

y := c′x ≤ d

so that X = {x ∈ Rn | c′x ≤ d}. Then, since, for all i ∈ I≥0, x(i) =
z(i)+e(i) where e(i) ∈ SK(∞) if e(0) ∈ SK(∞), it follows that c′x(i) ≤
d if

c′z(i) ≤ d−max{c′e | e ∈ SK(∞)}

Let φ∞ be defined as follows

φ∞ :=max
e
{c′e | e ∈ SK(∞)}

Hence
Ẑ = {z ∈ Rn | c′z ≤ d−φ∞}

is a suitable constraint for the nominal system, i.e., z ∈ Ẑ implies
c′x = c′z + c′e ≤ d or x ∈ X for all e ∈ SK(∞). To obtain Ẑ, we
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need to compute φ∞. But computing φ∞ requires solving an infinite
dimensional optimization problem, which is impractical. We can ob-
tain an inner approximation to Ẑ, which is all we need to implement
robust MPC, by computing an upper bound to φ∞. We now show how
this may be done (Rakovíc, Kerrigan, Kouramas, and Mayne, 2003). We
require the following assumption.

Assumption 3.16 (Compact convex disturbance set). The compact con-
vex set W contains the origin in its interior.

For each i ∈ I≥0, let φi be defined as follows

φi :=max
e
{c′e | e ∈ SK(i)}

It can be shown that

φN =max
{wi}

{c′
N−1∑
i=0

AiKwi | wi ∈W}

and that

φ∞ =max
{wi}

{c′
∞∑
i=0

AiKwi | wi ∈W}

Suppose now we choose the feedback matrix K and the horizon N so
that

ANKw ∈ αW ∀w ∈W

where α ∈ (0,1). Because AK is stable and W contains the origin in its
interior, this choice is always possible. It follows from the definitions
of φ∞ and φN that

φ∞ = φN +max
{wi}

{c′
∞∑
i=N
AiKwi | wi ∈W}

= φN +max
{wi}

{c′(ANKw0 +AKANKw1 +A2
KA

N
Kw2 + . . .) | wi ∈W}

≤ φN +max
{wi}

{c′(αw0 +AKαw1 +A2
Kαw2 + . . .) | wi ∈W}

where the last line follows from the fact that ANKw ∈ αW if w ∈ W. It
follows that

φ∞ ≤ φN +αφ∞
or

φ∞ ≤ (1−α)−1φN
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Hence an upper bound forφ∞ may be obtained by determiningφN , i.e.,
by solving a linear program. The constant (1 − α)−1 may be made as
close as desired to 1 by choosing α suitably small. The set Z defined
by

Z := {z ∈ Rn | c′z ≤ d− (1−α)−1φN} ⊆ Ẑ

is a suitable constraint set for the robust controller. If there are several
state constraints

yj := c′jx ≤ dj ∀j ∈ J

and K and N are chosen as previously to satisfy ANKw ∈ αW for all
w ∈ W and some α ∈ (0,1), then a suitable constraint set for the
controller is the set

Z := {z ∈ Rn | c′jz ≤ dj − (1−α)−1φjN , ∀j ∈ J} ⊆ Ẑ

in which, for each j ∈ J ,

φjN :=max
{wi}

{c′je | e ∈ SK(i)} =max
{wi}

{c′j
N−1∑
i=0

AiKwi | wi ∈W}

A similar procedure may be used to obtain a suitable constraint set
V ⊆ V̂ = U	KSK(∞). Suppose U is described by

U := {u ∈ Rm | a′ju ≤ bj ∀j ∈ I}

If K and N are chosen as above, then a suitable constraint set V for the
nominal system is

V := {v ∈ Rm | a′jv ≤ bj − (1−α)−1θjN , j ∈ I}

in which, for each j ∈ I ,

θjN :=max
{wi}

{a′jKe | e ∈ SK(i)} =max
{wi}

{a′jK
N−1∑
i=0

AiKwi | wi ∈W}

Critique. A feature of the robust controller that may appear strange is
the fact that the nominal state trajectory {z(i)} is completely indepen-
dent of the state trajectory {x(i)} of the uncertain system. Although
the control u = κN(x, z) applied to the uncertain system depends on
the state of both systems, the control v = κ̄N(z) applied to the nominal
system depends only on the state z of the nominal system. This feature
arises because we are considering a very specific problem: determina-
tion of a control that steers an uncertain linear system robustly from a
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known initial state x to the neighborhood {xf }⊕SK(∞) of a desired fi-
nal state xf ; xf = 0 in the previous analysis. More generally, the target
state xf and a slowly varying external disturbance dwill vary with time,
and the control u = κN(x, z,xf , d) will depend on these variables.

A form of feedback fromx to v and, hence, to z is easily added. Step
1 in the controller algorithm presented previously may be changed as
follows.

Step 1 (Compute control): At time i and current state (x, z), solve the
nominal optimal control problems P̄N(x) and P̄N(z) to obtain
κ̄N(z) and κ̄N(x) . If V̄0

N(x) ≤ V̄0
N(z) and x ∈ Z, set z = x and

u = v = κ̄N(x). Otherwise set v = κ̄N(z) and u = v +K(x − z).

Since the modified controller produces, at state (x, z), either a nominal
cost V̄0

N(z) or V̄0
N(x) ≤ V̄0

N(z) where x ∈ Z becomes the updated value
of z, the analysis and conclusions above remain valid. The modifica-
tion provides improved performance. From an alternative viewpoint,
the modified controller may be regarded as an improved version of
nominal MPC in which the nominal control κ̄N(x) is replaced by a safe
control κ̄N(z) if κ̄N(x) does not lead to a cost reduction because of the
disturbance w.

As pointed out previously, the nominal controller κ̄N(·) steers the
nominal state z to the desired final state, the origin in our analysis,
while the feedback controller K keeps the state x of the uncertain sys-
tem close to the nominal state z. Hence the feedback controller K
should be chosen to reduce the effect of the additive disturbance; its
choice depends, therefore, on the nature of the disturbance as shown
in the examples in Section 3.6 that illustrate the fact that the feedback
control u = v + K(x − z) may even have a higher sampling rate than
the nominal control v = κ̄N(z) in order to attenuate more effectively
high frequency disturbances.

3.4.4 Improved Tube-Based MPC of Linear Systems with Additive
Disturbances

In this section we describe a version of the tube-based model predictive
controller that has pleasing theoretical properties and that does not re-
quire computation of a nominal trajectory. It is, however, more difficult
to implement since it requires knowledge of SK(∞) or of a robust posi-
tive invariant outer approximation S. This section should therefore be
omitted by readers interested only in easily implementable controllers.
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We omitted, in Section 3.4.3, to make use of an additional degree of
freedom available to the controller, namely z(0), the initial state of the
nominal system. Previously we set z(0) = x(0) = x. It follows from
the discussion at the end of Section 3.4.3 that every trajectory of the
system x+ = Ax+Bv +BKe+w emanating from an initial state x lies
in the tube X(z,v), provided that the initial state x of the closed-loop
system and the initial state z of the nominal system satisfy

x ∈ {z} ⊕ S

in which S is either SK(∞) or a robust positive invariant set for e+ =
AKe+w that is an outer approximation of SK(∞). So, we may optimize
the choice of the initial state z of the nominal system, provided we
satisfy the constraints x ∈ {z} ⊕ S and z ∈ Z. But we can go further.
We can optimize the choice of z at every time i because, if the current
state x of the closed-loop system and the current state z of the nominal
system satisfy x ∈ {z}⊕S, and the input to the system being controlled
is v + K(x − z) where v is the input to the nominal system, then the
subsequent states x+ and z+ satisfy x+ ∈ {z+} ⊕ S. To this end, we
define a new finite horizon optimal control problemP∗N(x), to be solved
online, that reduces the cost V̄0

N(z) obtained in Section 3.4.3

P∗N(x) : V∗N (x) =min
z
{V̄0
N(z) | x ∈ {z} ⊕ S, z ∈ Z}

=min
v,z
{V̄N(z,v) | v ∈ VN(z), x ∈ {z} ⊕ S, z ∈ Z}

Because of the extra freedom provided by varying z, the domain of the
value function V∗N (·) is XN := ZN ⊕S where ZN is the domain of V̄0

N(·).
The solution to problem P∗N(x) is z∗(x) and v∗(x) = v0(z∗(x)); opti-
mizing with respect to z means that z in P̄N(z) is replaced by z∗(x).
It follows that

V∗N (x) = V̄0
N(z

∗(x)) (3.39)

for all x ∈ XN . The control applied to the system x+ = Ax + Bu +w
at state x is κN(x) defined by

κN(x) := κ∗N(x)+K(x − z∗(x))

in which κ∗N(x) = κ̄N(z∗(x)) is the first element in the sequence v∗(x) =
v0(z∗(x)). The main change from the simple tube-based model predic-
tive controller is that z is replaced by z∗(x). A theoretical advantage
is that the applied control κN(x) depends only on the current state x
and not on the composite state (x, z) as in the simple controller.
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It follows from (3.36), (3.37), (3.38) and (3.39) that the value function
V∗N (·) satisfies

V∗N (x) = V̄0
N(z

∗(x)) ≥ c1|z∗(x)|2 (3.40)

V∗N (x) = V̄0
N(z

∗(x)) ≤ c2|z∗(x)|2 (3.41)

∆V∗N (x,w) ≤ ∆V̄0
N(z

∗(x)) ≤ −c1|z∗(x)|2 (3.42)

for all (x,w) ∈ XN ×W in which the last line follows from the fact that

∆V∗N (x,w) := V∗N (x+)− V∗N (x) = V̄0
N(z

∗(x+))− V̄0
N(z

∗(x))

≤ V̄0
N((z

∗(x))+)− V̄0
N(z

∗(x)) = ∆V̄0
N(z

∗(x)) ≤ −c1|z∗(x)|2

with x+ = Ax + BκN(x) +w and (z∗(x))+ = Az∗(x) + Bκ̄N(z∗(x)).
Next we note that

V∗N (x) = 0 ∀x ∈ S

This equality follows from the fact that for all x ∈ S, the constraint
x ∈ {z}⊕S in problem P∗N(x) is satisfied by z = 0 since 0 ∈ S. Because
V̄0
N(0) = 0, it follows that V∗N (x) = V̄0

N(z∗(x)) ≤ V̄0
N(0) = 0; since

V∗N (x) ≥ 0 we deduce that V∗N (x) = 0. It also follows that z∗(x) = 0
for all x ∈ S so that z∗(x) is a “measure” of how far x is from the set
S.

For each i ∈ I≥0, let x(i) := φ(i;x(0), κN(·),w), the solution of
x+ = Ax + BκN(x) +w at time i if the initial state at time 0 is x(0).
It follows from (3.40)–(3.42) that V∗N (x(i)) ≤ γiV∗N (x(0)) where γ :=
1− c1/c2 ∈ (0,1). Hence there exist c > 0 and δ = √γ such that

|z∗(x(i))| ≤ cδi|z∗(x(0))| (3.43)

for all i ∈ I≥0. For all i, x(i) = z∗(x(i)) + e(i) where e(i) ∈ S so that
|x(i)|S = d(z∗(x(i))+ e(i), S) ≤ d(z∗(x(i))+ e(i), e(i)) = |z∗(x(i))|.
In fact, though this is harder to show, d({z} ⊕ S, S) = |z|. Hence

|x(i)|S ≤ |z∗(x(i))| ≤ c|z∗(x(0))|δi

so that x(i) converges robustly exponentially fast to S but S is not
necessarily robustly exponentially stable for x+ = Ax + BκN(x) +w,
w ∈W.

We define the sets X(i) for i ∈ I≥0 by

X(i) := {z∗(x(i))} ⊕ S (3.44)
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The Hausdorff distance between X(i) and S satisfies

dH(X(i), S) = |z∗(x(i))| ≤ cδi|z∗(x(0))| = cδidH(X(0), S)

for all i ∈ I≥0. Exercise 3.4 shows that dH({z} ⊕ S, S) = |z|. We have
therefore proved the following.

Proposition 3.17 (Exponential stability of tube-based MPC without nom-
inal trajectory). The set S is exponentially stable with a region of attrac-
tion ZN ⊕ S for the set difference equation

X+ = F(X,W)

in which F : 2X → 2X is defined by

F(X) := {Ax + BκN(x)+w | x ∈ X,w ∈W}

Robust exponential stability of S for X+ = F(X,W) is not as strong
as robust exponential stability of S for x+ = Ax+BκN(x)+w, w ∈W.
To establish the latter, we would have to show that for some c > 0 and
all i ∈ I≥0, |x(i)|S ≤ cδi|x(0)|S . Instead we have merely shown that
|x(i)|S ≤ cδi|z∗(x(0))|.

3.5 Tube-Based MPC of Linear Systems with Parametric
Uncertainty

Introduction. Section 3.4 shows how it is possible to construct bound-
ing tubes and, consequently, tube-based model predictive controllers
when the uncertainty in the system takes the form of a bounded addi-
tive disturbance w. For this kind of uncertainty, the tube has a con-
stant cross-section S or a cross-section Sk that increases with time k
and converges to S.

Here we consider a different form of uncertainty, parametric un-
certainty in linear constrained systems. More specifically, we consider
here robust control of the system

x+ = Ax + Bu

in which the parameter p := (A, B) can, at any time, take any value in
the convex set P defined by

P := co{(Aj , Bj) | j ∈ J}

in which J := {1,2, . . . , J}. We make the following assumption.
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Assumption 3.18 (Quadratic stabilizability). The system x+ = Ax+Bu
is quadratically stabilizable, i.e., there exists a positive definite function
Vf : x , (1/2)x′Pfx, a feedback control law u = Kx, and a positive
constant ε such that

Vf ((A+ BK)x)− Vf (x) ≤ −ε|x|2 (3.45)

for all x ∈ Rn and all p = (A, B) ∈ {(Aj , Bj) | j ∈ J}. The origin
is globally exponentially stable for x+ = AKx := (A + BK)x for all
(A, B) ∈ {(Aj , Bj) | j ∈ J}.

The feedback matrix K and the positive definite matrix Pf may be
determined using linear matrix inequalities. Because P is convex and
Vf (·) is strictly convex, (3.45) is satisfied for all x ∈ Rn and all (A, B) ∈
P. The system is subject to the same constraints as before

x ∈ X u ∈ U

in which X and U are assumed, for simplicity, to be compact and poly-
topic; each set contains the origin in its interior. We define the nominal
system to be

z+ = Āz + B̄v
in which

Ā := (1/J)
J∑
j=1

Aj B̄ := (1/J)
J∑
j=1

Bj

The origin is globally exponentially stable for x+ = ĀKx := (Ā+ B̄K)x.
The difference equation x+ = Ax + Bu of the system being controlled
may be expressed in the form

x+ = Āx + B̄u+w

in which the disturbance6 w = w(x,u,p) is defined by

w := (A− Ā)x + (B − B̄)u

Hence, the disturbance w lies in the set W defined by

W := {(A− Ā)x + (B − B̄)u | (A, B) ∈ P, (x,u) ∈ X× U}

Clearly W is polytopic. The state and control constraint sets, Z and V
for the nominal optimal control problem, defined in Section 3.4, whose

6The controller “regards” w as a disturbance and “assumes” that the system being
controlled is x+ = Āx + B̄u+w.
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solution yields implicitly the nominal control law κ̄N(·) are chosen to
satisfy

Z⊕ SK(∞) ⊂ X V⊕KSK(∞) ⊂ U

in which, as before,

SK(∞) :=
∞∑
i=0

(ĀK)iW

The origin is exponentially stable for the nominal system z+ = Āz +
B̄κ̄N(z) with a region of attraction ZN . We know from Section 3.4 that
the control law κN(x, z) = κ̄N(z) + K(x − z) results in satisfaction of
the state and control constraints x ∈ X and u ∈ U for all admissible
disturbance sequences provided that the initial state (x(0), z(0)) of the
composite satisfies (x(0), z(0)) ∈MN := {(x, z) | x ∈ {z}⊕SK(∞), z ∈
ZN} ⊆ X×ZN . The set SK(∞)×{0} is robustly exponentially stable for
the composite controlled system with a region of attractionMN .

Unlike the robust control problem studied in Section 3.4, the dis-
turbance w now depends on x and u. In the sequel, we make use of
the fact that w → 0 uniformly in p ∈ P as (x,u) → 0 to prove, under
some assumptions, that the origin is robustly asymptotically stable for
the composite system x+ = Āx + B̄κN(x, z) + w, z+ = Āz + B̄κ̄N(z)
with a region of attractionMN . We choose κN(x, z) as in Section 3.4.3,
to ensure that the origin is exponentially stable for z+ = Āz + B̄κ̄N(z)
with a region of attraction ZN and κN(x, z) := κ̄N(z) + K(x − z). The
approach we adopt to establish that the origin is robustly asymptoti-
cally stable for the composite system may be summarized as follows.
We consider, for the purpose of analysis, two sequences of nested sets
{Xi | i ∈ I≥0} and {Ui | i ∈ I≥0} where, for each i, Xi := (1/2)iX and
Ui := (1/2)iU. For all (x,u) ∈ Xi×Ui, all i,w ∈Wi := (1/2)iW. Clearly
Wi is polytopic for all i ∈ I≥0. Let S0 := SK(∞) and, for each i ∈ I≥0, let
Si ⊂ Rn be defined as follows

Si := (1/2)iS0

Clearly Si =
∑∞
j=0(ĀK)jWi for each i. For each i, the set Si is robust

positive invariant for e+ = ĀKe + w, w ∈ Wi. We now make the as-
sumption:

Assumption 3.19 (Restricted parameter uncertainty). The set P is suf-
ficiently small to ensure that W =W0 satisfies

S0 ⊂ (1/4)X0 KS0 ⊂ (1/4)U0

where X0 = X and U0 = U.
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Consequently Si ⊂ (1/2)Xi+1 and KSi ⊂ (1/2)Ui+1 for all i ∈ I≥0.
Consider now the solution (x(i), z(i)) at time i of the composite system
x+ = Āx+ B̄κN(x, z)+w, z+ = Āz+ B̄κ̄N(z) at time i if the initial state
is (x, z) ∈ MN so that x ∈ X0 and e := x − z ∈ S0. Hence e(i) ∈ S0

for all i ≥ 0. Since x(i) = z(i)+ e(i) and u(i) = v(i)+Ke(i), z(i)→ 0
and v(i) → 0 as i → ∞ and e(i) ∈ S0 for all i, it follows that there
exists a finite time i0 such that x(i) = z(i) + e(i) ∈ 2S0 ⊂ X1 and
u(i) = v(i) + Ke(i) ∈ 2KS0 ⊂ U1 for all i ≥ i0 and every admissible
disturbance sequence. Thus, for all i ≥ i0, w(i) ∈W1 so that e(i)→ S1

as i→∞. Since z(i)→ 0, v(i)→ 0 and e(i)→ S1 as i→∞, there exists
a finite time i1 > i0 such that x(i) = z(i)+ e(i) ∈ 2S1 ⊂ X2 and u(i) =
v(i)+Ke(i) ∈ 2KS1 ⊂ U2 for all i ≥ ii and every admissible disturbance
sequence. Proceeding similarly, we deduce that for all j ∈ I≥0, there
exists a finite time ij such that x(i) ∈ Xj+1 and u(i) ∈ Uj+1 for all
i ≥ ij and every admissible disturbance sequence. Hence the initial
state (x, z) is robustly steered to the origin. Since (x, z) is an arbitrary
point inMN , the origin is robustly attractive for the composite system
with a region of attractionMN .

To prove stability of the origin for the system

x+ = Āx + B̄κN(x, z)+w
z+ = Āz + B̄κ̄N(z)

we consider the equivalent system,

e+ = ĀKe+w
z+ = Āz + B̄κ̄N(z)

The disturbance w lies in a set that gets smaller as (x,u) approaches
the origin; indeed x ∈ εX and u ∈ εU implies w ∈ εW. The states
(x, z) and (e, z) of these two composite systems are related by[

e
z

]
= T

[
x
z

]
, T :=

[
I −I
0 I

]
since e := x − z. Since T is invertible, the two composite systems are
equivalent and stability for one system implies stability for the other.
We assume that the value function V̄0

N(·) for the nominal optimal con-
trol problem has the usual properties:

V̄0
N(z) ≥ c1|z|2 + c1|κ̄N(z)|2

V̄0
N(f (z, κ̄N(z))) ≤ V̄0

N(z)− c1|z|2

V̄0
N(z) ≤ c2|z|2
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for all z ∈ ZN ; these properties arise when the stage cost is quadratic
and positive definite, ZN is bounded, and an appropriate terminal cost
and constraint set are employed. The first inequality, which is a minor
extension of the inequality normally employed, follows from the defi-
nition of V̄0

N(·) and of `(·). It follows from these conditions that there
exists a c > 0 such that

|κ̄N(z)| ≤ c|z|

for all z ∈ ZN . For all α ≥ 0, let levαV denote the sublevel set of V̄0
N(·)

defined by
levαV := {z ∈ ZN | V̄0

N(z) ≤ α}

and let S := SK(∞); S is robust positive invariant for e+ = AKe + w,
w ∈W and, from Assumption 3.19, S ⊂ (1/4)X and KS ⊂ (1/4)U.

We show below that, for all ε ∈ (0,3/4], there exists a δ > 0 such
that (z(0), e(0)) ≤ δ implies z(i) ∈ ε(3/4)X and e(i) ∈ εS for all
i ∈ I≥0 thereby establishing robust stability of the origin for the com-
posite system. The upper limit of 3/4 on ε is not a limitation since the
analysis shows that, for every ε ≥ 3/4, there exists a δ > 0 such that
(z(0), e(0)) ≤ δ implies z(i) ∈ ε∗X and e(i) ∈ ε∗S for all i ∈ I≥0 where
ε∗ = 3/4 ≤ ε.

Let ε ∈ (0,3/4] be arbitrary. From the properties of V̄0
N(·) and

κ̄N(·), we may deduce the existence of an α > 0 such that levαV ⊆
ε(3/4)X and κ̄N(levαV) ⊆ ε(3/4)U. Hence there exists a δ ∈ (0, ε) such
that δB ⊆ levαV ∩ εS so that |(z(0), e(0))| < δ implies z(0) ∈ levαV
and e(0) ∈ εS.

Suppose next that z(i) ∈ levαV and e(i) ∈ εS. Then x(i) = z(i) +
e(i) ∈ ε(3/4)X ⊕ ε(1/4)X = εX. Similarly, u(i) = κ̄N(z(i)) + Ke(i) ⊆
κ̄N(levαV)⊕ εKS ⊆ ε(3/4)U⊕ ε(1/4)U = εU. Hence w(i) ∈ εW. Since
levαV is positive invariant for z+ = Az + Bκ̄N(z), it follows that z(i+
1) ∈ levαV . Since εS is robust positive invariant for e+ = AKe + w,
w ∈ εW, it follows that e(i + 1) ∈ εS. By induction, z(i) ∈ εX and
e(i) ∈ εS for all i ∈ I≥0. We have proved:

Proposition 3.20 (Asymptotic stability of tube-based MPC). The origin
is asymptotically stable with a region of attractionMN for the composite
controlled system.

This result shows that the standard tube-based model predictive
system has a degree of robustness against parametric uncertainty, pro-
vided that we can bound the disturbancew resulting from model error
so that it lies in some compact set W0 that is sufficiently small. The
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controller described previously is conservative since the nominal sys-
tem is designed on the basis that the disturbance w lies in W0. A less
conservative design would exploit the fact that w ∈ Wi = (1/2)iW0

when (x,u) ∈ (1/2)i(X× U).

3.6 Tube-Based MPC of Nonlinear Systems

Satisfactory control in the presence of uncertainty requires feedback.
As shown in Section 3.3.4, MPC of uncertain systems ideally requires op-
timization over control policies rather than control sequences, result-
ing in an optimal control problem that is usually impossibly complex.
Practicality demands simplification; hence, in tube-based MPC of con-
strained linear systems we replace the control policy µ = {µ0(·), µ1(·),
. . . , µN−1(·)}, in which each element µi(·) is an arbitrary function, by
the simpler policy µ in which each element has the simple form µi(x) =
v(i)+K(x − z(i)) in which v(i) and z(i), the control and state of the
nominal system at time i, are determined using conventional MPC. The
feedback gain K, which defines the local control law, is determined of-
fline; it can be chosen so that all possible trajectories of the uncertain
system lie in a tube centered on the nominal trajectory {z(0), z(1), . . .}.
The “cross-section” of the tube is a constant set S so that every pos-
sible state of the uncertain system at time i lies in the set {z(i)} ⊕ S.
This enables the nominal trajectory to be determined using MPC, to
ensure that all possible trajectories of the uncertain system satisfy the
state and control constraints, and that all trajectories converge to an
invariant set centered on the origin.

It would be desirable to extend this methodology to the control
of constrained nonlinear systems, but we face some formidable chal-
lenges. It is possible to define a nominal system and, as shown in Chap-
ter 2, to determine, using MPC with “tightened” constraints, a nominal
trajectory that can serve as the center of a tube. But it seems to be
prohibitively difficult to determine a local control law that steers all
trajectories of the uncertain system toward the nominal trajectory, and
of a set centered on the nominal trajectory in which these trajectories
can be guaranteed to lie.

We overcome these difficulties by employing two model predictive
controllers. The first uses MPC with tightened constraints to determine,
as before, a nominal trajectory; the second, the ancillary controller,
uses MPC to steer the state of the uncertain system toward the nominal
trajectory. We avoid the difficult task of determining, a priori, a local
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control law by employing MPC that merely determines a suitable control
action for the current state.

The system to be controlled is described by a nonlinear difference
equation

x+ = f(x,u)+w (3.46)

in which the additive disturbance is assumed to lie in the compact set
W that contains the origin. The state x and the control u are required
to satisfy the constraints

x ∈ X u ∈ U

The solution of (3.46) at time i if the initial state at time 0 is x and
the control is generated by policy µ is φ(i;x,µ,w), in which w de-
notes, as usual, the disturbance sequence {w(0),w(1), . . .}. Similarly,
φ(i;x,κ,w) denotes the solution of (3.46) at time i if the initial state
at time 0 is x and the control is generated by a time invariant control
law κ(·).

The nominal system is obtained by neglecting the disturbance w
and is therefore described by

z+ = f(z, v)

Its solution at time i if its initial state is z is denoted by φ̄(i;z,v),
in which v := {v(0), v(1), . . .} is the nominal control sequence. The
deviation between the actual and nominal state is e := x−z and satisfies

e+ = f(x,u)− f(z, v)+w

Because f(·) is nonlinear, this difference equation cannot be simplified
as in the linear case where e+ is independent ofx and z, depending only
on their difference e = x − z and on w.

3.6.1 The Central Path

The central path is a feasible trajectory for the nominal system that
is sufficiently far from the boundaries of the original constraints to
enable the ancillary controller for the uncertain system to satisfy these
constraints. It is generated by the solution to a nominal optimal control
problem P̄N(z) where z is the state of the nominal system. The cost
function V̄N(·) for the nominal optimal control problem is defined by

V̄N(z,v) :=
N−1∑
k=0

`(z(k), v(k))+ Vf (z(N)) (3.47)
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in which z(k) = φ̄(k;z,v) and z is the initial state. The function `(·)
is defined by

`(z, v) := (1/2)
(
|z|2Q + |v|2R

)
in which Q and R are positive definite, |z|2Q := zTQz, and |v|2R :=
vTQv . We impose the following state and control constraints on the
nominal system

z ∈ Z v ∈ V

in which Z ⊂ X and V ⊂ U. The choice of Z and V is more difficult than
in the linear case because it is difficult to bound the deviation e = x−z
of the state x of the uncertain system from the state z of the nominal
system. We assume that these two constraint sets are compact. The
terminal cost function Vf (·) together with the terminal constraint set
Zf ⊆ X for the nominal system are chosen as described in Chapter 2
and Section 3.4 to satisfy the usual “stability axioms.” The state and
control constraints, and the terminal constraint z(N) ∈ Zf impose a
parametric constraint v ∈ VN(z) on the nominal control sequence in
which VN(z) is defined by

VN(z) := {v | v(k) ∈ V, φ̄(k;z,v) ∈ Z ∀k ∈ I0:N−1,

φ̄(N;z,v) ∈ Zf }

For each z, the set VN(z) is compact; it is bounded because of the
assumptions on V, and closed because of the continuity of φ̄(·). The
nominal optimal control problem P̄N(z) is defined by

P̄N(z) : V̄0
N(z) =min

v
{V̄N(z,v) | v ∈ VN(z)}

A solution exists if z is feasible for P̄N(z) because V̄N(·) is continuous
and VN(z) is compact. Let ZN := {z | VN(z) ≠ ∅} denote the domain
of V̄0

N(z), the set of feasible states for P̄N(z). By virtue of our assump-
tions, the set ZN is bounded. The solution of P̄N(z) is the minimizing
control sequence

v0(z) = {v0(0;z), v0(1;z), . . . , v0(N − 1;z)}

which we assume is unique, and the associated optimal state sequence
is

z0(z) = {z, z0(1;z), . . . , z0(N;z)}
The first element v0(0;z) of v0(z) is the control that is applied in MPC.
The implicit MPC control law is, therefore, κ̄N(·) defined by

κ̄N(z) := v0(0;z)
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The nominal system under MPC satisfies

z+ = f(z, κ̄N(z))

The central path that defines the ancillary control problem defined in
the next subsection consists of the state trajectory

z∗(z) := {z∗(0;z), z∗(1;z), . . .}

and the control trajectory

v∗(z) := {v∗(0;z), v∗(1;z), . . .}

in which z is the initial state of the nominal system. These trajectories
are the solutions of the controlled nominal system described by

z+ = f(z, κ̄N(z))

so that for all i

z∗(i;z) = φ̄(i;z, κ̄N) v∗(i;z) = κ̄N(z∗(i;z)) (3.48)

If the terminal cost function Vf (·) and terminal constraint set Zf are
chosen to satisfy the usual stability assumptions, which we assume to
be the case, and ZN is bounded, there exist c1 > 0 and c̄2 > c1 such
that

V̄0
N(z) ≥ c1|z|2

V̄0
N(z) ≤ c̄2|z|2

∆V̄0
N(z) ≤ −c1|z|2

for all z ∈ ZN in which

∆V̄0
N(z) := V̄0

N(f (z, κ̄N(z)))− V̄0
N(z)

It follows that the origin is exponentially stable with a region of attrac-
tion ZN for the system z+ = f(z, κ̄N(z)). The state of the controlled
nominal system converges to the origin exponentially fast.

3.6.2 Ancillary Controller

The purpose of the ancillary controller is to maintain the state of the
uncertain system x+ = f(x,u)+w close to the trajectory of the nom-
inal system z+ = f(z, κ̄N(z)). The ancillary controller replaces the
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controller u = v + K(x − z) employed in the linear case. To obtain
u in the nonlinear control, we determine a control sequence that min-
imizes the cost of the deviation between the trajectories of the two
systems, x+ = f(x,u) and z+ = f(z, κ̄N(z)), with initial states x and
z, respectively, and choose u to be the first element of this sequence.
If the optimal control problem is properly posed, the resultant control
u steers the state of the deterministic system x+ = f(x,u) toward
the nominal trajectory, and, hence, as in the linear case, tends to keep
the trajectory of the uncertain system x+ = f(x,u) +w close to the
nominal trajectory.

The ancillary controller is, therefore, based on the composite system

x+ = f(x,u) (3.49)

z+ = f(z, κ̄N(z)) (3.50)

The cost VN(x, z,u) that measures the distance between the trajecto-
ries of these two systems is defined by

VN(x, z,u) :=
N−1∑
i=0

`
(
x(i)− z∗(i;z),u(i)− v∗(i;z)

)
(3.51)

in which, for each i, x(i) := φ̄(i;x,u) is the solution of (3.49) at time
i if the initial state is x and the control input sequence is u; z∗(i;z)
and v∗(i;z) are defined in (3.48). For the purpose of analysis it is con-
venient to suppose that the entire infinite sequences z∗(z) and v∗(z)
have been precalculated. In practice, apart from initialization, genera-
tion of the sequences used in (3.51) require only one solution of PN at
each iteration. It is not necessary for the cost function `(·) in (3.51) to
be the same function as in (3.47) that defines the cost for the nominal
controller. Indeed, as we show subsequently, it is not even necessary
for the ancillary controller to have the same sample time as the nom-
inal controller. The ancillary control problem is the minimization of
VN(x, z,u) with respect to u subject to merely one state constraint,
the terminal equality constraint x(N) = z∗(N;z). The tube-based con-
troller implicitly satisfies the state and input constraints. The terminal
constraint is chosen for simplicity to ensure stability. Hence, the ancil-
lary control problem PN(x, z) is defined by

V0
N(x, z) =min

u
{VN(x, z,u) | u ∈ UN(x, z)}

UN(x, z) := {u ∈ UN | φ̄(N;x,u) = z∗(N;z)}
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in whichUN(x, z) is the constraint set. For each (x, z), the setUN(x, z)
is compact. There is no terminal cost and the terminal constraint set
is the single state z∗(N;z) = φ̄(N;z, κ̄N(·))

Xf (z) = {z∗(N;z)}

For each z ∈ ZN , the domain of the value function V0
N(·, z) and of the

minimizer is the set XN(z) defined by

XN(z) := {x ∈ X | UN(x, z) ≠∅}

For each z ∈ ZN , the set XN(z) is bounded. For future reference, let
the setMN ⊂ Rn ×Rn be defined by

MN := {(x, z) | z ∈ ZN , x ∈ XN(z)}

The set MN is bounded. For any (x, z) ∈ MN , the minimizing control
sequence is u0(x, z) = {u0(0;x, z),u0(1;x, z), . . . , u0(N−1;x, z)}, and
the control applied to the system is u0(0;x, z), the first element in
this sequence. The corresponding optimal state sequence is x0(x, z) =
{x,x0(1;x, z), . . . , x0(N;x, z)}. The implicit ancillary control law is,
therefore, κN(·) defined by

κN(x, z) := u0(0;x, z)

The composite uncertain system then satisfies

x+ = f(x, κN(x, z))+w (3.52)

z+ = f(x, κ̄N(z)) (3.53)

If x = z, then, as is easily verified, V0
N(x, z) = 0 and

u0(i;x, z) = v∗(i;z), i = 0,1, . . . ,N − 1

so that the control and state trajectories of the two systems (3.49) and
(3.50) are identical. In particular

κN(z, z) = κ̄N(z)

If some controllability assumptions are satisfied, the value func-
tion V0

N(·) has properties analogous to those of V̄0
N(·), except that the

bounds areK∞ functions of x − z rather than of x

V0
N(x, z) ≥ c1|x − z|2 (3.54)

V0
N(x, z) ≤ c2|x − z|2 (3.55)

∆V0
N(x, z) ≤ −c1|x − z|2 (3.56)
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for all (x, z) ∈MN in which, now

∆V0
N(x, z) := V0

N(f (z, κN(x, z)), f (x, κ̄N(z)))− V0
N(x, z)

Note that ∆V0
N(x, z) is the change in the value as x changes to x+ =

f(x, κN(x, z)) and z changes to z+ = f(x, κ̄N(z)); the effect of the
disturbance w is ignored in this expression. It follows from (3.54)-
(3.56) that

V0
N(f (x, κN(x, z)), f (z, κ̄N(z))) ≤ γV0

N(x, z)

in which γ := 1 − c1/c2 ∈ (0,1) and, hence, that the origin is expo-
nentially stable with a region of attractionMN for the composite deter-
ministic system x+ = f(x, κN(x, z)), z+ = f(z, κ̄N(z)). This property
is sufficient to bound e = x − z for the composite uncertain system
x+ = f(x, κN(x, z)) + w, z+ = f(z, κ̄N(z)) and allows us, as shown
subsequently, to determine suitable tightened constraint sets Z and V.
Assuming these sets have been determined, a robust MPC algorithm
for nonlinear systems can be proposed; we do this next.

3.6.3 Controller Algorithm

Suppose Z and V have been chosen. In the following algorithm, v∗

denotes the control sequence {v∗(0), v∗(1), . . . , v∗(N − 1)}, and z∗

denotes the state sequence {z∗(0), z∗(1), . . . , z∗(N)}. The controller
algorithm is:

Robust control algorithm.

Initialization: At time 0, set i = 0, x = x(0), and z = x. Solve P̄N for
N time steps to obtain the nominal closed-loop state and control
sequences v∗ = v∗(z) = {v∗(0;z), v∗(1;z), . . . , v∗(N − 1;z)}
and z∗ = z∗(z) = {z∗(0;z), z∗(1;z), . . . , z∗(N;z)}, and set u =
κ̄N(z) = v∗(0;z).7

Step 1 (Compute control): At time i, compute u = κN(x, z) by solving
PN(x, z).

Step 2 (Control): Apply u to the system being controlled.

Step 3 (Update x): Set x = x+ where x+ = f(x,u)+w is the successor
state.

7Recall z∗(0;z) = z and v∗(0;z) = κ̄N(z).
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Step 4 (Update z, v∗, and z∗): Compute v∗ = κ̄N(z∗(N)) and z∗ =
f(z∗(N), v∗) by solving PN(z∗(N)). Set z = z∗(1). Set v∗ =
{v∗(1), . . . , v∗(N − 1), v∗} and set z∗ = {z∗(1), . . . , z∗(N), z∗}.

Step 5 (Repeat): Set i = i+ 1. Go to Step 1.

A check step may be incorporated as done previously to safeguard
against unanticipated events.

3.6.4 Analysis

Because of the nonlinearity and the terminal equality constraint in
problem PN(x, z), analysis is technical and requires use of the implicit
function theorem. Full details appear on the website www.che.wisc.
edu/~jbraw/mpc and the references cited there. Here we give an out-
line of the analysis. Ideally we would like, as in the linear case, to have
a constant set S such that given z(i), the state of the nominal system
at time i, we could assert that the state x(i) of the uncertain system
lies in {z(i)}⊕S. Instead, as we show subsequently, for each state z(i)
of the nominal system, the state x(i) of the uncertain system lies, for
some d > 0, in the set Sd(z(i)) where the set-valued Sd(·) is defined,
for all z ∈ ZN

Sd(z) := {x ∈ Rn | V0
N(x, z) ≤ d}

The set Sd(z) is a sublevel set of the function x , V0
N(x, z). Since

S0(z) = {z}, the set Sd(z) is a neighborhood of z. The set Sd(z), that
varies with z, replaces the set {z}⊕ S employed in Section 3.4 because
of the following important property that holds under certain control-
lability and differentiability assumptions:

Proposition 3.21 (Existence of tubes for nonlinear systems). There ex-
ists a d > 0 such that if the state (x, z) of the composite system (3.52)
and (3.53) lies in MN and satisfies x ∈ Sd(z), then the successor state
(x+, z+) satisfies x+ ∈ Sd(z+), i.e.,

x+ = f(x, κN(x, z))+w ∈ Sd(z+) z+ = f(z, κ̄N(z))

for all w satisfying |w| ≤ (1− γ)d/k(z) where k(z) is a local Lipschitz
constant for x , V0

N(x, z).

If w ∈ W implies |w| ≤ (1 − γ)d/k where k is an upper bound for
k(z) in ZN , then every solution of the system x+ = f(x, κN(x, z))+w,
w ∈ W lies in the tube S := {Sd(z), Sd(z∗(1;z)), Sd(z∗(2;z)), . . .} for
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Figure 3.5: Tube for a nonlinear system.

all disturbance sequences {w(i)} satisfying w(i) ∈ W for all i ∈ I≥0.
Figure 3.5 illustrates this result and the fact that the cross-section of
the tube varies with the state of the nominal system.

3.6.5 Choosing Z and V

The tightened constraint sets Z and V may, in principle, be computed.
Suppose there exists a single state constraint c′x ≤ e. The tightened
state constraint set is Z := {x | c′x ≤ f} where f < e. Assuming that
the constant d is known, the tightened state constraint set is suitable
provided that

φ(z) :=max
x
{c′x | x ∈ Sd(z)} ≤ e

for all z ∈ Z ∩ ZN , i.e., for all z ∈ ZN satisfying c′z ≤ f . In practice,
φ(z) could be computed for a finite number of representative points
in Z ∩ ZN . Since Sd(z) := {x | V0

N(x, z) ≤ d}, φ(z) may be computed
using

−φ(z) =min
x
{−c′x | V0

N(x, z) ≤ d} = min
(x,u)

{−c′x | VN(x, z,u) ≤ d}

Other state constraints may be similarly treated. The tightened control
constraint set also may be computed.

An alternative is the following. If, as is often the case even for
nonlinear systems, the sets X and U are polyhedral, we may choose
tightened constraint sets Z = αX and V = βV where α, β ∈ (0,1)
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by a simple modification of the defining inequalities. If, for example,
X = {x | Ax ≤ a}, thenαX = {x | Ax ≤ αa}. This choice may be tested
by Monte Carlo simulation of the controlled system. If constraints are
violated in the simulation, α and β may be reduced; if the constraints
are too conservative, α and β may be increased. For each choice of
α and β, the controller provides a degree of robustness that can be
adjusted by modifying the “tuning” parameters α and β.

Example 3.22: Robust control of an exothermic reaction

Consider the control of a continuous-stirred-tank reactor. We use a
model derived in Hicks and Ray (1971) and modified by Kameswaran
and Biegler (2006). The reactor is described by the second-order differ-
ential equation

ẋ1 = (1/θ)(1− x1)− kx1 exp(−M/x2)
ẋ2 = (1/θ)(xf − x2)+ kx1 exp(−M/x2)−αu(x2 − xc)+w

in which x1 is the product concentration, x2 is the temperature, and
u is the coolant flowrate. The model parameters are θ = 20, k = 300,
M = 5, xf = 0.3947, xc = 0.3816, and α = 0.117. The state, control
and disturbance constraint sets are

X = {x ∈ R2 | x1 ∈ [0,2], x2 ∈ [0,2]}
U = {u ∈ R | u ∈ [0,2]}
W = {w ∈ R | w ∈ [−0.001,0.001]}

The controller is required to steer the system from a locally stable
steady state x(0) = (0.9831,0.3918) at time 0, to a locally unsta-
ble steady state ze = (0.2632,0.6519). Because the desired terminal
state is ze rather than the origin, the stage cost `(z, v) is replaced by
`(z − ze, v − ve) where `(z, v) := (1/2)(|z|2 + v2) and (ze, ve) is an
equilibrium pair satisfying ze = f(ze, ve); the terminal constraint set
Zf is chosen to be {ze}. The constraint sets for the nominal control
problem are Z = X and V = [0.02,2]. Since the state constraints are
not activated, there is no need to tighten X. The disturbance is cho-
sen to be w(t) = A sin(ωt) where A andω are independent uniformly
distributed random variables, taking values in the sets [0,0.001] and
[0,1], respectively. The horizon length is N = 40 and the sample time
is ∆ = 3 giving a horizon time of 120. The ancillary controller uses
`a(x,u) = (1/2)(|x|2 +u2) and the same horizon and sample time.
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(a) Standard MPC.
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(b) Tube-based MPC.

Figure 3.6: Comparison of 100 realizations of standard and tube-
based MPC for the chemical reactor example.

For comparison, a standard MPC controller using the same stage
cost `(·), and the same terminal constraint set Zf employed in the cen-
tral path controller is simulated. Figure 3.6(a) illustrates the perfor-
mance standard MPC, and Figure 3.6(b) the performance of tube-based
MPC for 100 realizations of the disturbance sequence. Tube-based MPC,
as expected, has a smaller spread of trajectories than is the case for
standard MPC. Because each controller has the same stage cost and
terminal constraint, the spread of trajectories in the steady-state phase
when z(t) = ze is the same for the two controllers. Because the con-
trol constraint set for the tube-based central controller is tighter than
that for the standard controller, however, the tube-based controller is
somewhat slower than the standard controller.

The ancillary controller may be tuned to reduce more effectively
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(b) Tube-based MPC.

Figure 3.7: Comparison of standard and tube-based MPC with an ag-
gressive ancillary controller.

the spread of trajectories due to the external disturbance. It can be
said that the main purpose of the central controller is to steer the sys-
tem from one equilibrium state to another, while the purpose of the
ancillary controller is to reduce the effect of the disturbance. These
different objectives may require different stage costs. Our next simu-
lation compares the performance of the standard and tube-based MPC
when a more “aggressive” stage cost is employed for the ancillary con-
troller. Figure 3.7 shows the performance of these two controllers when
the nominal and standard MPC controller employ `(z − ze, v − ve)
with `(z, v) := (1/2)|z|2 + 5v2 and the ancillary controller employs
`a(x,u) = 50|x|2 + (1/20)u2. The tube-based MPC controller reduces
the spread of the trajectories during both the transient and the steady
state phases.
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Figure 3.8: Concentration versus time for the ancillary controller for
sample time 12 (top) and 8 (bottom).

It is also possible to tune the sample time of the ancillary con-
troller. This feature may be useful when the disturbance frequency
lies outside the pass band of the central path (nominal) controller. Fig-
ure 3.8 shows how concentration varies with time when the disturbance
is w(t) = 0.002 sin(0.4t), the sample time of the central path con-
troller is 12 whereas the sample time of the ancillary controller is 12
(top figure) and 8 (bottom figure). The central path controller employs
`(z − ze, v − ve), and the ancillary controller employs `(x,u) where
`(x,u) := (1/2)(|x|2 + u2). The ancillary controller with the smaller
sample time is more effective in rejecting the disturbance. �
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3.7 Notes

There is now a considerable volume of research on robust MPC; for
a review of the literature up to 2000 see Mayne, Rawlings, Rao, and
Scokaert (2000). Early literature examines robustness of nominal MPC
under perturbations in Scokaert, Rawlings, and Meadows (1997), and
robustness under model uncertainty in De Nicolao, Magni, and Scat-
tolini (1996), and Magni and Sepulchre (1997). Sufficient conditions
for robust stability of nominal MPC with modeling error are provided
in Santos and Biegler (1999). Teel (2004) provides an excellent discus-
sion of the interplay between nominal robustness and continuity of the
Lyapunov function, and also presents some illuminating examples of
nonrobust MPC.

The limitations of nominal MPC when uncertainty is present moti-
vated the introduction of feedback, or closed-loop, MPC in which the
decision variable is a policy, i.e., a sequence of control laws, rather
than a sequence of control actions (Mayne, 1995; Kothare, Balakrish-
nan, and Morari, 1996; Mayne, 1997; Lee and Yu, 1997; Scokaert and
Mayne, 1998). With this formulation, the implicit MPC control law can
be the same as the receding horizon control law obtained by DP. See
Section 3.3.4 and papers such as Magni, De Nicolao, Scattolini, and
Allgöwer (2003), where a H∞ MPC control law is obtained. But such
results are conceptual because the decision variable is infinite dimen-
sional. Hence practical controllers employ suboptimal policies that
are finitely parameterized, an extreme example being nominal MPC.
To avoid constraint violation, suboptimal MPC often requires tighten-
ing of the constraints in the optimal control problem solved online
(Michalska and Mayne, 1993; Chisci, Rossiter, and Zappa, 2001; Mayne
and Langson, 2001). Of particular interest is the demonstration in
Limón Marruedo, Álamo, and Camacho (2002) that using a sequence
of nested constraint sets yields input-to-state stability of nominal MPC
if the disturbance is sufficiently small. This procedure was extended in
Grimm, Messina, Tuna, and Teel (2007), who do not require the value
function to be continuous and do not require the terminal cost to be
a control-Lyapunov function. The robust suboptimal controllers dis-
cussed in this chapter employ the concept of tubes introduced in the
pioneering papers by Bertsekas and Rhodes (1971a,b), and developed
for continuous time systems by Aubin (1991) and Khurzhanski and
Valyi (1997) and, for linear systems, use a control parameterization
proposed by Rossiter, Kouvaritakis, and Rice (1998). Robust positive
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invariant sets are employed to construct tubes as shown in (Chisci et al.,
2001) and (Mayne and Langson, 2001). Useful references are the sur-
veys by Blanchini (1999) and Kolmanovsky and Gilbert (1995), as well
as the recent book by Blanchini and Miani (2008). Kolmanovsky and
Gilbert (1995) provide an extensive coverage of the theory and com-
putation of minimal and maximal robust (disturbance) invariant sets.
The computation of approximations to robust invariant sets that are
themselves invariant is discussed in a series of papers by Rakovíc and
colleagues (Rakovíc et al., 2003, 2005a; Rakovíc, Mayne, Kerrigan, and
Kouramas, 2005b; Kouramas, Rakovíc, Kerrigan, Allwright, and Mayne,
2005). The tube-based controllers described previously are based on
the papers (Langson, Chryssochoos, Rakovíc, and Mayne, 2004; Mayne,
Seron, and Rakovíc, 2005).

Because robust MPC is still an active area of research, other meth-
ods for achieving robustness have been proposed. Diehl, Bock, and
Kostina (2006) simplify the robust nonlinear MPC problem by using
linearization, also employed in (Nagy and Braatz, 2004), and present
some efficient numerical procedures to determine an approximately
optimal control sequence. Goulart, Kerrigan, and Maciejowski (2006)
propose a control that is an affine function of current and past states;
the decision variables are the associated parameters. This method sub-
sumes the tube-based controllers described in this chapter and has the
advantage that a separate nominal trajectory is not required. A disad-
vantage is the increased complexity of the decision variable, although
an efficient computational procedure that reduces computational time
per iteration from O(N6) to O(N3) has been developed by Goulart,
Kerrigan, and Ralph (2008).

Considerable attention has recently been given to input-to-state sta-
bility of uncertain systems. Thus Limon, Alamo, Raimondo, de la Peña,
Bravo, and Camacho (2008) present the theory of input-to-state sta-
bility as a unifying framework for robust MPC, generalizes the tube-
based MPC described in (Langson et al., 2004), and extends existing
results on min-max MPC. Another example of research in this vein is
the paper by Lazar, de la Peña, Hemeels, and Alamo (2008) that utilizes
input-to-state practical stability to establish robust stability of feedback
min-max MPC. A different approach is described by Angeli, Casavola,
Franz̀e, and Mosca (2008) where it is shown how to construct, for each
time i, an ellipsoidal inner approximation Ei to the set Ti of states that
can be robustly steered in i steps to a robust control invariant set T .
All that is required from the online controller is the determination of
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the minimum i such that the current state x lies in Ei and a control
that steers x ∈ Ei into the set Ei−1 ⊂ Ei.
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3.8 Exercises

Exercise 3.1: Removing the outer min in a min-max problem

Show that V0
i : Xi → R and κi : Xi → U defined by

V0
i (x) =min

u∈U
max
w∈W

{`(x,u,w)+ V0
i−1(f (x,u,w)) | f(x,u,W) ⊂ Xi−1}

κi(x) = arg min
u∈U

max
w∈W

{`(x,u,w)+ V0
i−1(f (x,u,w)) | f(x,u,W) ⊂ Xi−1}

Xi = {x ∈ X | ∃u ∈ U such that f(x,u,W) ⊂ Xi−1}
satisfy

V0
i (x) = max

w∈W
{`(x, κi(x),w)+ V0

i−1(f (x, κi(x),w))}

Exercise 3.2: Maximizing a difference

Prove the claim used in the proof of Theorem 3.10 that

max
w
{a(w)} −max

w
{b(w)} ≤max

w
{a(w)− b(w)}

Also show the following minimization version

min
w
{a(w)} −min

w
{b(w)} ≥min

w
{a(w)− b(w)}

Exercise 3.3: Equivalent constraints

Assuming that S is a polytope and, therefore, defined by linear inequalities, show that
the constraint x ∈ {z} ⊕ S (on z for given x) may be expressed as Bz ≤ b + Bx, i.e., z
must lie in a polytope. If S is symmetric (x ∈ S implies −x ∈ S), show that x ∈ {z}⊕S
is equivalent to z ∈ {x} ⊕ S.

Exercise 3.4: Hausdorff distance between translated sets

Prove that the Hausdorff distance between two sets {x}⊕S and S, where S is a compact
subset of Rn and x and y are points in Rn, is |x −y|.

Exercise 3.5: Exponential convergence of X(i)
Prove that the sequence of sets {X(i)} defined in (3.44) by X(i) := {z∗(x(i))} ⊕ S
converges exponentially to the set S.

Exercise 3.6: Exponential stability of composite system

Show that the set SK(∞)×{0} is exponentially stable with a region of attraction SK(∞)×
ZN for the composite system described by (3.31) and (3.32).

Exercise 3.7: Simulating a robust MPC controller

This exercise explores robust MPC for linear systems with an additive bounded distur-
bance

x+ = Ax + Bu+w
The first task, using the tube-based controller described in Section 3.4.3 is to determine
state and control constraint sets Z and V such that if the nominal system z+ = Az+Bv
satisfies z ∈ Z and v ∈ V, then the actual system x+ = Ax + Bu + w with u =
v + K(x − z) where K is such that A + BK is strictly stable, satisfies the constraints
x ∈ X and u ∈ U.
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Figure 3.9: Closed-loop robust MPC state evolution with |w| ≤ 0.1
from four different x0.

(a) To get started, consider the scalar system

x+ = x +u+w

with constraint sets X = {x | x ≤ 2}, U = {u | |u| ≤ 1} and W = {w | |w| ≤
0.1}. Choose K = −(1/2) so that AK = 1/2. Determine Z and V so that if the
nominal system z+ = z + v satisfies z ∈ Z and v ∈ V, the uncertain system
x+ = Ax + Bu+w, u = v +K(x − z) satisfies x ∈ X, u ∈ U.

(b) Repeat part (a) for the following uncertain system

x+ =
[

1 1
0 1

]
x +

[
0
1

]
u+w

with the constraint sets X = {x ∈ R2 | x1 ≤ 2}, U = {u ∈ R | |u| ≤ 1} and
W = [−0.1,0.1]. Choose K =

[
−0.4 −1.2

]
.

(c) Determine a model predictive controller for the nominal system and constraint
sets Z and V used in (b).

(d) Implement robust MPC for the uncertain system and simulate the closed-loop
system for a few initial states and a few disturbance sequences for each initial
state. The phase plot for initial states [−1,−1], [1,1], [1,0] and [0,1] should
resemble Figure 3.9.
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4
State Estimation

4.1 Introduction

We now turn to the general problem of estimating the state of a noisy
dynamic system given noisy measurements. We assume that the sys-
tem generating the measurements is given by

x+ = f(x,w)
y = h(x)+ v (4.1)

in which the process disturbance,w, measurement disturbance, v , and
system initial state, x(0), are independent random variables with sta-
tionary probability densities. One of our main purposes is to provide
a state estimate to the MPC regulator as part of a feedback control sys-
tem, in which case the model changes to x+ = f(x,u,w) with both
process disturbance w and control input u. But state estimation is a
general technique that is often used in monitoring applications with-
out any feedback control. In Chapter 5, we discuss the combined use of
state estimation with MPC regulation. In this chapter we consider state
estimation as an independent subject. For notational convenience, we
often neglect the control input u as part of the system model in this
chapter.

4.2 Full Information Estimation

Of all the estimators considered in this chapter, full information esti-
mation will prove to have the best theoretical properties in terms of
stability and optimality. Unfortunately, it will also prove to be com-
putationally intractable except for the simplest cases, such as a linear
system model. Its value therefore lies in clearly defining what is desir-
able in a state estimator. One method for practical estimator design
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System Decision Optimal
variable variable decision

state x χ x̂
process disturbance w ω ŵ
measured output y η ŷ
measurement disturbance v ν v̂

Table 4.1: System and state estimator variables.

therefore is to come as close as possible to the properties of full infor-
mation estimation while maintaining a tractable online computation.
This design philosophy leads directly to moving horizon estimation
(MHE).

First we define some notation necessary to distinguish the system
variables from the estimator variables. We have already introduced
the system variables (x,w,y,v). In the estimator optimization prob-
lem, these have corresponding decision variables, which we denote
(χ,ω,η, ν). The optimal decision variables are denoted (x̂, ŵ, ŷ, v̂)
and these optimal decisions are the estimates provided by the state es-
timator. This notation is summarized in Table 4.1. Next we summarize
the relationships between these variables

x+ = f(x,w) y = h(x)+ v
χ+ = f(χ,ω) y = h(χ)+ ν
x̂+ = f(x̂, ŵ) y = h(x̂)+ v̂

Notice that it is always the system measurement y that appears in the
second column of equations. We can also define the decision variable
output, η = h(χ), but notice that ν measures the fitting error, ν =
y − h(χ), and we must use the system measurement y and not η in
this relationship. Therefore, we do not satisfy a relationship like η =
h(χ)+ ν , but rather

y = h(χ)+ ν η = h(χ)
y = h(x̂)+ v̂ ŷ = h(x̂)

We begin with a reasonably general definition of the full information
estimator that produces an estimator that is stable, which we also shall
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define subsequently. The full information objective function is

VT (χ(0),ω) = `x
(
χ(0)− x0

)
+
T−1∑
i=0

`i(ω(i), ν(i)) (4.2)

subject to

χ+ = f(χ,ω) y = h(χ)+ ν

in which T is the current time, y(i) is the measurement at time i, and
x0 is the prior information on the initial state.1 Because ν = y − h(χ)
is the error in fitting the measurement y , `i(ω,ν) costs the model
disturbance and the fitting error. These are the two error sources we
reconcile in all state estimation problems.

The full information estimator is then defined as the solution to

min
χ(0),ω

VT (χ(0),ω) (4.3)

We denote the solution as x̂(0|T), ŵ(i|T),0 ≤ i ≤ T −1, T ≥ 1, and the
optimal cost as V0

T . We also use x̂(T) := x̂(T |T) to simplify the nota-
tion. The optimal solution and cost also depend on the measurement
sequence y, and the prior x0, but this dependency is made explicit only
when necessary. The choice of stage costs `x(·) and `i(·) is made after
we define the class of disturbances affecting the system.

The next order of business is to decide what class of systems to
consider if the goal is to obtain a stable state estimator. A standard
choice in most nonlinear estimation literature is to assume system ob-
servability. The drawback with this choice is that it is overly restrictive
for even linear systems. As discussed in Chapter 1, for linear systems
we require only detectability for stable estimation (Exercise 1.33). We
therefore start instead with an assumption of detectability that is ap-
propriate for nonlinear systems. First we require the definition of i-
IOSS (Sontag and Wang, 1997)

Definition 4.1 (i-IOSS). The system x+ = f(x,w),y = h(x) is incre-
mentally input/output-to-state stable (i-IOSS) if there exists some β(·) ∈
KL and γ1(·), γ2(·) ∈ K such that for every two initial states z1 and

1Notice we have dropped the final measurement y(T) compared to the problem
considered in Chapter 1 to formulate the prediction form rather than the filtering form
of the state estimation problem. This change is purely for notational convenience, and
all results developed in this chapter can also be expressed in the filtering form of MHE.
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z2, and any two disturbance sequences w1 and w2

|x(k;z1,w1)− x(k;z2,w2)| ≤ β(|z1 − z2| , k)+
γ1
(
‖w1 −w2‖0:k−1

)
+ γ2

( ∥∥yz1,w1 − yz2,w2

∥∥
0:k
)

The notation x(k;x0,w) denotes the solution to x+ = f(x,w) sat-
isfying initial condition x(0) = x0 with disturbance sequence w =
{w(0),w(1), . . .}. We also require the system with an “initial” condition
at a time k1 other than k1 = 0, and use the notationx(k;x1, k1,w) to de-
note the solution to x+ = f(x,w) satisfying the condition x(k1) = x1

with disturbance sequence w = {w(0),w(1), . . .}.
One of the most important and useful implications of the i-IOSS

property is the following proposition.

Proposition 4.2 (Convergence of state under i-IOSS). If system x+ =
f(x,w), y = h(x) is i-IOSS, w1(k) → w2(k) and y1(k) → y2(k) as
k→∞, then

x(k;z1,w1)→ x(k;z2,w2) as k→∞ for all z1, z2

The proof of this proposition is discussed in Exercise 4.3.
The class of disturbances (w,v) affecting the system is defined

next. Often we assume these are random variables with stationary
probability densities, and often zero-mean normal densities. When we
wish to establish estimator stability, however, we wish to show that if
the disturbances affecting the measurement converge to zero, then the
estimate error also converges to zero. So here we restrict attention to
convergent disturbances.

Assumption 4.3 (Convergent disturbances). The sequence (w(k), v(k))
for k ∈ I≥0 are bounded and converge to zero as k→∞.

Remark 4.4 (Summable disturbances). If the disturbances satisfy As-
sumption 4.3, then there exists a K-function γw(·) such that the dis-
turbances are summable

∞∑
i=0

γw
(
|(w(i), v(i))|

)
is bounded

See Sontag (1998b, Proposition 7) for a statement and proof of this
result.2

2This result is also useful in establishing the converse Lyapunov function theorem
for asymptotic stability as discussed in Exercise B.4 of Appendix B.
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Given this class of disturbances, the estimator stage cost is chosen
to satisfy the following property.

Assumption 4.5 (Positive definite stage cost). The initial state cost and
stage costs are continuous functions and satisfy the following inequal-
ities for all x ∈ Rn, w ∈ Rg , and v in Rp

γx(|x|) ≤ `x(x) ≤ γx(|x|) (4.4)

γw(|(w,v)|) ≤ `i(w,v) ≤ γw(|(w,v)|) i ≥ 0 (4.5)

in which γx, γw , γx, γw ∈ K∞ and γw is defined in Remark 4.4.

Notice that if we change the class of disturbances affecting the sys-
tem, we may also have to change the stage cost in the state estimator
to satisfy `i(w,v) ≤ γw(|(w,v)|) in (4.5). The standard stage cost is
the quadratic function, but slowly decaying disturbances in the data
require “stronger” than quadratic stage costs to ensure summability.
An interaction between anticipated disturbances affecting the system
and choice of stage cost in the state estimator is hardly surprising, but
Remark 4.4 and Assumption 4.5 make the requirements explicit.

Next we define estimator stability. Again, because the system is
nonlinear, we must define stability of a solution. Consider the zero
estimate error solution for all k ≥ 0. This solution arises when the
system’s initial state is equal to the estimator’s prior and there are
zero disturbances, x0 = x0, (w(i), v(i)) = 0 all i ≥ 0. In this case,
the optimal solution to the full information problem is x̂(0|T) = x0

and ŵ(i|T) = 0 for all 0 ≤ i ≤ T , T ≥ 1, which also gives perfect
agreement of estimate and measurement h(x̂(i|T)) = y(i) for 0 ≤ i ≤
T , T ≥ 1. The perturbation to this solution are: the system’s initial state
(distance fromx0), and the process and measurement disturbances. We
next define stability properties so that asymptotic stability considers
the case x0 ≠ x0 with zero disturbances, and robust stability considers
the case in which (w(i), v(i)) ≠ 0.

Definition 4.6 (Global asymptotic stability). The estimate is based on
the noise-free measurement y = h(x(x0,0)). The estimate is (nomi-
nally) globally asymptotically stable (GAS) if there exists aKL-function
β(·) such that for all x0, x0 and k ∈ I≥0

|x(k;x0,0)− x̂(k)| ≤ β(|x0 − x0| , k)

It bears mentioning that the standard definition of estimator stabil-
ity for linear systems is consistent with Definition 4.6.
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Definition 4.7 (Robust global asymptotic stability). The estimate is based
on the noisy measurement y = h(x(x0,w)) + v. The estimate is ro-
bustly GAS if for all x0 and x0, and (w,v) satisfying Assumption 4.3,
the following hold.

(a) The estimate converges to the state; as k→∞

x̂(k)→ x(k;x0,w)

(b) For every ε > 0 there exists δ > 0 such that

γx(|x0 − x0|)+
∞∑
i=0

γw
(
|(w(i), v(i))|

)
≤ δ (4.6)

implies |x(k;x0,w)− x̂(k)| ≤ ε for all k ∈ I≥0.

The first part of the definition ensures that converging disturbances
lead to converging estimates. The second part provides a bound on the
transient estimate error given a bound on the disturbances. Note also
that robust GAS implies GAS (see also Exercise 4.9). With the pieces in
place, we can state the main result of this section.

Theorem 4.8 (Robust GAS of full information estimates). Given an i-
IOSS (detectable) system and measurement sequence generated by (4.1)
with disturbances satisfying Assumption 4.3, then the full information
estimate with stage cost satisfying Assumption 4.5 is robustly GAS.

Proof.

(a) First we establish that the full information cost is bounded for all
T ≥ 1 including T = ∞. Consider a candidate set of decision variables

χ(0) = x0 ω(i) = w(i) 0 ≤ i ≤ T − 1

The full information cost for this choice is

VT (χ(0),ω) = `x(x0 − x0)+
T−1∑
i=0

`i(w(i), v(i))

From Remark 4.4, the sum is bounded for all T including the limit T =
∞. Therefore, let V∞ be an upper bound for the right-hand side. The
optimal cost exists for all T ≥ 0 because VT is a continuous function
and goes to infinity as any of its arguments goes to infinity due to the
lower bounds in Assumption 4.5. Next we show that the optimal cost
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sequence converges. Evaluate the cost at time T − 1 using the optimal
solution from time T . We have that

VT−1(x̂(0|T), ŵT ) = V0
T − `T (ŵ(T |T), v̂(T |T))

Optimization at time T − 1 can only improve the cost giving

V0
T ≥ V0

T−1 + `T (ŵ(T |T), v̂(T |T))

and we see that the optimal sequence {V0
T } is nondecreasing and bounded

above by V∞. Therefore the sequence converges and the convergence
implies

`T (ŵ(T |T), v̂(T |T))→ 0

as T → ∞. The lower bound in (4.5) then gives that v̂(T) = y(T) −
h(x̂(T |T)) → 0 and ŵ(T |T) → 0 as T → ∞. Since the measurement
satisfies y = h(x)+ v , and v(T) converges to zero, we have that

h(x(T))− h(x̂(T |T))→ 0 ŵ(T |T)→ 0 T →∞

Because the system is i-IOSS, we have the following inequality for all
x0, x̂(0|k), w, ŵk, and k ≥ 0,∣∣x(k;x0,w)− x(k; x̂(0|k), ŵk)

∣∣ ≤ β(|x0 − x̂(0|k)| , k)+
γ1
( ∥∥w− ŵk

∥∥
0:k−1

)
+ γ2

( ∥∥h(x)− h(x̂k)∥∥0:k
)

(4.7)

Since w(k) converges to zero, w(k) − ŵ(k) converges to zero, and
h(x(k))−h(x̂(k)) converges to zero. From Proposition 4.2 we conclude
that

∣∣x(k;x0,w)− x(k; x̂(0|k), ŵk)
∣∣ converges to zero. Since the state

estimate is x̂(k) := x(k; x̂(0|k), ŵk) and the state is x(k) = x(k;x0,w),
we have that

x̂(k)→ x(k) k→∞
and the estimate converges to the system state. This establishes part
(a) of the robust GAS definition.3

(b) Assume that (4.6) holds for some arbitrary δ > 0. This gives imme-
diately an upper bound on the optimal full information cost function
for all T , 0 ≤ T ≤ ∞, i.e, V∞ = δ. We then have the following bounds
on the initial state estimate for all k ≥ 0, and the initial state

γx(|x̂(0|k)− x0|) ≤ δ γx(|x0 − x0|) ≤ δ
3It is not difficult to extend this argument to conclude x̂(i|k)→ x(i;x0,w) as k→∞

for k−N ≤ i ≤ k and any finite N ≥ 0.
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These two imply a bound on the initial estimate error, |x0 − x̂(0|k)| ≤
γ−1
x (δ) + γ

−1
x (δ). The process disturbance bounds are for all k ≥ 0,

0 ≤ i ≤ k
γw(|ŵ(i|k)|) ≤ δ γw(|w(k)|) ≤ δ

and we have that |w(i)− ŵ(i|k)| ≤ γ−1
w (δ) + γ

−1
w (δ). A similar argu-

ment gives for the measurement disturbance |v(i)− v̂(i|k)| ≤ γ−1
w (δ)+

γ−1
w (δ). Since −(v(i)− v̂(i|k)) = h(x(i))− h(x̂(i|k)), we have that

|h(x(i))− h(x̂(i|k))| ≤ γ−1
w (δ)+ γ

−1
w (δ)

We substitute these bounds in (4.7) and obtain for all k ≥ 0

|x(k)− x̂(k)| ≤ β
(
γ−1
x (δ)+γ

−1
x (δ)

)
+ (γ1+γ2)

(
γ−1
w (δ)+γ

−1
w (δ)

)
in which β(s) := β(s,0) is aK-function. Finally we choose δ such that
the right-hand side is less than ε, which is possible since the right-hand
side defines aK-function, which goes to zero with δ. This gives for all
k ≥ 0

|x(k)− x̂(k)| ≤ ε

and part (b) of the robust GAS definition is established. �

4.2.1 State Estimation as Optimal Control of Estimate Error

Given the many structural similarities between estimation and regu-
lation, the reader may wonder why the stability analysis of the full
information estimator presented in the previous section looks rather
different than the zero-state regulator stability analysis presented in
Chapter 2. To provide some insight into essential differences, as well
as similarities, between estimation and regulation, consider again the
estimation problem in the simplest possible setting with a linear time
invariant model and Gaussian noise

x+ = Ax +Gw w ∼ N(0,Q)
y = Cx + v v ∼ N(0, R) (4.8)

and random initial state x(0) ∼ N(x(0), P−(0)). In full information
estimation, we define the objective function

VT (χ(0),ω) =
1
2

(
|χ(0)− x(0)|2(P−(0))−1 +

T−1∑
i=0

|ω(i)|2Q−1 + |ν(i)|2R−1

)
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subject to χ+ = Aχ + Gω, y = Cχ + ν . Denote the solution to this
optimization as

(x̂(0|T), ŵT ) = arg min
χ(0),ω

VT (χ(0),ω)

and the trajectory of state estimates comes from the model x̂(i+1|T) =
Ax̂(i|T)+Gŵ(i|T). We define estimate error as x̃(i|T) = x(i)−x̂(i|T)
for 0 ≤ i ≤ T − 1, T ≥ 1.

Because the system is linear, the estimator is stable if and only if it is
stable with zero process and measurement disturbances. So analyzing
stability is equivalent to the following simpler question. If noise-free
data are provided to the estimator, (w(i), v(i)) = 0 for all i ≥ 0 in
(4.8), is the estimate error asymptotically stable as T → ∞ for all x0?
We next make this statement precise. First we note that the noise-free
measurement satisfies y(i) − Cx̂(i|T) = Cx̃(i|T),0 ≤ i ≤ T and the
initial condition term can be written in estimate error as x̂(0)−x(0) =
−(x̃(0)−a) in which a = x(0)−x(0). For the noise-free measurement
we can therefore rewrite the cost function as

VT (a, x̃(0),w) =
1
2

(∣∣x̃(0)− a∣∣2
(P−(0))−1 +

T−1∑
i=0

∣∣Cx̃(i)∣∣2
R−1 + |w(i)|2Q−1

)
(4.9)

in which we list explicitly the dependence of the cost function on pa-
rameter a. For estimation we solve

min
x̃(0),w

VT (a, x̃(0),w) (4.10)

subject to x̃+ = Ax̃ +Gw. Now consider problem (4.10) as an optimal
control problem using w as manipulated variable and minimizing an
objective that measures size of estimate error x̃ and control w. We
denote the optimal solution as x̃0(0;a) and w0(a). Substituting these
into the model equation gives optimal estimate error x̃0(j|T ;a),0 ≤
j ≤ T ,0 ≤ T . Parameter a denotes how far x(0), the system’s ini-
tial state generating the measurement, is from x(0), the prior. If we
are lucky and a = 0, the optimal solution is (x̃0,w0) = 0, and we
achieve zero cost in V0

T and zero estimate error x̃(j|T) at all time in
the trajectory 0 ≤ j ≤ T for all time T ≥ 1. The stability analysis in
estimation is to show that the origin for x̃ is asymptotically stable. In
other words, we wish to show there exists a KL-function β such that∣∣∣x̃0(T ;a)

∣∣∣ ≤ β(|a| , T ) for all T ∈ I≥0.
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We note the following differences between standard regulation and
the estimation problem (4.10). First we see that (4.10) is slightly non-
standard because it contains an extra decision variable, the initial state,
and an extra term in the cost function, (4.9). Indeed, without this extra
term, the regulator could choose x̃(0) = 0 to zero the estimate error
immediately, choose w = 0, and achieve zero cost in V0

T (a) for all a.
The nonstandard regulator allows x̃(0) to be manipulated as a decision
variable, but penalizes its distance from a. Next we look at the stability
question. The stability analysis is to show there exists KL-function β
such that

∣∣∣x̃0(T ;a)
∣∣∣ ≤ β(|a| , T ) for all T ∈ I≥0. Here convergence is

a question about the terminal state in a sequence of different optimal
control problems with increasing horizon length T . That is also not the
standard regulator convergence question, which asks how the state tra-
jectory evolves using the optimal control law. In standard regulation,
we inject the optimal first input and ask whether we are successfully
moving the system to the origin as time increases. In estimation, we
do not inject anything into the system; we are provided more informa-
tion as time increases and ask whether our explanation of the data is
improving (terminal estimate error is decreasing) as time increases.

Because stability is framed around the behavior of the terminal
state, we would not choose backward dynamic programming (DP) to
solve (4.10), as in standard regulation. We do not seek the optimal first
control move as a function of a known initial state. Rather we seek
the optimal terminal state x̃0(T ;a) as a function of the parameter a
appearing in the cost function. This problem is better handled by for-
ward DP as discussed in Sections 1.3.2 and 1.4.3 of Chapter 1 when
solving the full information state estimation problem. Exercise 4.12
discusses how to solve (4.10); we obtain the following recursion for the
optimal terminal state

x̃0(k+ 1;a) = (A− L̃(k)C) x̃0(k;a) (4.11)

for k ≥ 0. The initial condition for the recursion is x̃0(0;a) = a. The
time-varying gains L̃(k) and associated cost matrices P−(k) required
are

P−(k+ 1) = GQG′ +AP−(k)A′

−AP−(k)C′(CP−(k)C′ + R)−1CP−(k)A (4.12)

L̃(k) = AP−(k)C′(CP−(k)C′ + R)−1 (4.13)

in which P−(0) is specified in the problem. As expected, these are
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the standard estimator recursions developed in Chapter 1. Asymp-
totic stability of the estimate error can be established by showing that
V(k, x̃) := (1/2)x̃′P(k)−1x̃ is a Lyapunov function for (4.11) (Jazwin-
ski, 1970, Theorem 7.4). Notice that this Lyapunov function is not the
optimal cost of (4.10) as in a standard regulation problem. The optimal
cost of (4.10), V0

T (a), is an increasing function of T rather than a de-
creasing function of T as required for a Lyapunov function. Also note
that the argument used in Jazwinski (1970) to establish that V(k,x)
is a Lyapunov function for the linear system is more complicated than
the argument used in Section 4.2 to prove stability of full information
estimation for the nonlinear system. Although one can find Lyapunov
functions valid for estimation, they do not have the same simple con-
nection to optimal cost functions as in standard regulation problems,
even in the linear, unconstrained case. Stability arguments based in-
stead on properties of V0

T (a) are simpler and more easily adapted to
cover new situations arising in research problems. If a Lyapunov func-
tion is required for further analysis, a converse theorem guarantees its
existence.

4.2.2 Duality of Linear Estimation and Regulation

For linear systems, the estimate error x̃ in full information and state x
in regulation to the origin display an interesting duality that we sum-
marize briefly here. Consider the following steady-state estimation and
infinite horizon regulation problems.

Estimator problem.

x(k+ 1) = Ax(k)+Gw(k)
y(k) = Cx(k)+ v(k)

R > 0 Q > 0 (A,C) detectable (A,G) stabilizable

x̃(k+ 1) =
(
A− L̃C

)
x̃(k)

Regulator problem.

x(k+ 1) = Ax(k)+ Bu(k)
y(k) = Cx(k)

R > 0 Q > 0 (A, B) stabilizable (A,C) detectable

x(k+ 1) = (A+ BK)x(k)
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Regulator Estimator
A A′

B C′

C G′

k l = N − k
Π(k) P−(l)

Π(k− 1) P−(l+ 1)
Π P−

Q Q
R R
Pf P−(0)
K −L̃

′

A+ BK (A− L̃C)′
x x̃′

Regulator Estimator
R > 0, Q > 0 R > 0, Q > 0
(A, B) stabilizable (A,C) detectable
(A,C) detectable (A,G) stabilizable

Table 4.2: Duality variables and stability conditions for linear quad-
ratic regulation and least squares estimation.

In Appendix A, we derive the dual dynamic system following the ap-
proach in Callier and Desoer (1991), and obtain the duality variables in
regulation and estimation listed in Table 4.2.

We also have the following result connecting controllability of the
original system and observability of the dual system

Lemma 4.9 (Duality of controllability and observability). (A, B) is con-
trollable (stabilizable) if and only if (A′, B′) is observable (detectable).

This result can be established directly using the Hautus lemma and
is left as an exercise. This lemma and the duality variables allows us to
translate stability conditions for infinite horizon regulation problems
into stability conditions for full information estimation problems and
vice versa. For example, the following is a basic theorem covering con-
vergence of Riccati equations in the form that is useful in establishing
exponential stability of regulation as discussed in Chapter 1.

Theorem 4.10 (Riccati iteration and regulator stability). Given (A, B)
stabilizable, (A,C) detectable, Q > 0, R > 0, Pf ≥ 0, and the discrete
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Riccati equation

Π(k− 1) = C′QC +A′Π(k)A−
A′Π(k)B(B′Π(k)B + R)−1B′Π(k)A, k = N, . . . ,1

Π(N) = Pf

Then

(a) There exists Π ≥ 0 such that for every Pf ≥ 0

lim
k→−∞

Π(k) = Π

and Π is the unique solution of the steady-state Riccati equation

Π = C′QC +A′ΠA−A′ΠB(B′ΠB + R)−1B′ΠA

among the class of positive semidefinite matrices.

(b) The matrix A+ BK in which

K = −(B′ΠB + R)−1B′ΠA

is a stable matrix.

Bertsekas (1987, pp.59–64) provides a proof for a slightly different
version of this theorem. Exercise 4.13 explores translating this theorem
into the form that is useful for establishing exponential convergence
of full information estimation.

4.3 Moving Horizon Estimation

As displayed in Figure 1.4 of Chapter 1, in MHE we consider only the N
most recent measurements, yN(T) = {y(T−N),y(T−N+1), . . . y(T−
1)}. For T > N, the MHE objective function is given by

V̂T (χ(T −N),ω) = ΓT−N(χ(T −N))+
T−1∑
i=T−N

`i(ω(i), ν(i))

subject to χ+ = f(χ,ω), y = h(χ)+ν . The MHE problem is defined to
be

min
χ(T−N),ω

V̂T (χ(T −N),ω) (4.14)

in whichω = {ω(T−N), . . . ,ω(T−1)}. The designer chooses the prior
weighting Γk(·) for k > N. Until the data horizon is full, i.e., for times
T ≤ N, we generally define the MHE problem to be the full information
problem.
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4.3.1 Zero Prior Weighting

Here we discount the early data completely and choose Γi(·) = 0 for
all i ≥ N. Because it discounts the past data completely, this form of
MHE must be able to asymptotically reconstruct the state using only
the most recent N measurements. The first issue is establishing exis-
tence of the solution. Unlike the full information problem, in which the
positive definite initial penalty guarantees that the optimization takes
place over a bounded (compact) set, here there is zero initial penalty.
So we must restrict the system further than i-IOSS to ensure solution
existence. We show next that observability is sufficient for this pur-
pose.

Definition 4.11 (Observability). The system x+ = f(x,w),y = h(x) is
observable if there exist finite No ∈ I≥1, γ1(·), γ2(·) ∈ K such that for
every two initial states z1 and z2, and any two disturbance sequences
w1,w2, and all k ≥ No

|z1 − z2| ≤ γ1
(
‖w1 −w2‖0:k−1

)
+ γ2

( ∥∥yz1,w1 − yz2,w2

∥∥
0:k
)

At any time T ≥ N consider decision variables χ(T −N) = x(T −N)
and ω(i) = w(i) for T − N ≤ i ≤ T − 1. For these decision variables
the cost function has the value

V̂T (χ(T −N),ω) =
T−1∑
i=T−N

`i(w(i), v(i)) (4.15)

which is less than V∞ defined in the full information problem. Observ-
ability then ensures that for all k ≥ N ≥ No

|x(k−N)− x̂(k−N|k)| ≤ γ2(‖v‖k−N:k)

Sincev(k) is bounded for all k ≥ 0 by Assumption 4.3, observability has
bounded the distance between the initial estimate in the horizon and
the system state for all k ≥ N. That along with continuity of V̂T (χ,ω)
ensures existence of the solution to the MHE problem by the Weier-
strass theorem (Proposition A.7). But the solution does not have to be
unique.

We show next that final-state observability (FSO) is the natural sys-
tem requirement for MHE with zero prior weighting to provide stability
and convergence.

Definition 4.12 (Final-state observability). The system x+ = f(x,w),
y = h(x) is final-state observable (FSO) if there exist finite No ∈ I≥1,
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γ1(·), γ2(·) ∈ K such that for every two initial states z1 and z2, and
any two disturbance sequences w1,w2, and all k ≥ No

|x(k;z1,w1)− x(k;z2,w2)| ≤ γ1
(
‖w1 −w2‖0:k−1

)
+

γ2
( ∥∥yz1,w1 − yz2,w2

∥∥
0:k
)

Notice that FSO is not the same as observability. It is weaker than
observability and stronger than i-IOSS (detectability) as discussed in Ex-
ercise 4.11. Consider two equal disturbance sequences, w1 = w2, and
two equal measurement sequences y1 = y2. FSO implies that for every
pair z1 and z2, x(No;z1,w1) = x(No;z2,w1); we know the final states
at time k = No are equal. FSO does not imply that the initial states are
equal as required by observability. We can of course add the nonneg-
ative term β(|z1 − z2| , k) to the right-hand side of the FSO inequality
and obtain the i-IOSS inequality, so FSO implies i-IOSS. Exercise 4.11
treats observability, FSO, and detectability of the linear time-invariant
system, which can be summarized compactly in terms of the eigen-
values of the partitioned state transition matrix corresponding to the
unobservable modes.

Next we show that the MHE cost function converges to zero as T →∞
for all x0 and converging disturbances (w(i), v(i)). Since (w(i), v(i))
converges to zero, (4.15) implies that V̂T converges to zero as T → ∞.
The optimal cost at T , V̂0

T , is bounded above by V̂T so V̂0
T also converges

to zero. The optimal cost is

V̂0
T =

T−1∑
i=T−N

`i
(
ŵ(i|T),y(i)− h(x̂(i|T))

)
in which (x̂(i|T), ŵ(i|T)) are the optimal decisions for T − N ≤ i ≤
T − 1, T ≥ N. Since V̂0

T converges to zero, we have

y(i)− h(x̂(i|T))→ 0 ŵ(i|T)→ 0

as T → ∞. Since y = h(x) + v and v(i) converges to zero, and w(i)
converges to zero, we also have

h(x(i))− h(x̂(i|T))→ 0 w(i)− ŵ(i|T)→ 0 (4.16)

for T −N ≤ i ≤ T − 1, T ≥ N.
We have the following theorem for this estimator.

Theorem 4.13 (Robust GAS of MHE with zero prior weighting). Consider
an observable system and measurement sequence generated by (4.1)
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with disturbances satisfying Assumption 4.3. The MHE estimate with
zero prior weighting, N ≥ No, and stage cost satisfying (4.5), is robustly
GAS.

Proof. We establish the two parts of Definition 4.7

(a) Consider the system to be at state x(k−N) at time k−N and subject
to disturbances wk = {w(k−N), . . .w(k−1)}. At time k, the estimator
has initial state x̂(k−N|k) and disturbance sequence ŵk. We have that
x(k;x(k−N), k−N,wk) = x(k) and x(k; x̂(k−N|k), k−N, ŵk) = x̂(k),
and the FSO property gives for k ≥ N ≥ No

|x(k)− x̂(k)| ≤
γ1
( ∥∥wk − ŵk

∥∥
k−N:k−1

)
+ γ2

( ∥∥h(xk)− h(x̂k)∥∥k−N:k
)

(4.17)

By (4.16) the right-hand side converges to zero as k→∞, which gives

x̂(k)→ x(k)

as k→∞ for all x0 and measurement sequence generated by (4.1) with
disturbances satisfying Assumption 4.3.

(b) For k ≤ N, MHE is equivalent to full information estimation, and
Theorem 4.8 applies. So we consider k > N. Assume (4.6) holds for
some δ > 0. This implies∥∥wk − ŵk

∥∥
k−N:k−1 ≤ γ−1

w (δ)+ γ
−1
w (δ)∥∥h(xk)− h(x̂k)∥∥k−N:k ≤ γ−1

w (δ)+ γ
−1
w (δ)

Using these bounds in (4.17) gives for k > N

|x(k)− x̂(k)| ≤ (γ1 + γ2)
(
γ−1
w (δ)+ γ

−1
w (δ)

)
Choose an ε > 0. Since the right-hand side defines aK-function, we can
choose δ > 0 small enough to meet the bound |x(k)− x̂(k)| ≤ ε for all
k > N. Coupled with Theorem 4.8 to cover k ≤ N, we have established
part (b) of robust GAS. �

4.3.2 Nonzero Prior Weighting

The two drawbacks of zero prior weighting are: the system had to be
assumed observable rather than detectable to ensure existence of the
solution to the MHE problem; and a large horizon N may be required
to obtain performance comparable to full information estimation. We
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address these two disadvantages by using nonzero prior weighting. To
get started, we use forward DP, as we did in Chapter 1 for the uncon-
strained linear case, to decompose the full information problem exactly
into the MHE problem (4.14) in which Γ(·) is chosen as arrival cost.

Definition 4.14 (Full information arrival cost). The full information ar-
rival cost is defined as

ZT (p) = min
χ(0),ω

VT (χ(0),ω) (4.18)

subject to

χ+ = f(χ,ω) y = h(χ)+ ν χ(T ;χ(0),ω) = p

We have the following equivalence.

Lemma 4.15 (MHE and full information estimation). The MHE problem
(4.14) is equivalent to the full information problem (4.3) for the choice
Γk(·) = Zk(·) for all k > N and N ≥ 1.

The proof is left as an exercise. This lemma is the essential insight
provided by the DP recursion. But notice that evaluating arrival cost in
(4.18) has the same computational complexity as solving a full infor-
mation problem. So next we generate an MHE problem that has simpler
computational requirements, but retains the excellent stability proper-
ties of full information estimation. We proceed as follows.

Definition 4.16 (MHE arrival cost). The MHE arrival cost Ẑ(·) is defined
for T > N as

ẐT (p) =min
z,ω

V̂T (z,ω)

=min
z,ω

ΓT−N(z)+
T−1∑
i=T−N

`i(ω(i), ν(i)) (4.19)

subject to

χ+ = f(χ,ω) y = h(χ)+ ν χ(T ;z, T −N,ω) = p

For T ≤ N we usually define the MHE problem to be the full informa-
tion problem, so ẐT (·) = ZT (·) and V̂0

T = V0
T . Notice from the second

equality in the definition that the MHE arrival cost at T is defined in
terms of the prior weighting at time T −N.

We next show that choosing a prior weighting that underbounds
the MHE arrival cost is the key sufficient condition for stability and
convergence of MHE.
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V̂0
k

p
x̂(k)

Γk(p)

Ẑk(p)

Figure 4.1: MHE arrival cost Ẑk(p), underbounding prior weighting
Γk(p), and MHE optimal value V̂ 0

k ; for all p and k > N,
Ẑk(p) ≥ Γk(p) ≥ V̂ 0

k , and Ẑk(x̂(k)) = Γk(x̂(k)) = V̂ 0
k .

Assumption 4.17 (Prior weighting). We assume that Γk(·) is continuous
and satisfies the following inequalities for all k > N

(a) Upper bound

Γk(p) ≤ Ẑk(p) =min
z,ω

Γk−N(z)+
k−1∑
i=k−N

`i(ω(i), ν(i)) (4.20)

subject to χ+ = f(χ,ω),y = h(χ)+ ν,χ(k;z, k−N,ω) = p.

(b) Lower bound
Γk(p) ≥ V̂0

k + γp(
∣∣p − x̂(k)∣∣) (4.21)

in which γp ∈ K∞.

This assumption is depicted in Figure 4.1.
To establish convergence of the MHE estimates, it will prove useful

to have an upper bound for the MHE optimal cost. Next we establish
the stronger result that the MHE arrival cost is bounded above by the
full information arrival cost as stated in the following proposition.

Proposition 4.18 (Arrival cost of full information greater than MHE).

ẐT (·) ≤ ZT (·) T ≥ 1 (4.22)

Proof. We know this result holds for T ∈ I1:N because MHE is equivalent
to full information for these T . Next we show that the inequality at T
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implies the inequality at T + N. Indeed, we have by the definition of
the arrival costs

ẐT+N(p) =min
z,ω

ΓT (z)+
T+N−1∑
i=T

`i(ω(i), ν(i))

ZT+N(p) =min
z,ω

ZT (z)+
T+N−1∑
i=T

`i(ω(i), ν(i))

in which both optimizations are subject to the same constraints χ+ =
f(χ,ω), y = h(χ)+ν , χ(k;z, k−N,ω) = p. From (4.20) ΓT (·) ≤ ẐT (·),
and ẐT (·) ≤ ZT (·) by assumption. Together these imply the optimal
values satisfy ẐT+N(p) ≤ ZT+N(p) for all p, and we have established
ẐT+N(·) ≤ ZT+N(·). Therefore we have extended (4.22) from T ∈ I1:N to
T ∈ I1:2N . Continuing this recursion establishes (4.22) for T ∈ I≥1. �

Given (4.22) we also have the analogous inequality for the optimal
costs of MHE and full information

V̂0
T ≤ V0

T T ≥ 1 (4.23)

Assumption 4.19 (MHE detectable system). We say a system x+ =
f(x,w), y = h(x) is MHE detectable if the system augmented with
an extra disturbance w2

x+ = f(x,w1)+w2 y = h(x)

is i-IOSS with respect to the augmented disturbance (w1,w2).

Note that MHE detectable is stronger than i-IOSS (detectable) but
weaker than observable and FSO. See also Exercise 4.10.

Theorem 4.20 (Robust GAS of MHE). Consider an MHE detectable sys-
tem and measurement sequence generated by (4.1) with disturbances
satisfying Assumption 4.3. The MHE estimate defined by (4.14) using
the prior weighting function Γk(·) satisfying Assumption 4.17 and stage
cost satisfying Assumption 4.5 is robustly GAS.

Proof. The MHE solution exists for T ≤ N by the existence of the full
information solution, so we consider T > N. For disturbances satisfy-
ing Assumption 4.3, we established in the proof of Theorem 4.8 for the
full information problem that V0

T ≤ V∞ for all T ≥ 1 including T = ∞.
From Proposition 4.18 and (4.23), we have that the MHE optimal cost
also has the upper bound V̂0

T ≤ V∞ for all T ≥ 1 including T = ∞. Since
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we have assumed f(·) and h(·) are continuous, Γi(·) is continuous for
i > N, and `i(·) is continuous for all i ≥ 0, the MHE cost function V̂T (·)
is continuous for T > N. The lower bound on Γi for i > N and `i for all
i ≥ 0 imply that for T > N, V̂T (χ(T −N),ω) goes to infinity as either
χ(T −N) or ω goes to infinity. Therefore the MHE optimization takes
place over a bounded, closed set for T > N, and the the solution exists
by the Weierstrass theorem.

(a) Consider the solution to the MHE problem at time T , (x̂(T−N|T), ŵT ).
We have that

V̂0
T = ΓT−N(x̂(T −N|T))+

T−1∑
i=T−N

`i(ŵ(i|T), v̂(i|T))

From (4.21) we have

ΓT−N(x̂(T −N|T)) ≥ V̂0
T−N + γp(|x̂(T −N|T)− x̂(T −N|T −N)|)

Using this inequality in the previous equation we have

V̂0
T ≥ V̂0

T−N + γp(|x̂(T −N|T)− x̂(T −N|T −N)|)+
T−1∑
i=T−N

`i(ŵ(i|T), v̂(i|T)) (4.24)

and we have established that the sequence {V̂0
T+iN} is a nondecreasing

sequence in i = 1,2, . . . for any fixed T ≥ 1. Since V̂0
k is bounded above

for all k ≥ 1, the sequence V̂0
T+iN converges as i → ∞ for any T ≥ 1.

This convergence gives as T →∞

γp
(
|x̂(T −N|T)− x̂(T −N|T −N)|

)
→ 0 (4.25)

T−1∑
i=T−N

`i(ŵ(i|T), v̂(i|T))→ 0 (4.26)

Next we create a single estimate sequence by concatenating MHE se-
quences from times N,2N,3N, . . .. This gives the state sequence and
corresponding w1 and w2 sequences listed in the following table so
that

x+ = f(x,w1)+w2 for k ≥ 0 y = h(x)+ v
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x̂(N + 1|2N)

x̂(0|N)

x̂(1|N)

x̂(N − 1|N)
x̂(N|N)

· · ·
ŵ(0|N)

k 2NN0

x

x̂(2N|2N)
ŵ(N|2N)

· · ·

ŵ(2N − 1|2N)

ŵ(N − 1|N)

x̂(N|2N)

x̂(N|2N)− x̂(N|N)

x̂(2N − 1|2N)

Figure 4.2: Concatenating two MHE sequences to create a single
state estimate sequence from time 0 to 2N.

x w1 w2 v
x̂(0|N) ŵ(0|N) 0 v̂(0|N)
x̂(1|N) ŵ(1|N) 0 v̂(1|N)
· · · · · · · · · · · ·
x̂(N − 1|N) ŵ(N − 1|N) x̂(N|2N)− x̂(N|N) v̂(N − 1|N)
x̂(N|2N) ŵ(N|2N) 0 v̂(N|2N)
x̂(N + 1|2N) ŵ(N + 1|2N) 0 v̂(N + 1|2N)
· · · · · · · · · · · ·
x̂(2N − 1|2N) ŵ(2N − 1|2N) x̂(2N|3N)− x̂(2N|2N) v̂(2N − 1|2N)
x̂(2N|3N) ŵ(2N|3N) 0 v̂(2N|3N)
x̂(2N + 1|3N) ŵ(2N + 1|3N) 0 v̂(2N + 1|3N)
· · · · · · · · · · · ·

Notice that everyN rows in the array, there is a nonzero entry in the w2

column. That disturbance is required to move from one MHE sequence
to the next as shown in Figure 4.2. But (4.25) implies thatw2(k)→ 0 as
integer k → ∞, and (4.26) implies that w1(k) → 0 as k → ∞. Therefore
|(w1(k),0)− (w1(k),w2(k))| → 0 as k → ∞. We also have from (4.26)
that h(x(k)) − h(x(k)) = v(k) − v(k) → 0 as k → ∞. Next we apply
the MHE-detectability assumption to the x and x sequences, to obtain
the inequality

|x(k)− x(k)| ≤ β(|x(0)− x̂(0|N)| , k)+
γ1
(
‖(w1,0)− (w1,w2)‖0:k−1

)
+ γ2

(
‖h(x)− h(x)‖0:k

)
(4.27)
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From Proposition 4.2 we conclude that x(k) → x(k) as k → ∞. There-
fore we have that x̂(iN+j|(i+1)N)→ x(iN+j) for all j = 0,1, . . . ,N−1
as integer i → ∞. Note that only x̂(iN|iN) is missing from this argu-
ment. But x(iN) = f(x(iN−1),w(iN−1)) and x̂(iN|iN) = f(x̂(iN−
1|iN), ŵ(iN−1|iN)). Since x̂(iN−1|iN)→ x(iN−1), ŵ(iN−1|iN)→
w(iN − 1), and f(·) is continuous, we have that x̂(iN|iN)→ x(iN) as
well. We can repeat this concatenation construction using the MHE se-
quences N + j,2N + j,3N + j, . . . for j = 1, . . . ,N − 1 to conclude that
x̂(k)→ x(k) as k→∞, and convergence is established.

(b) As previously, assume the following holds for some δ > 0

γx(|x0 − x0|)+
∞∑
i=0

γw
(
|(w(i), v(i))|

)
≤ δ

We wish to show that for every ε > 0 there exists δ > 0 such that
this equation implies |x(k;x0,w)− x̂(k)| ≤ ε for all k ≥ 0. We know
such a δ exists for k ≤ N from Theorem 4.8. We therefore consider
k > N. The optimal MHE cost is bounded above by the optimal full
information, which is bounded above by δ, V̂0

T ≤ V0
T ≤ δ for T ≥ 0. So

we have using T = N,

γx(|x̂(0|N)− x0|) ≤ δ γx(|x0 − x0|) ≤ δ

which gives |x(0)− x̂(0|N)| ≤ (γ−1
x +γ

−1
x )(δ). From (4.24) and the fact

that V̂0
T ≤ δ, we know that

γp
(
|x̂((i+ 1)N|iN)− x̂(iN|iN)|

)
≤ δ

|x̂((i+ 1)N|iN)− x̂(iN|iN)| ≤ γ−1
p (δ)

which implies |w2(k)| ≤ γ−1
p (δ) for all k ≥ 0. Examining the terms in

the w1 column, we conclude as before that |w(k)−w1(k)| ≤ (γ−1
p +

γ−1
w )(δ) for all k ≥ 0. The v column gives the bound

|v(k)− v(k)| = |h(x(k))− h(x(k))| ≤ (γ−1
w + γ

−1
w )(δ)

We also have the bounds

‖(w1,0)− (w1,w2)‖ =max
k≥0

|(w1(k),0)− (w1(k),w2(k))|

=max
k≥0

|(w1(k)−w1(k),−w2(k))|

≤max
k≥0

|w1(k)−w1(k)| + |w2(k)|

≤ (2γ−1
p + γ

−1
w )(δ)
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Substituting these into (4.27) gives

|x(k)− x(k)| ≤ β
(
(γ−1
x + γ

−1
x )(δ)

)
+ γ1

(
(2γ−1

p + γ
−1
w )(δ)

)
+

γ2
(
(γ−1
w + γ

−1
w )(δ)

)
Recall β(s) := β(s,0), which is a K-function, and the right-hand side
therefore defines aK-function, so we can make |x(k)− x(k)| as small
as desired for all k > N. This gives a bound for

∣∣x(iN)− x̂(iN + j|iN)∣∣
for all i ≥ 1 and j satisfying 0 ≤ j ≤ N − 1. Next we use the continuity
of f(·) to make |x(iN)− x̂(iN|iN)| small for all i ≥ 0. Finally we
repeat the concatenation construction using the MHE sequences N +
j,2N+ j,3N+ j, . . . for j = 1, . . . ,N−1 to make |x(k)− x̂(k)| as small
as desired for all k > N, and part (b) of the robust GAS definition is
established. �

Satisfying the prior weighting inequality (4.20) is computationally
less complex than satisfying the equality in the MHE arrival cost re-
cursion (Definition 4.16), as we show subsequently in the constrained,
linear case. But for the general nonlinear case, ensuring satisfaction of
even (4.20) remains a key technical challenge for MHE research.

4.3.3 Constrained Estimation

Constraints in estimation may be a useful way to add information to the
estimation problem. We may wish to enforce physically known facts
such as: concentrations of impurities, although small, must be non-
negative, fluxes of mass and energy must have the correct sign given
temperature and concentration gradients, and so on. Unlike the reg-
ulator, the estimator has no way to enforce these constraints on the
system. Therefore, it is important that any constraints imposed on the
estimator are satisfied by the system generating the measurements.
Otherwise we may prevent convergence of the estimated state to the
system state. For this reason, care should be used in adding constraints
to estimation problems.

Because we have posed state estimation as an optimization problem,
it is straightforward to add constraints to the formulation. We assume
that the system generating the data satisfy the following constraints.

Assumption 4.21 (Estimator constraint sets).

(a) For all k ∈ I≥0, the sets Wk, Xk, and Vk are nonempty and closed,
and Wk and Vk contain the origin.
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(b) For all k ∈ I≥0, the disturbances and state satisfy

x(k) ∈ Xk w(k) ∈Wk v(k) ∈ Vk

(c) The prior satisfies x0 ∈ X0.

Constrained full information. The constrained full information esti-
mation objective function is

VT (χ(0),ω) = `x
(
χ(0)− x0

)
+
T−1∑
i=0

`i(ω(i), ν(i)) (4.28)

subject to

χ+ = f(χ,ω) y = h(χ)+ ν
χ(i) ∈ Xi ω(i) ∈Wi ν(i) ∈ Vi i ∈ I0:T−1

The constrained full information problem is

min
χ(0),ω

VT (χ(0),ω) (4.29)

Theorem 4.22 (Robust GAS of constrained full information). Consider
an i-IOSS (detectable) system and measurement sequence generated by
(4.1) with constrained, convergent disturbances satisfying Assumptions
4.3 and 4.21. The constrained full information estimator (4.29) with
stage cost satisfying Assumption 4.5 is robustly GAS.

Constrained MHE. The constrained moving horizon estimation ob-
jective function is

V̂T (χ(T −N),ω) = ΓT−N(χ(T −N))+
T−1∑
i=T−N

`i(ω(i), ν(i)) (4.30)

subject to

χ+ = f(χ,ω) y = h(χ)+ ν
χ(i) ∈ Xi ω(i) ∈Wi ν(i) ∈ Vi i ∈ IT−N:T−1

The constrained MHE is given by the solution to the following problem

min
χ(T−N),ω

V̂T (χ(T −N),ω) (4.31)
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Theorem 4.23 (Robust GAS of constrained MHE). Consider an MHE de-
tectable system and measurement sequence generated by (4.1) with con-
vergent, constrained disturbances satisfying Assumptions 4.3 and 4.21.
The constrained MHE estimator (4.31) using the prior weighting func-
tion Γk(·) satisfying Assumption 4.17 and stage cost satisfying Assump-
tion 4.5 is robustly GAS.

Because the system satisfies the state and disturbance constraints
due to Assumption 4.21, both full information and MHE optimization
problems are feasible at all times. Therefore the proofs of Theorems
4.22 and 4.23 closely follow the proofs of their respective unconstrained
versions, Theorems 4.8 and 4.20, and are omitted.

4.3.4 Smoothing and Filtering Update

We next focus on constrained linear systems

x+ = Ax +Gw y = Cx + v (4.32)

We proceed to strengthen several results of the previous sections for
this special case. First, the i-IOSS assumption of full information es-
timation and the MHE detectability assumption both reduce to the as-
sumption that (A,C) is detectable in this case. We usually choose a
constant quadratic function for the estimator stage cost for all i ∈ I≥0

`i(w,v) = (1/2)(|w|2Q−1 + |v|2R−1) Q,R > 0 (4.33)

In the unconstrained linear problem, we can of course find the full
information arrival cost exactly; it is

Zk(z) = V0
k + (1/2) |z − x̂(k)|(P−(k))−1 k ≥ 0

in which P−(k) satisfies the recursion (4.12) and x̂(k) is the full infor-
mation estimate at time k. We use this quadratic function for the MHE
prior weighting.

Assumption 4.24 (Prior weighting for linear system).

Γk(z) = V̂0
k + (1/2) |z − x̂(k)|(P−(k))−1 k > N (4.34)

in which V̂0
k is the optimal MHE cost at time k.

Because the unconstrained arrival cost is available, we usually choose
it to be the prior weighting in MHE, Γk(·) = Zk(·), k ≥ 0. This choice
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implies robust GAS of the MHE estimator also for the constrained case
as we next demonstrate. To ensure the form of the estimation problem
to be solved online is a quadratic program, we specialize the constraint
sets to be polyhedral regions.

Assumption 4.25 (Polyhedral constraint sets). For all k ∈ I≥0, the sets
Wk, Xk, and Vk in Assumption 4.21 are nonempty, closed polyhedral
regions containing the origin.

Corollary 4.26 (Robust GAS of constrained MHE). Consider a detectable
linear system and measurement sequence generated by (4.32) with con-
vergent, constrained disturbances satisfying Assumptions 4.3 and 4.25.
The constrained MHE estimator (4.31) using prior weighting function
satisfying (4.34) and stage cost satisfying (4.33) is robustly GAS.

This corollary follows as a special case of Theorem 4.23.
The MHE approach discussed to this point uses at all time T > N the

MHE estimate x̂(T − N) and prior weighting function ΓT−N(·) derived
from the unconstrained arrival cost as shown in (4.34). We call this
approach a “filtering update” because the prior weight at time T is
derived from the solution of the MHE “filtering problem” at time T −N,
i.e., the estimate of x̂(T−N) := x̂(T−N|T−N) given measurements up
to time T −N−1. For implementation, this choice requires storage of a
window of N prior filtering estimates to be used in the prior weighting
functions as time progresses.

Next we describe a “smoothing update” that can be used instead.
In the smoothing update we wish to use x̂(T − N|T − 1) (instead of
x̂(T − N|T − N)) for the prior and wish to find an appropriate prior
weighting based on this choice. For the linear unconstrained problem
we can find an exact prior weighting that gives an equivalence to the
full information problem. When constraints are added to the problem,
however, the smoothing update provides a different MHE than the fil-
tering update. Like the filtering prior, the smoothing prior weighting
does give an underbound for the constrained full information problem,
and therefore maintains the excellent stability properties of MHE with
the filtering update. As mentioned previously the unconstrained full
information arrival cost is given by

ZT−N(z) = V0
T−N + (1/2) |z − x̂(T −N)|2(P−(T−N))−1 T > N (4.35)

in which x̂(T − N) is the optimal estimate for the unconstrained full
information problem. Next we consider using x̂(T−N|T−2) in place of
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TT −NT − 2N

yT−2N:T−N−1

smoothing update
yT−N−1:T−2

y(k)

k

filtering update

MHE problem at T
yT−N:T−1

Figure 4.3: Smoothing update.

x̂(T −N) := x̂(T −N|T −1). We might guess that the proper weight for
this prior estimate would be the smoothed covariance P(T −N|T − 2)
instead of P−(T − N) := P(T − N|T − 1), and that guess is correct,
but not complete. Notice that the smoothed prior x̂(T − N|T − 2) is
influenced by the measurements y0:T−2. But the sum of stage costs in
the MHE problem at time T depends on measurements yT−N:T−1, so we
have to adjust the prior weighting so we do not double count the data
yT−N:T−2. The correct prior weighting for the smoothing update has
been derived by Rao, Rawlings, and Lee (2001), which we summarize
next. The following notation is useful; for any square matrix R and
integer k ≥ 1, define diagk(R) to be the following

diagk(R) :=


R

R
. . .

R


︸ ︷︷ ︸

k times

Ok =



0
C
CA C

...
...

. . .
CAk−2 CAk−3 · · · C



Wk = diagk(R)+Ok(diagk(Q))O′k
We require the smoothed covariance P(T − N|T − 2), which we can
obtain from the following recursion (Rauch, Tung, and Striebel, 1965;
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Bryson and Ho, 1975)

P(k|T) = P(k)+

P(k)A′(P−(k+ 1))−1
(
P(k+ 1|T)− P−(k+ 1)

)
(P−(k+ 1))−1AP(k)

We iterate this equation backwardsN−1 times starting from the known
value P(T − 1|T − 2) := P−(T − 1) to obtain P(T − N|T − 2). The
smoothing arrival cost is then given by

Z̃T−N(z) = V̂0
T−1 + (1/2) |z − x̂(T −N|T − 2)|2(P(T−N|T−2))−1

− (1/2) |yT−N:T−2 −ON−1z|2(WN−1)−1 T > N

See Rao et al. (2001) and Rao (2000, pp.80–93) for a derivation that
shows Z̃T (·) = ZT (·) for T > N.4 Examining this alternative expres-
sion for arrival cost we see that the second term accounts for the use
of the smoothed covariance and the smoothed estimate, and the third
term subtracts the effect of the measurements that have been dou-
ble counted in the MHE objective as well as the smoothed prior esti-
mate. Setting the prior weighting ΓT−N(·) = ZT−N(·) from (4.35) or
ΓT−N(·) = Z̃T−N(·) from (4.4) give the same results as the Kalman fil-
ter for the unconstrained linear problem. But the two arrival costs are
approximations of the true arrival cost and give different results once
constraints are added to the problem or we use a nonlinear system
model. Since the unconstrained arrival cost Z̃k(·) is also an under-
bound for the constrained arrival cost, MHE based on the smoothing
update also provides a robustly GAS estimator for constrained linear
systems satisfying the conditions of Theorem 4.26.

4.4 Extended Kalman Filtering

The extended Kalman filter (EKF) generates estimates for nonlinear sys-
tems by first linearizing the nonlinear system, and then applying the
linear Kalman filter equations to the linearized system. The approach
can be summarized in a recursion similar in structure to the Kalman
filter (Stengel, 1994, pp.387–388)

x̂−(k+ 1) = f(x̂(k),0)
P−(k+ 1) = A(k)P(k)A(k)′ +G(k)QG(k)′

x̂−(0) = x0 P−(0) = Q0

4Note that Rao et al. (2001) and Rao (2000) contain some minor typos in the smoothed
covariance recursion and the formula for Wk.
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The mean and covariance after measurement are given by

x̂(k) = x̂−(k)+ L(k)(y(k)− h(x̂−(k)))
L(k) = P−(k)C(k)′(R + C(k)P−(k)C(k)′)−1

P(k) = P−(k)− L(k)C(k)P−(k)

in which the following linearizations are made

A(k) = ∂f(x,w)
∂x

∣∣∣∣
(x̂(k),0)

G(k) = ∂f(x,w)
∂w

∣∣∣∣
(x̂(k),0)

C(k) = ∂h(x)
∂x

∣∣∣∣
x̂−(k)

The densities of w,v and x0 are assumed to be normal. Many varia-
tions on this theme have been proposed, such as the iterated EKF and
the second-order EKF (Gelb, 1974, 190–192). Of the nonlinear filtering
methods, the EKF method has received the most attention due to its
relative simplicity and demonstrated effectiveness in handling some
nonlinear systems. Examples of implementations include estimation
for the production of silicon/germanium alloy films (Middlebrooks and
Rawlings, 2006), polymerization reactions (Prasad, Schley, Russo, and
Bequette, 2002), and fermentation processes (Gudi, Shah, and Gray,
1994). The EKF is at best an ad hoc solution to a difficult problem,
however, and hence there exist many pitfalls to the practical implemen-
tation of EKFs (see, for example, (Wilson, Agarwal, and Rippin, 1998)).
These problems include the inability to accurately incorporate physi-
cal state constraints and the naive use of linearization of the nonlinear
model.

Until recently, few properties regarding the stability and conver-
gence of the EKF have been established. Recent research shows bounded
estimation error and exponential convergence for the continuous and
discrete EKF forms given observability, small initial estimation error,
small noise terms, and no model error (Reif, Günther, Yaz, and Unbe-
hauen, 1999; Reif and Unbehauen, 1999; Reif, Günther, Yaz, and Unbe-
hauen, 2000). Depending on the system, however, the bounds on initial
estimation error and noise terms may be unrealistic. Also, initial esti-
mation error may result in bounded estimate error but not exponential
convergence, as illustrated by Chaves and Sontag (2002).

Julier and Uhlmann (2004a) summarize the status of the EKF as
follows.

The extended Kalman filter is probably the most widely used
estimation algorithm for nonlinear systems. However, more
than 35 years of experience in the estimation community
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has shown that it is difficult to implement, difficult to tune,
and only reliable for systems that are almost linear on the
time scale of the updates.

We seem to be making a transition from a previous era in which new
approaches to nonlinear filtering were criticized as overly complex be-
cause “the EKF works,” to a new era in which researchers are demon-
strating ever simpler examples in which the EKF fails completely. The
unscented Kalman filter is one of the methods developed specifically
to overcome the problems caused by the naive linearization used in the
EKF.

4.5 Unscented Kalman Filtering

The linearization of the nonlinear model at the current state estimate
may not accurately represent the dynamics of the nonlinear system be-
havior even for one sample time. In the EKF prediction step, the mean
propagates through the full nonlinear model, but the covariance prop-
agates through the linearization. The resulting error is sufficient to
throw off the correction step and the filter can diverge even with a per-
fect model. The unscented Kalman filter (UKF) avoids this linearization
at a single point by sampling the nonlinear response at several points.
The points are called sigma points, and their locations and weights are
chosen to satisfy the given starting mean and covariance (Julier and
Uhlmann, 2004a,b).5 Given x̂ and P , choose sample points, zi, and
weights, wi, such that

x̂ =
∑
i
wizi P =

∑
i
wi(zi − x̂)(zi − x̂)′

Similarly, given w ∼ N(0,Q) and v ∼ N(0, R), choose sample points
ni forw andmi for v . Each of the sigma points is propagated forward
at each sample time using the nonlinear system model. The locations
and weights of the transformed points then update the mean and co-
variance

zi(k+ 1) = f(zi(k),ni(k))
ηi = h(zi)+mi all i

5Note that this idea is fundamentally different than the idea of particle filtering,
which is discussed subsequently. The sigma points are chosen deterministically, for
example as points on a selected covariance contour ellipse or a simplex. The particle
filtering points are chosen by random sampling.
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From these we compute the forecast step

x̂− =
∑
i
wizi ŷ− =

∑
i
wiηi

P− =
∑
i
wi(zi − x̂−)(zi − x̂−)′

After measurement, the EKF correction step is applied after first ex-
pressing this step in terms of the covariances of the innovation and
state prediction. The output error is given as ỹ := y − ŷ−. We next
rewrite the Kalman filter update as

x̂ = x̂− + L(y − ŷ−)
L = E((x − x̂−)ỹ ′)︸ ︷︷ ︸

P−C′

E(ỹỹ ′)−1︸ ︷︷ ︸
(R+CP−C′)−1

P = P− − L E((x − x̂−)ỹ ′)′︸ ︷︷ ︸
CP−

in which we approximate the two expectations with the sigma point
samples

E((x − x̂−)ỹ ′) ≈
∑
i
wi(zi − x̂−)(ηi − ŷ−)′

E(ỹỹ ′) ≈
∑
i
wi(ηi − ŷ−)(ηi − ŷ−)′

See Julier, Uhlmann, and Durrant-Whyte (2000); Julier and Uhlmann
(2004a); van der Merwe, Doucet, de Freitas, and Wan (2000) for more
details on the algorithm. An added benefit of the UKF approach is that
the partial derivatives ∂f(x,w)/∂x, ∂h(x)/∂x are not required. See
also (Nørgaard, Poulsen, and Ravn, 2000) for other derivative-free non-
linear filters of comparable accuracy to the UKF. See (Lefebvre, Bruyn-
inckx, and De Schutter, 2002; Julier and Uhlmann, 2002) for an inter-
pretation of the UKF as a use of statistical linear regression.

The UKF has been tested in a variety of simulation examples taken
from different application fields including aircraft attitude estimation,
tracking and ballistics, and communication systems. In the chemical
process control field, Romanenko and coworkers have compared the
EKF and UKF on a strongly nonlinear exothermic chemical reactor (Ro-
manenko and Castro, 2004), and a pH system (Romanenko, Santos, and
Afonso, 2004). The reactor has nonlinear dynamics and a linear mea-
surement model, i.e., a subset of states is measured. In this case, the
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UKF performs significantly better than the EKF when the process noise
is large. The pH system has linear dynamics but a strongly nonlinear
measurement, i.e., the pH measurement. In this case, the authors show
a modest improvement in the UKF over the EKF.

4.6 Interlude: EKF, UKF, and MHE Comparison

One nice feature enjoyed by the EKF and UKF formulations is the re-
cursive update equations. One-step recursions are computationally ef-
ficient, which may be critical in online applications with short sample
times. The MHE computational burden may be reduced by shorten-
ing the length of the moving horizon, N. But use of short horizons
may produce inaccurate estimates, especially after an unmodeled dis-
turbance. This unfortunate behavior is the result of the system non-
linearity. As we saw in Sections 1.4.3–1.4.4, for linear systems, the full
information problem and the MHE problem are identical to a one-step
recursion using the appropriate state penalty coming from the filtering
Riccati equation. Losing the equivalence of a one-step recursion to full
information or a finite moving horizon problem brings into question
whether the one-step recursion can provide equivalent estimator per-
formance. We show in the following example that the EKF and the UKF
do not provide estimator performance comparable to MHE.

Example 4.27: EKF and UKF

Consider the following set of reversible reactions taking place in a well-
stirred, isothermal, gas-phase batch reactor

A
k1-⇀↽-
k−1

B+ C 2B
k2-⇀↽-
k−2

C

The material balance for the reactor is

d
dt

cAcB
cC

 =
−1 0

1 −2
1 1

[k1cA − k−1cBcC
k2c2

B − k−2cC

]

dx
dt
= fc(x)

with states and measurement

x =
[
cA cB cC

]′
y = RT

[
1 1 1

]
x
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in which cj denotes the concentration of species j in mol/L, R is the
gas constant, and T is the reactor temperature in K. The measurement
is the reactor pressure in atm, and we use the ideal gas law to model
the pressure. The model is nonlinear because of the two second-order
reactions. We model the system plus disturbances with the following
discrete time model

x+ = f(x)+w
y = Cx + v

in which f is the solution of the ODEs over the sample time, ∆, i.e, if
s(t, x0) is the solution of dx/dt = fc(x) with initial condition x(0) =
x0 at t = 0, then f(x) = s(∆, x). The state and measurement distur-
bances, w and v , are assumed to be zero-mean independent normals
with constant covariances Q and R. The following parameter values
are used in the simulations

RT = 32.84 mol · atm/L
∆ = 0.25 k1 = 0.5 k−1 = 0.05 k2 = 0.2 k−2 = 0.01

C =
[
1 1 1

]
RT P(0) = (0.5)2I Q = (0.001)2I R = (0.25)2

x(0) =

1
0
4

 x(0) =

 0.5
0.05

0


The prior density for the initial state,N(x(0), P(0)), is deliberately cho-
sen to poorly represent the actual initial state to model a large initial
disturbance to the system. We wish to examine how the different esti-
mators recover from this large unmodeled disturbance.

Solution

Figure 4.4 (top) shows a typical EKF performance for these conditions.
Note that the EKF cannot reconstruct the state for this system and that
the estimates converge to incorrect steady states displaying negative
concentrations of A and B. For some realizations of the noise sequences,
the EKF may converge to the correct steady state. Even for these cases,
however, negative concentration estimates still occur during the tran-
sient, which correspond to physically impossible states. Figure 4.4 (bot-
tom) presents typical results for the clipped EKF, in which negative val-
ues of the filtered estimates are set to zero. Note that although the
estimates converge to the system states, this estimator gives pressure



298 State Estimation

-1

-0.5

0

0.5

1

1.5

0 5 10 15 20 25 30

cj

t

A

A

B

B

C

C

0.0001

0.001

0.01

0.1

1

10

100

1000

0 20 40 60 80 100 120 140

t

C

B

A

cj

Figure 4.4: Evolution of the state (solid line) and EKF state estimate
(dashed line). Top plot shows negative concentration es-
timates with the standard EKF. Bottom plot shows large
estimate errors and slow convergence with the clipped
EKF.
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Figure 4.5: Evolution of the state (solid line) and UKF state estimate
(dashed line). Top plot shows negative concentration es-
timates with the standard UKF. Bottom plot shows similar
problems even if constraint scaling is applied.
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Figure 4.6: Evolution of the state (solid line) and MHE state estimate
(dashed line).

estimates that are two orders of magnitude larger than the measured
pressure before convergence is achieved.

The standard UKF achieves results similar to the EKF as shown in
Figure 4.5 (top). Vachhani, Narasimhan, and Rengaswamy (2006) have
proposed a modification to the UKF to handle constrained systems. In
this approach, the sigma points that violate the constraints are scaled
back to the feasible region boundaries and the sigma point weights are
modified accordingly. If this constrained version of the UKF is applied
to this case study, the estimates do not significantly improve as shown
in Figure 4.5 (bottom). The UKF formulations used here are based on
the algorithm presented by Vachhani et al. (2006, Sections 3 and 4) with
the tuning parameter κ set to κ = 1. Adjusting this parameter using
other suggestions from the literature (Julier and Uhlmann, 1997; Qu
and Hahn, 2009; Kandepu, Imsland, and Foss, 2008) and trial and error
does not substantially improve the UKF estimator performance. Better
performance is obtained in this example if the sigma points that violate
the constraints are simply saturated rather than rescaled to the feasible
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region boundaries. This form of clipping still does not prevent the oc-
currence of negative concentrations in this example, however. Negative
concentration estimates are not avoided by either scaling or clipping of
the sigma points. As a solution to this problem, the use of constrained
optimization for the sigma points is proposed (Vachhani et al., 2006;
Teixeira, Tôrres, Aguirre, and Bernstein, 2008). If one is willing to per-
form online optimization, however, MHE with a short horizon is likely
to provide more accurate estimates at similar computational cost com-
pared to approaches based on optimizing the locations of the sigma
points.

Finally, Figure 4.6 presents typical results of applying constrained
MHE to this example. For this simulation we choose N = 10 and the
smoothing update for the arrival cost approximation. Note that MHE
recovers well from the poor initial prior. Comparable performance is
obtained if the filtering update is used instead of the smoothing update
to approximate the arrival cost. The MHE estimates are also insensitive
to the choice of horizon length N for this example. �

The EKF, UKF, and all one-step recursive estimation methods, suffer
from the “short horizon syndrome” by design. One can try to reduce
the harmful effects of a short horizon through tuning various other
parameters in the estimator, but the basic problem remains. Large
initial state errors lead to inaccurate estimation and potential estimator
divergence. The one-step recursions such as the EKF and UKF can be
viewed as one extreme in the choice between speed and accuracy in
that only a single measurement is considered at each sample. That is
similar to an MHE problem in which the user chooses N = 1. Situations
in which N = 1 lead to poor MHE performance often lead to unreliable
EKF and UKF performance as well.

4.7 Particle Filtering

Particle filtering is a different approach to the state estimation problem
in which statistical sampling is used to approximate the evolution of
the conditional density of the state given measurements (Handschin
and Mayne, 1969). This method also handles nonlinear dynamic models
and can address nonnormally distributed random disturbances to the
state and measurement.

Sampled density. Consider a smooth probability density, p(x). In
particle filtering we find it convenient to represent this smooth density
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Figure 4.7: Top: exact density p(x) and a sampled density ps(x)
with five samples for ξ ∼ N(0,1). Bottom: correspond-
ing exact P(x) and sampled Ps(x) cumulative distribu-
tions.

as a weighted, sampled density, ps(x)

p(x) ≈ ps(x) :=
s∑
i=1

wiδ(x − xi)

in which xi, i = 1, . . . s are the samples, wi are the weights. As an
example, the top of Figure 4.7 displays a normally distributed scalar
random variable represented by a sampled density with five samples.
The sampled density is a series of impulses at the sample locations
xi. In this example, the weights wi are the values of p(xi), normal-
ized to sum to unity. It may seem strange to represent a well-behaved
function like p(x) with such a “rough” function like ps(x), but we will
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see the advantages shortly. Sometimes we may wish to study conver-
gence of a sampled density to the original density as the number of
samples becomes large. To define convergence of this representation
of the probability distribution, we refer to the corresponding cumula-
tive distribution rather than the density. From integration, the sampled
cumulative distribution is

Ps(x) =
∑
i∈Ix

wi Ix = {i|xi ≤ x}

The bottom of Figure 4.7 shows the corresponding cumulative sampled
distribution for the sampled density with five samples. The cumulative
sampled distribution is a staircase function with steps of size wi at
the sample locations xi. We can then measure convergence of Ps(x)
to P(x) as s → ∞ in any convenient function norm. We delay further
discussion of convergence until Section 4.7.2 in which we present some
of the methods for choosing the samples and the weights.

In the sequel, we mostly drop the subscript s on sampled densities
and cumulative distributions when it is clear from context that we are
referring to this type of representation of a probability distribution. We
can conveniently calculate the expectation of any function of a random
variable having a sampled density by direct integration to obtain

E(f (ξ)) =
∫
ps(x)f(x)dx

=
∫ ∑

i
wiδ(x − xi)f (x)dx

=
∑
i
wif(xi)

For example, we often wish to evaluate the mean of the sampled den-
sity, which is

E(ξ) =
∑
i
wixi

The convenience of integrating the sampled density is one of its main
attractive features. If we create a new function (not necessarily a den-
sity) by multiplication of p(x) by another function g(x)

p(x) = g(x)p(x)

we can easily obtain the sampled function p. We simply adjust the
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weights and leave the samples where they are

p(x) = g(x)p(x)
=
∑
i
g(x)wiδ(x − xi)

=
∑
i
wig(xi)δ(x − xi)

p(x) =
∑
i
wiδ(x − xi) wi = wig(xi) (4.36)

4.7.1 The Sampled Density of a Transformed Random Variable

Given the random variable ξ, assume we have a sampled density for its
density pξ(x)

pξ(x) =
s∑
i=1

wiδ(x − xi)

Define a new random variable η by an invertible, possibly nonlinear
transformation

η = f(ξ) ξ = f−1(η)

We wish to find a sampled density for the random variable η, pη(y).
Denote the sampled density for η as

pη(y) =
s∑
i=1

wiδ(y −yi)

We wish to find formulas for wi and yi in terms of wi, xi and f . We
proceed as in the development of equation (A.30) in Appendix A. We
wish to have an equivalence for every function g(x)

Epξ(g(ξ)) = Epη(g(f−1(η)))∫
pξ(x)g(x)dx =

∫
pη(y)g(f−1(y))dy for all g(·)

Using the sampled densities on both sides of the equation∑
i
wig(xi) =

∑
i
wig(f−1(yi))

One solution to this equation that holds for every g is the simple choice

yi = f(xi) wi = wi (4.37)

We see that for the transformed sampled density, we transform the
samples and use the weights of the original density.
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Example 4.28: Sampled density of the lognormal

The random variable η is distributed as a lognormal if its logarithm is
distributed as a normal. Let ξ ∼ N(0, P) and consider the transforma-
tion

η = eξ ξ = log(η) η > 0

Represent pξ as a sampled density, use (4.37) to find a sampled density
of pη, and plot histograms of the two sampled densities. Compare the
sampled density of pη to the lognormal density. The two densities are
given by

pξ(x) =
1√

2πP
e−x

2/2P

pη(y) =
1

y
√

2πP
e− log2(y)/2P

Solution

First we take samples xi from N(0,1) for ξ. Figure 4.8 shows the his-
togram of the sampled density for 5000 samples. Next we compute
yi = exi to generate the samples of η. The histogram of this sampled
density is shown in Figure 4.9. Notice the good agreement between
the sampled density and the lognormal density, which is shown as the
continuous curve in Figure 4.9. �

Noninvertible transformations. Next consider η to be a noninvert-
ible transformation of ξ

η = f(ξ) f not invertible

Let ξ’s sampled density be given by {xi,wi}. The sampled density
{f(xi),wi} remains a valid sampled density for η, which we show next

ξ ∼ {xi,wi} η ∼ {f(xi),wi}

We wish to show that

Epη(g(η)) = Epξ(g(f(ξ))) for all g(·)

Taking the expectations∫
pη(y)g(y)dy =

∫
pξ(x)g(f(x))dx
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Figure 4.8: Sampled and exact probability densities for ξ ∼ N(0,1);
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transformation η = eξ; 5000 samples. The exact density
of η is the lognormal, shown as the continuous curve.
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Letting η’s sampled density be {yi,wi}, and using ξ’s sampled density
give

s∑
i=1

wig(yi) =
s∑
i=1

wig(f(xi))

and setting wi = wi, yi = f(xi), i = 1, . . . , s achieves equality for all
g(·), and we have established the result. The difference between the
noninvertible and invertible cases is that we do not have a method to
obtain samples of ξ from samples of η in the noninvertible case. We
can transform the sampled density in only one direction, from pξ to
pη.

4.7.2 Sampling and Importance Sampling

Consider a random variable ξ with a smooth probability density p(x).
Assume one is able to draw samples xi of ξ with probability

psa(xi) = p(xi) (4.38)

in which psa(xi) denotes the probability of drawing a sample with value
xi. In this case, if one draws s samples, a sampled density for ξ is given
by

ps(x) =
∑
i
wiδ(x − xi) wi = 1/s, i = 1, . . . , s (4.39)

and the weights are all equal to 1/s.

Convergence of sampled densities. It is instructive to examine how
a typical sampled density converges with sample size to the density
from which the samples are drawn. Consider a set of s samples. When
drawing multiple samples of a density, we assume the samples are mu-
tually independent

psa(x1, x2, . . . , xs) = psa(x1)psa(x2) · · ·psa(xs)

We denote the cumulative distribution of the sampled density as

Ps(x; s) =
∑
i∈Ix

wi Ix = {i|xi ≤ x}

in which the second argument s is included to indicate Ps ’s dependence
on the sample size. The value of Ps is itself a random variable because
it is determined by the sample values xi and weights wi. We consider
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Figure 4.10: Probability density Pr(Ps(x; s)) for x corresponding to
P(x) = 0.5 and s = 5 samples. The distribution is cen-
tered at correct value, P(x), but the variance is large.

the case with equal sample weights wi = 1/s and study the Ps values
as a function of s and scalar x. They take values in the range

Ps ∈
{

0,
1
s
, . . . ,

s − 1
s
,1
}

s ≥ 1 −∞ < x <∞

Given the sampling process we can readily evaluate the probability of
Ps over this set

Pr(Ps(x; s)) =
{ (

s
i

)
P(x)i(1− P(x))s−i, Ps = i

s , i = 0, . . . , s
0, otherwise

−∞ < x <∞ (4.40)

These probabilities are calculated as follows. For Ps to take on value
zero, for example, all of the samples xi must be greater than x. The
probability that anyxi is greater thanx is 1−P(x). Because the samples
are mutually independent, the probability that all s samples are greater
than x is (1−P(x))s , which is the i = 0 entry of (4.40). Similarly, for Ps
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Figure 4.11: Probability density Pr(Ps(x; s)) for three different x cor-
responding to P(x) = 0.05,0.5,0.95 and s = 50 sam-
ples. The three distributions are centered at the correct
values, P(x), and the variance is much reduced com-
pared to Figure 4.10.

to have value i/s, i samples must be less than x and s−i samples must
be greater than x. This probability is given by

(
s
i

)
P(x)i(1 − P(x)s−i),

in which P(x)i(1− P(x)s−i) is the probability of having a sample with
i values less than x and s − i values greater than x, and

(
s
i

)
accounts

for the number of ways such a sample can be drawn from a set of s
samples. Figure 4.10 shows the distribution of Ps for a sample size
s = 5 at the mean, P(x) = 0.5. Notice the maximum probability occurs
near the value Ps = P(x) but the probability distribution is fairly wide
with only 5 samples. The number of samples is increased to 50 in
Figure 4.11, and three different x values are shown, at which P(x) =
0.05,0.5,0.95. The peak for each Ps distribution is near the value P(x),
and the distribution is much narrower for 50 samples. The sampled
density Ps(x; s) becomes arbitrarily sharply distributed with value P(x)
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as the sample size s increases.

lim
s→∞

Pr(Ps(x; s)) =
{

1 Ps = P(x)
0 otherwise

−∞ < x <∞

The convergence is often not uniform in x. Achieving a given vari-
ance in Ps(x; s) generally requires larger sample sizes for x values in
the tails of the density p(x) compared to the sample sizes required
to achieve this variance for x values in regions of high density. The
nonuniform convergence is perhaps displayed more clearly in Figures
4.12 and 4.13. We have chosen the beta distribution for P(x) and show
the spread in the probability of Ps for three x values, corresponding
to P(x) = {0.1,0.5,0.9}. Given s = 25 samples in Figure 4.12, we
see a rather broad probability distribution for the sampled distribu-
tion Ps(x). Turning up the number of samples to s = 250 gives the
tighter probability distribution shown in Figure 4.13.

Finally, we present a classic sampling error distribution result due
to Kolmogorov. The measure of sampling error is defined to be

Ds = sup
x
|Ps(x; s)− P(x)|

and we have the following result on the distribution of Ds for large
sample sizes.

Theorem 4.29 (Kolmogoroff (1933)). 6 Suppose that P(x) is continuous.
Then for every fixed z ≥ 0 as s →∞

Pr
(
Ds ≤ zs−1/2

)
→ L(z) (4.41)

in which L(z) is the cumulative distribution function given for z > 0 by

L(z) =
√

2πz−1
∞∑
ν=1

e−(2ν−1)2π2/8z2
(4.42)

and L(z) = 0 for z ≤ 0.

One of the significant features of results such as this one is that
the limiting distribution is independent of the details of the sampled
distribution P(x) itself. Feller (1948) provides a proof of this theorem
and discussion of this and other famous sampling error distribution
results due to Smirnov (1939).

6Kolmogorov’s theorem on sampling error was published in an Italian journal with
the spelling Kolmogoroff.
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Figure 4.12: Probability density Pr(Ps(x; s)) for s = 25 samples at
three different x.
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Figure 4.13: Probability density Pr(Ps(x; s)) for s = 250 samples.
Note the variance is much reduced compared to Fig-
ure 4.12.
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Figure 4.14: Cumulative distribution for the sampling error Pr(Ds)
for three different sample sizes, s = 10,100,1000.
Distribution from simulation using 5000 realizations
(solid) and Kolmogorov limiting distribution (dashed).

Example 4.30: Sampling error distribution for many samples

Plot the actual and limiting distributions for Ds for s = 10,100,1000
when sampling a normal distribution with unit variance. How close is
the limiting sampling error distribution to the actual sampling error
distribution for these three sample sizes?

Solution

Figure 4.14 displays the result using 5000 realizations of the sampling
process to approximate the actual distribution of Ds . Notice that for
the small sample size, we can see a slight difference between the Kol-
mogorov limiting distribution and the one obtained from simulation.
This difference is not noticeable for samples sizes greater than s = 100.
From the argument scaling given in (4.41) we see that the mean of the
sampling error decreases by a factor of

√
10 for each factor of 10 in-

crease in sample size (on the log scale, the distribution of Ds is trans-
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lated to the left by
√

10). Exercise 4.20 discusses this example fur-
ther. �

Unbiasedness of sampled densities. A sampled density is unbiased
if it possesses the following property

Esa(Ps(x; s)) = P(x) 1 ≤ s, −∞ < x <∞

in which the expectation is taken over the probability density of Ps con-
sidered as a random variable as discussed previously. As we discuss
subsequently, some sampling procedures are unbiased for all s, while
others are only asymptotically unbiased as s becomes large. A conve-
nient test for unbiasedness is the following

Esa

(∫
ps(x)g(x)dx

)
=
∫
p(x)g(x)dx for all g(·) (4.43)

In other words, the expectation over the sampling process of integrals of
any function g with the sampled density should be equal to the integral
of g with the exact density. If the sampling process has the probability
given by (4.38), we can verify (4.43) as follows

Esa

(∫
ps(x)g(x)dx

)
= Esa

∑
i
wig(xi)


=
∫
psa(x1, . . . , xs)

∑
i
wig(xi)dx1 · · ·dxs

=
∫
psa(x1) · · ·psa(xs)

∑
i
wig(xi)dx1 · · ·dxs

=
∫
p(x1) · · ·p(xs)

∑
i
wig(xi)dx1 · · ·dxs

= 1
s

∑
i

∫
p(xi)g(xi)dxi

∏
j≠i

∫
p(xj)dxj

= 1
s

∑
i

∫
p(xi)g(xi)dxi

Esa

(∫
ps(x)g(x)dx

)
=
∫
p(x)g(x)dx

Example 4.31: Sampling independent random variables

Consider two independent random variables ξ, η, whose probability
density satisfies

pξ,η(x,y) = pξ(x)pη(y)
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and assume we have samples of the two marginals

ξ ∼ {xi,wxi} wxi = 1/sx, i = 1, . . . , sx
η ∼ {yj ,wyj} wyj = 1/sy , j = 1, . . . , sy

We have many valid options for creating samples of the joint density.
Here are three useful ones.

(a) Show the following is a valid sample of the joint density

{(xi, yj),wij} wij = 1/(sxsy), i = 1, . . . , sx, j = 1, . . . , sy

Notice we have sxsy total samples of the joint density.

(b) If sx = sy = s, show the following is a valid sample of the joint
density

{(xi, yi),wi} wi = 1/s, i = 1, . . . , s

Notice we have s total samples of the joint density unlike the
previous case in which we would have s2 samples.

(c) If we have available (or select) only a single sample of ξ’s marginal,
sx = 1 and sy = s samples of η’s marginal, show the following is
a valid sample of the joint density

{(x1, yi),wyi} wyi = 1/s, i = 1, . . . , s

Here we have generated again s samples of the joint density,
but we have allowed unequal numbers of samples of the two
marginals.

Solution

Because the two random variables are independent, the probability of
drawing a sample with values (xi, yj) is given by

psa(xi, yj) = psa(xi)psa(yj) = pξ(xi)pη(yj) = pξ,η(xi, yj)

Denote the samples as zk = (xi(k), yj(k)). We have for all three choices

psa(zk) = pξ,η(zk) k = 1, . . . , s (4.44)

(a) For this case,

i(k) =mod(k− 1, sx)+ 1 j(k) = ceil(k/sx)

wk =
1
sxsy

, k = 1, . . . , sxsy

in which ceil(x) is the smallest integer not less than x.
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(b) For this case

i(k) = k j(k) = k wk = 1/s, k = 1, . . . , s

(c) For this case

i(k) = 1 j(k) = k wk = 1/s, k = 1, . . . , s

Because all three cases satisfy (4.44) and the weights are equal to each
other in each case, these are all valid samples of the joint density. �

If we arrange the sx ξ samples and sy η samples in a rectangle, the first
option takes all the points in the rectangle, the second option takes
the diagonal (for a square), and the third option takes one edge of the
rectangle. See Exercise 4.19 for taking a single point in the rectangle.
In fact, any set of points in the rectangle is a valid sample of the joint
density.

Example 4.32: Sampling a conditional density

The following result proves useful in the later discussion of particle
filtering. Consider conditional densities satisfying the following prop-
erty

p(a,b, c|d, e) = p(a|b,d)p(b, c|e) (4.45)

We wish to draw samples of p(a,b, c|d, e) and we proceed as follows.
We draw samples of p(b, c|e). Call these samples (bi, ci), i = 1, . . . , s.
Next we draw for each i = 1, . . . , s, one sample of p(a|bi, d). Call
these samples ai. We assemble the s samples (ai, bi, ci) and claim they
are samples of the desired density p(a,b, c|d, e) with uniform weights
wi = 1/s. Prove or disprove this claim.

Solution

The claim is true, and to prove it we need to establish that the proba-
bility of drawing a sample with value (ai, bi, ci) is equal to the desired
density p(ai, bi, ci|d, e). We proceed as follows. From the definition of
conditional density, we know

psa(ai, bi, ci|d, e) = psa(ai|bi, ci, d, e)psa(bi, ci|d, e)

For the selection of ai described previously, we know

psa(ai|bi, ci, d, e) = p(ai|bi, d)
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The values of ci and e are irrelevant to the sampling procedure gener-
ating the ai. For the (bi, ci) samples, the sampling procedure gives

psa(bi, ci|d, e) = p(bi, ci|e)

and the value of d is irrelevant to the procedure for generating the
(bi, ci) samples. Combining these results, we have for the (ai, bi, ci)
samples

psa(ai, bi, ci|d, e) = p(ai|bi, d)p(bi, ci|e)
Equation (4.45) then gives

psa(ai, bi, ci|d, e) = p(ai, bi, ci|d, e)

We conclude the sampling procedure is selecting (ai, bi, ci) samples
with the desired probability, and as shown in (4.39), the weights are all
equal to 1/s under this kind of sampling. �

Importance sampling. Consider next the case in which we have a
smooth density p(x) that is easy to evaluate but difficult to sample
with probability given by (4.38). This situation is not unusual. In fact,
it arises frequently in applications for the following reason. Many good
algorithms are available for generating samples of the uniform density.
One simple method to sample an arbitrary density for a scalar random
variable is the following. First compute P(x) from p(x) by integration.
Letui be the samples of the uniform density on the interval [0,1]. Then
samples of xi of density p(x) are given by

xi = P−1(ui) ui = P(xi)

Figures 4.15 and 4.16 give a graphical display of this procedure. We
briefly verify that the samples xi have the claimed density. We show
that if µ is a uniform random variable and ξ is defined by the invertible
transformation given previously, µ = P(ξ), then ξ has density pξ(x) =
dP(x)/dx. From (A.30) we have

pξ(x) = pµ(P(x))
∣∣∣∣dP(x)dx

∣∣∣∣
Since µ is uniformly distributed, pµ = 1, and dP(x)/dx ≥ 0, we have

pξ(x) =
dP(x)
dx

and the samples have the desired density. But notice this procedure
for generating samples of p(x) uses P(x), which requires integration,
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as well as evaluating P−1(x), which generally requires solving nonlin-
ear equations. Importance sampling is a method for sampling p(x)
without performing integration or solving nonlinear equations.

The following idea motivates importance sampling. Consider the
random variable ξ to be distributed with density p. Consider a new
random variable η to be distributed with density q

ξ ∼ p(x) η ∼ q(x)

The density q(x), known as the importance function, is any density that
can be readily sampled according to (4.38) and has the same support as
p. Examples of such q are uniforms for bounded intervals, lognormals
and exponentials for semi-infinite intervals, and normals for infinite
intervals. For any function g(x), we have

Ep(g(ξ)) =
∫
g(x)p(x)dx

=
∫ [
g(x)

p(x)
q(x)

]
q(x)dx

Ep(g(ξ)) = Eq
(
g(η)

p(η)
q(η)

)
for all g(·)

When we can sample p directly, we use for the sampled density

ps =
{
xi, wi =

1
s

}
psa(xi) = p(xi)

So when we cannot conveniently sample p but can sample q, we use
instead

ps =
{
xi, wi =

1
s
p(xi)
q(xi)

}
pis(xi) = q(xi)

Given s samples xi from q(x), denote the sampled density of q as qs ,
and we have defined the importance-sampled density ps(x) as

ps(x) = qs(x)
p(x)
q(x)

We next show thatps(x) converges top(x) as sample size increases (Smith
and Gelfand, 1992). Using the fact that qs converges to q gives

lim
s→∞

ps(x) = lim
s→∞

qs(x)
p(x)
q(x)

= p(x)
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Figure 4.15: Probability density p(x) to be sampled and the corre-
sponding cumulative distribution P(x).
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Figure 4.16: Six samples of the uniform density on [0,1], ui, and
the corresponding samples of p(x), xi. The samples
satisfy xi = P−1(ui).
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The weighted sample of p is also unbiased for all sample sizes, which
we can verify as follows

Eis
(
ps(x)

)
= Eis

∑
i
wiδ(x − xi)


=
∫
pis(x1, . . . , xs)

∑
i
wiδ(x − xi)dx1 · · ·dxs

=
∫
q(x1) · · ·q(xs)

∑
i
wiδ(x − xi)dx1 · · ·dxs

=
∑
i

∫
q(xi)wiδ(x − xi)dxi

∏
j≠i

∫
q(xj)dxj

=
∑
i

∫
q(xi)

1
s
p(xi)
q(xi)

δ(x − xi)dxi

= 1
s

∑
i
p(x)

Eis
(
ps(x)

)
= p(x)

Notice this result holds for all s ≥ 1.
Using the same development, we can represent any function h(x)

(not necessarily a density) having the same support as q(x) as a sam-
pled function

hs(x) =
s∑
i=1

wiδ(x − xi) wi =
1
s
h(xi)
q(xi)

lim
s→∞

hs(x) = h(x) (4.46)

The next example demonstrates using importance sampling to generate
samples of a multimodal density.

Example 4.33: Importance sampling of a multimodal density

Given the following bimodal distribution

p(x) = 1
2
√

2πP1
e−(1/2)(x−m1)2/P1 + 1

2
√

2πP2
e−(1/2)(x−m2)2/P2

m1 = −4 m2 = 4 P1 = P2 = 1

generate samples using the following unimodal importance function

q(x) = 1√
2πP

e−(1/2)(x−m)
2/P m = 0 P = 4
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Solution

Figure 4.17 shows the exact and sampled density of the importance
function q(x) using 5000 samples. The weighted density for p(x) is
shown in Figure 4.18. We obtain a good representation of the bimodal
distribution with 5000 samples. Notice also that one should use a broad
density for q(x) to obtain sufficient samples in regions where p(x) has
significant probability. Using q(x) with variance of P = 1 instead of
P = 4 would require many more samples to obtain an accurate rep-
resentation of p(x). Of course we cannot choose q(x) too broad or
we sample the region of interest too sparsely. Choosing an appropri-
ate importance function for an unknown p(x) is naturally a significant
challenge in many applications. �

Importance sampling when the density cannot be evaluated. In
many applications we have a density p(x) that is difficult to evaluate
directly, but it can be expressed as

p(x) = h(x)∫
h(x)dx

p(x)∝ h(x)

in which h(x) is readily evaluated. We wish to avoid the task of integra-
tion of h to find the normalizing constant. Importance sampling can
still be used to sample p in this case, but, as we discuss next, we lose
the unbiased property of the sampled density for finite sample sizes.
In this case, define the candidate sampled density as

ps(x) =
qs(x)
d(s)

h(x)
q(x)

d(s) = 1
s

∑
j

h(xj)
q(xj)

(4.47)

in which the samples are again chosen from the importance function
q(x). Summarizing, the candidate sampled density is

ps(x) =
∑
i
wiδ(x − xi)

pis(xi) = q(xi) wi =
h(xi)/q(xi)∑
j h(xj)/q(xj)

i = 1, . . . , s (4.48)

Notice the weights are normalized in the case when we do not know the
normalizing constant to convert from h(x) to p(x). We next show that
ps(x) converges to p(x) as sample size increases (Smith and Gelfand,
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Figure 4.17: Importance function q(x) and its histogram based on
5000 samples.
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Figure 4.18: Exact density p(x) and its histogram based on 5000
importance samples.
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1992). First we express d(s) as

d(s) = 1
s

∑
j

h(xj)
q(xj)

=
∫∞
−∞

1
s

∑
j

h(xj)
q(xj)

δ(x − xj)dx

=
∫∞
−∞

1
s

∑
j

h(x)
q(x)

δ(x − xj)dx

d(s) =
∫∞
−∞
hs(x)dx

Exchanging the order of limit and integral and using (4.46) give

lim
s→∞

d(s) =
∫∞
−∞

lim
s→∞

hs(x)dx =
∫∞
−∞
h(x)dx

Next we take the limit in (4.47) to obtain

lim
s→∞

ps(x) = lim
s→∞

qs(x)
d(s)

h(x)
q(x)

=
lim
s→∞

qs(x)

lim
s→∞

d(s)
h(x)
q(x)

= q(x)∫
h(x)dx

h(x)
q(x)

= h(x)∫
h(x)dx

lim
s→∞

ps(x) = p(x)

Notice the unbiased property no longer holds for a finite sample size.
We can readily show

Eis
(
ps(x)

)
≠ p(x) for finite s (4.49)

For example, take s = 1. We have from (4.48) thatw1 = 1, and therefore

Eis
(
ps(x)

)
=
∫
pis(x1)w1δ(x − x1)dx1

=
∫
q(x1)δ(x − x1)dx1

Eis
(
ps(x)

)
= q(x)
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and we see that the expectation of the sampling process with a single
sample gives back the importance function q(x) rather than the desired
p(x). Obviously we should choose many more samples than s = 1 for
this case to reduce this bias. Consider the next example in which we
use a large number of samples.

Example 4.34: Importance sampling of a multimodal function

We revisit Example 4.33 but use the following function h(x)

h(x) = e−(1/2)(x−m1)2/P1 + e−(1/2)(x−m2)2/P2

m1 = −4,m2 = 4, P1 = P2 = 1

and we do not have the normalization constant available. We again
generate samples using the following importance function

q(x) = 1√
2πP

e−(1/2)(x−m)
2/P m = 0, P = 4

Solution

The exact and sampled density of the importance function q(x) using
5000 samples is the same as Figure 4.17. The weighted density forp(x)
is shown in Figure 4.19. Comparing Figure 4.19 to Figure 4.18 shows
the representation of the bimodal distribution with 5000 samples using
h(x) is of comparable quality to the one using p(x) itself. The bias is
not noticeable using 5000 samples. �

Weighted importance sampling. In applications of importance sam-
pling to state estimation, the importance function is often available as
a weighted sample in which the weights are not all equal. Therefore,
as a final topic in importance sampling, we consider the case in which
a weighted sample of the importance function is available

qs(x) =
s∑
i=1

w−i δ(x − xi) w−i ≥ 0

We have the two cases of interest covered previously.

(a) We can evaluate p(x). For this case we define the sampled density
for p(x) as

ps(x) =
s∑
i=1

wiδ(x − xi) wi = w−i
p(xi)
q(xi)
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Figure 4.19: Exact density p(x) and its histogram based on 5000
importance samples evaluating h(x) in place of p(x) =
h(x)/

∫
h(x)dx.

For this case, the sampled density is unbiased for all sample sizes
and converges to p(x) as the sample size increases.

(b) We cannot evaluate p(x), but can evaluate only h(x) with p(x) =
h(x)/

∫
h(x)dx. For this case, we define the sampled density as

ps(x) =
s∑
i=1

wiδ(x − xi)

wi = w−i
h(xi)
q(xi)

wi =
wi∑
jwj

(4.50)

For this case, the sampled density is biased for all finite sample
sizes, but converges to p(x) as the sample size increases.

The proofs of these properties are covered in Exercises 4.21 and 4.22.
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w1 w1 +w2 w1 +w2 +w3

Á Â

x̃1 = x1 x̃2 = x3 x̃3 = x3

10
À

Figure 4.20: Interval [0,1] partitioned by original sample weights,
wi. The arrows depict the outcome of drawing three
uniformly distributed random numbers. For the case
depicted here, the new samples are x̃1 = x1, x̃2 = x3,
x̃3 = x3 because the first arrow falls into the first
interval and the other two arrows both fall into the
third interval. Sample x2 is discarded and sample x3

is repeated twice in the resample. The new sample’s

weights are simply w̃1 = w̃2 = w̃3 = 1/3.

4.7.3 Resampling

Consider a set of samples at x = xi, i = 1, . . . s and associated nor-
malized weights wi, wi ≥ 0,

∑s
i=1wi = 1. Define a probability density

using these samples and weights by

p(x) =
s∑
i=1

wiδ(x − xi)

Consider any function f(x) defined on a set that contains the samples,
xi. Then the integral of f using the defined density is∫

f(x)p(x)dx =
s∑
i=1

wif(xi) =
s∑
i=1

wifi

in which fi = f(xi). We now consider a resampling procedure that
produces a new set of samples x̃i with new weights w̃i. The resampling
procedure is depicted in Figure 4.20 for the case s = 3. We partition
the interval [0,1] into s intervals using the original sample weights,
wi, as shown in Figure 4.20, in which the ith interval has width wi. To
choose s resamples, we generate s random numbers from a uniform
distribution on [0,1]. Denote these random numbers asui, i = 1, . . . , s.
For each i, we find the interval in which the drawn random number falls.
Denote the interval number as m(i), defined by the relation

0 ≤ w1 +w2 + · · · +wm(i)−1 ≤ ui ≤ w1 +w2 + · · · +wm(i) ≤ 1
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We then choose as resamples

x̃i = xm(i) i = 1, . . . s

The resampling selects the new sample locations x̃ in regions of high
density. We set all the w̃ weights equal to 1/s. The result illustrated in
Figure 4.20 is summarized in the following table

Original sample Resample

State Weight State Weight

x1 w1 = 3
10 x̃1 = x1 w̃1 = 1

3

x2 w2 = 1
10 x̃2 = x3 w̃2 = 1

3

x3 w3 = 6
10 x̃3 = x3 w̃3 = 1

3

The properties of the resamples are summarized by

pre(x̃i) =

wj x̃i = xj
0 x̃i ≠ xj

w̃i = 1/s all i

We can associate with each resampling a sampled probability density

p̃(x) =
s∑
i=1

w̃iδ(x − x̃i)

The resampled density is clearly not the same as the original sampled
density. It is likely that we have moved many of the new samples to
places where the original density has large weights. But by resampling
in the fashion described here, we have not introduced bias into the
estimates.

Consider taking many such resamples. We can calculate for each of
these resamples a value of the integral of f as follows∫

f(x)p̃(x)dx =
s∑
i=1

w̃if(x̃i)

To show this resampling procedure is valid, we show that the average
over these values of the f integrals with p̃(x) is equal to the original
value of the integral using p(x). We state this result for the resampling
procedure described previously as the following theorem.
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Theorem 4.35 (Resampling). Consider a sampled density p(x) with s
samples at x = xi and associated weights wi

p(x) =
s∑
i=1

wiδ(x − xi) wi ≥ 0,
s∑
i=1

wi = 1

Consider the resampling procedure that gives a resampled density

p̃(x) =
s∑
i=1

w̃iδ(x − x̃i)

in which the x̃i are chosen according to resample probability pre

pre(x̃i) =

wj x̃i = xj
0 x̃i ≠ xj

and with uniform weights w̃i = 1/s. Consider a function f(·) defined
on a set X containing the points xi.

With this resampling procedure, the expectation over resampling of
any integral of the resampled density is equal to that same integral of
the original density

Ere

(∫
f(x)p̃(x)dx

)
=
∫
f(x)p(x)dx all f

The proof of this theorem is discussed in Exercise 4.16. To get a
feel for why this resampling procedure works, however, consider the
case s = 2. There are four possible outcomes of x̃1, x̃2 in resampling.
Because of the resampling procedure, the random variables x̃i and x̃j ,
j ≠ i are independent, and their joint density is

pre(x̃1, x̃2) =


w2

1 x̃1 = x1, x̃2 = x1

w1w2 x̃1 = x1, x̃2 = x2

w2w1 x̃1 = x2, x̃2 = x1

w2
2 x̃1 = x2, x̃2 = x2

The values of the integral of f for each of these four outcomes is

2∑
i=1

w̃if(x̃i) =



1
2(f1 + f1) x̃1 = x1, x̃2 = x1
1
2(f1 + f2) x̃1 = x1, x̃2 = x2
1
2(f2 + f1) x̃1 = x2, x̃2 = x1
1
2(f2 + f2) x̃1 = x2, x̃2 = x2
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Notice there are only three different values for the integral of f . Next,
calculating the expectation over the resampling process gives

Ere

 2∑
i=1

w̃if(x̃i)

 = w2
1f1 +w1w2(f1 + f2)+w2

2f
2
2

= (w2
1 +w1w2)f1 + (w1w2 +w2

2)f2

= w1(w1 +w2)f1 +w2(w1 +w2)f2

= w1f1 +w2f2

=
∫
f(x)p(x)dx

and the conclusion of the theorem is established for s = 2.
One can also change the total number of samples in resampling

without changing the conclusions of Theorem 4.35. Exercise 4.17 ex-
plores this issue in detail. In many applications of sampling, we use the
resampling process to discard samples with excessively small weights
in order to reduce the storage requirements and computational burden
associated with a large number of samples.

To make this discussion explicit, consider again the bimodal distri-
bution of Example 4.33 shown in Figure 4.18 that was sampled using
importance sampling. Many of the samples are located in the interval
[−1,1] because the importance function q has large density in this in-
terval. In fact, 1964 of the 5000 samples fall in this interval given the
random sample corresponding to Figure 4.18. But notice the weights
in this interval are quite small. If we resample p, we can retain the
accuracy with many fewer samples as we show in the next example.

Example 4.36: Resampling a bimodal density

Consider the bimodal sampled density obtained in Example 4.33 using
importance sampling. Resample this sampled density with 500 sam-
ples. Compare the accuracy to the original density with 5000 samples.

Solution

The histogram of the resampled density with 500 samples is shown
in Figure 4.21. The weights in the resampled density are all equal to
1/500. Notice that the accuracy is comparable to Figure 4.18 with one
tenth as many samples because most of the samples with small weights
have been removed by the resampling process. In fact, none of the 500
resamples fall in the interval [−1,1]. �
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Figure 4.21: Resampled density of Example 4.33 using 500 samples.
Compare to Figure 4.18 that uses 5000 samples.

4.7.4 The Simplest Particle Filter

Next we implement these sampling ideas for state estimation. This first
version follows the approach given by Gordon, Salmond, and Smith
(1993). In state estimation, the density p(x(k)|y(k)) contains the in-
formation of most interest. The model is of the form

x(k+ 1) = f(x(k),n(k))
y(k) = h(x(k),m(k))

in which f is a possibly nonlinear function of the state and process
noise, n, and h is a possibly nonlinear function of the state and mea-
surement noise, m. We assume that the densities of m,n and x(0)
are available. To start things off, first assume the conditional density
p(x(k)|y(k)) is available as a sampled density

p(x(k)|y(k)) =
s∑
i=1

wi(k)δ(x(k)− xi(k))
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and we wish to find samples for p(x(k+ 1)|y(k)). The state evolution
can be considered a noninvertible transformation from x(k),n(k) to
x(k+1), in whichn(k) is statistically independent ofx(k) and y(k). We
generate s samples of n(k), call these ni(k), and we have s samples of
the conditional density p(x(k),n(k)|y(k)) given by {xi(k),ni(k)}, i =
1, . . . , s. As shown in Section 4.7.1, the sampled density of p(x(k +
1)|y(k)) is given by

p(x(k+ 1)|y(k)) = {xi(k+ 1),w−i (k+ 1)}
xi(k+ 1) = f(xi(k),ni(k)) w−i (k+ 1) = wi(k)

Next, given the sampled density for the conditional density p(x(k)|
y(k− 1))

p(x(k)|y(k− 1)) =
s∑
i=1

w−i (k)δ(x(k)− xi(k))

we add the measurement y(k) to obtain the sampled density p(x(k)|
y(k)). Notice that y(k) = (y(k),y(k−1)) and use the relationship (see
Exercise 1.47)

pA|B,C(a|b, c) = pC|A,B(c|a,b)
pA|B(a|b)
pC|B(c|b)

to obtain

p(x(k)|y(k)) = p(y(k)|x(k),y(k− 1))p(x(k)|y(k− 1))
p(y(k)|y(k− 1))

Because the process is Markov, p(y(k)|x(k),y(k−1)) = p(y(k)|x(k)),
and we have

p(x(k)|y(k)) = p(y(k)|x(k))p(x(k)|y(k− 1))
p(y(k)|y(k− 1))

The density of interest is in the form

p(x(k)|y(k)) = g(x(k))p(x(k)|y(k− 1))

g(x(k)) = p(y(k)|x(k))
p(y(k)|y(k− 1))

and we have a sampled density for p(x(k)|y(k− 1)). If we could con-
veniently evaluate g, then we could obtain a sampled density using the
product rule given in (4.36)

p(x(k)|y(k)) = {xi(k), w̃i(k)}
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in which

w̃i(k) = w−i (k)
p(y(k)|xi(k))
p(y(k)|y(k− 1))

(4.51)

This method would provide an unbiased sampled density, but it is in-
convenient to evaluate the term p(y(k)|y(k − 1)). So we consider an
alternative in which the available sampled density is used as a weighted
importance function for the conditional density of interest. If we de-
fine the importance function q(x(k)) = p(x(k)|y(k − 1)), then the
conditional density is of the form

p(x(k)|y(k)) = h(x(k))∫
h(x(k))dx(k)

h(x(k)) = p(y(k)|x(k))p(x(k)|y(k− 1))

We then use weighted importance sampling and (4.50) to obtain

p(x(k)|y(k)) = {xi(k),wi(k)} wi(k) = w−i (k)p(y(k)|xi(k))

wi(k) =
wi(k)∑
jwj(k)

By using this form of importance sampling, the sampled density is bi-
ased for all finite sample sizes, but converges to p(x(k)|y(k)) as the
sample size increases.

Summary. Starting with s samples ofp(n(k)) and s samples ofp(x(0)),
we assume that we can evaluate p(y(k)|x(k)) using the measurement
equation. The iteration for the simple particle filter is summarized by
the following recursion.

p(x(0)) = {xi(0),wi(0) = 1/s}
p(x(k)|y(k)) = {xi(k),wi(k)}

wi(k) = wi(k− 1)p(y(k)|xi(k))

wi(k) = wi(k)∑
jwj(k)

p(x(k+ 1)|y(k)) = {xi(k+ 1),wi(k)}
xi(k+ 1) = f(xi(k),ni(k))

The sampled density of the simplest particle filter converges to the
conditional density p(x(k)|y(k)) in the limit of large sample size. The
sampled density is biased for all finite sample sizes.
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Analysis of the simplest particle filter. The simplest particle filter
has well-known weaknesses that limit its use as a practical method for
state estimation. The variances in both the particle locations and the
filter weights can increase without bound as time increases and more
measurements become available. Consider first the particle locations.
For even the simple linear model with Gaussian noise, we have

xi(k+ 1) = Axi(k)+ Bu(k)+Gwi(k)
xi(0) ∼ N(x(0),Q0) wi(k) ∼ N(0,Q)

which gives the following statistical properties for the particle locations

xi(k) ∼ N(x(k), P(k)) i = 1, . . . , s
x(k) = Ax(k− 1)+ Bu(k)
P(k) = AP(k− 1)A′ +GQG′ (4.52)

If A is not strictly stable, the variance of the samples locations, P(k),
increases without bound despite the availability of the measurement at
every time. In this simplest particle filter, one is expecting the particle
weights to carry all the information in the measurements. As we will
see in the upcoming example, this idea does not work and after a few
time iterations the resulting state estimates are useless.

To analyze the variance of the resulting particle weights, it is helpful
to define the following statistical properties and establish the follow-
ing identities. Consider two random variables A and B. Conditional
expectations of A and functions of A and conditional variance of A are
defined as

E(A|B) :=
∫
pA|B(a|b)ada

E(A2|B) :=
∫
pA|B(a|b)a2da

E(g(A)|B) :=
∫
pA|B(a|b)g(a)da

var(A|B) := E(A2|B)−E2(A|B)

in which we assume as usual that B’s marginal is nonzero so the con-
ditional density is well defined. We derive a first useful identity

E(E(g(A)|B)) = E(g(A)) (4.53)
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as follows

E(E(g(A)|B)) =
∫
pB(b)

∫
pA|B(a|b)g(a)dadb

=
∫
pB(b)

∫
pA,B(a, b)
pB(b)

g(a)dadb

=
∫∫
pA,B(a, b)g(a)dadb

=
∫
pA(a)g(a)da

= E(g(A))

We require a second identity

var(A) = E(var(A|B))+ var(E(A|B)) (4.54)

which is known as the conditional variance formula or the law of to-
tal variance. We establish this identity as follows. Starting with the
definition of variance

var(A) = E(A2)−E2(A)

we use (4.53) to obtain

var(A) = E(E(A2|B))−E2(E(A|B))

Using the definition of variance on the first term on the right-hand side
gives

var(A) = E
(

var(A|B)+E2(A|B)
)
−E2(E(A|B))

= E(var(A|B))+E(E2(A|B))−E2(E(A|B))

and using the definition of variance again on the last two terms on the
right-hand side gives

var(A) = E(var(A|B))+ var(E(A|B))

which establishes the result. Notice that since variance is nonnegative,
this result also implies the inequality

var(E(A|B)) ≤ var(A)

which shows that the conditional expectation of random variable A has
less variance than A itself.
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We proceed to analyze the simplest particle filter. Actually we ana-
lyze the behavior of the weights for the idealized, unbiased case given
by (4.51)

wi(k) = wi(k− 1)
p(y(k)|xi(k))
p(y(k)|y(k− 1))

in which we consider the random variable wi(k) to be a function of
the random variables y(k),xi(k). We next consider the conditional
density of the random variables y(k),xi(k) relative to the previous
samples xi(k− 1), and the data y(k− 1). We have

p(y(k),xi(k)|y(k− 1), xi(k− 1))

= p(y(k)|y(k− 1), xi(k− 1))p(xi(k)|y(k− 1), xi(k− 1))
= p(y(k)|y(k− 1))p(xi(k)|xi(k− 1))

The first equation results from the statistical independence of y(k)
and xi(k), and the second results from the sampling procedure used
to generate xi(k) given xi(k−1). Note that in the next section, we use a
different sampling procedure in which xi(k) depends on both the new
data y(k) as well as the xi(k− 1). Now we take the expectation of the
weights at time k conditional on the previous samples and previous
measurement trajectory

E(wi(k)|xi(k− 1),y(k− 1))

=
∫∫
wi(k)p(y(k),xi(k)|xi(k− 1),y(k− 1))dxi(k)dy(k)

=
∫∫
wi(k)p(y(k)|y(k− 1))p(xi(k)|xi(k− 1))dxi(k)dy(k)

Substituting the weight recursion and simplifying yields

E(wi(k)|xi(k− 1),y(k− 1))

=
∫∫
wi(k− 1)

p(y(k)|xi(k))
p(y(k)|y(k− 1))

p(y(k)|y(k− 1))p(xi(k)|xi(k− 1))dxi(k)dy(k)

E(wi(k)|xi(k− 1),y(k− 1))

=
∫∫
wi(k− 1)p(y(k)|xi(k))p(xi(k)|xi(k− 1))dxi(k)dy(k)
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Taking wi(k− 1) outside the integral and performing the integral over
xi(k) and then y(k) gives

E(wi(k)|xi(k− 1),y(k− 1)) = wi(k− 1)
∫
p(y(k)|xi(k− 1))dy(k)

E(wi(k)|xi(k− 1),y(k− 1)) = wi(k− 1)

Taking the variance of both sides and using the conditional variance
formula (4.54) gives

var(E(wi(k)|xi(k− 1),y(k− 1))) = var(wi(k− 1))
var(wi(k))− E(var(wi(k)|xi(k− 1),y(k− 1))) = var(wi(k− 1))

Again, noting that variance is nonnegative gives the inequality

var(wi(k)) ≥ var(wi(k− 1))

and we see that the variance for the unbiased weights of the simplest
particle filter increases with time.

Next we present two examples that show the serious practical lim-
itations of the simplest particle filter and the simplest particle filter
with resampling.

Example 4.37: What’s wrong with the simplest particle filter?

Consider the following linear system with Gaussian noise.

A =
[

cosθ sinθ
− sinθ cosθ

]
θ = 6 C =

[
0.5 0.25

]
G = I B = I

x(0) =
[

1
1

]
Q0 =

1
4

[
7 5
5 7

]
Q = 0.01 I R = 0.01

u(0,1, · · · ,4) =
[

7
2

]
,
[

5
5

]
,
[
−1
2

]
,
[
−1
−2

]
,
[

1
−3

]

(a) Plot the particle locations versus time from k = 0 to k = 5. Plot
also the 95% contour of the true conditional densityp(x(k)|y(k)).
Discuss the locations of the particles using the simplest particle
filter.

(b) Write out the recursions for the conditional density of the particle
locations p(xi(k)|y(k)) as well as the true conditional density
p(x(k)|y(k)). Discuss the differences.
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Figure 4.22: Particles’ locations versus time for the simplest particle
filter; 250 particles. Ellipses show the 95% contour of
the true conditional densities before and after measure-
ment.

Solution

(a) The samples and 95% conditional density contour are shown in
Figure 4.22. The particles are located properly at k = 0 and about
95% of them are inside the state’s initial density. But notice that
the particles spread out quickly and few particles remain inside
the 95% contour of the true conditional density after a few time
steps.

(b) The true conditional density is the normal density given by the
time-varying Kalman filter recursion. The conditional density of
the particle location is given by (4.52) and the samples are identi-
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cally distributed

p(x(k)|y(k)) ∼ N(x̂(k), P(k))
x̂(k+ 1) = Ax̂(k)+ Bu(k)+L(k)(y(k)− C(Ax̂(k)+ Bu(k)))
P(k+ 1) = AP(k)A′ +GQG′−L(k+ 1)C(AP(k)A′ +GQG′)

p(xi(k)|y(k)) ∼ N(x(k), P(k)), i = 1, . . . , s
x(k+ 1) = Ax(k)+ Bu(k)
P(k+ 1) = AP(k)A′ +GQG′

The major differences are underlined. Notice that the mean of the
particle samples is independent of y(k), which causes the samples
to drift away from the conditional density’s mean with time. No-
tice that the covariance does not have the reduction term present
in the Kalman filter, which causes the variance of the particles
to increase with time. Therefore, due to the missing underlined
terms, the mean of the samples drifts and the variance increases
with time. The particle weights cannot compensate for the inaccu-
rate placement of the particles, and the state estimates from the
simplest particle filter are not useful after a few time iterations.

�

Example 4.38: Can resampling fix the simplest particle filter?

Repeat the simulation of Example 4.37, but use resampling after each
time step. Discuss the differences.

Solution

Applying the resampling strategy gives the results in Figure 4.23. No-
tice that resampling prevents the samples from drifting away from the
mean of the conditional density. Resampling maintains a high con-
centration of particles in the 95% probability ellipse. If we repeat this
simulation 500 times and compute the fraction of particles within the
conditional density’s 95% probability contour, we obtain the results
shown in Figure 4.24. Notice the dramatic improvement. Without re-
sampling, fewer than 10% of the particles are in the 95% confidence
ellipse after only five time steps. With resampling, about 80% of the
samples are inside the 95% confidence ellipse. There is one caution
against resampling too frequently, however. If the measurement has a
small covariance, then the weights computed from

wi(k) = wi(k− 1)p(y(k)|xi(i))
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Figure 4.23: Particles’ locations versus time for the simplest particle
filter with resampling; 250 particles. Ellipses show the
95% contour of the true conditional densities before and
after measurement.

will be dominated by only a few particles whose prediction of y is clos-
est to the measurement. Resampling in this situation gives only those
few particles repeated many times in the resample. For a sufficiently
small covariance, this phenomenon can produce a single xi value in
the resample. This phenomenon is known as sample impoverishment
(Doucet, Godsill, and Andrieu, 2000; Rawlings and Bakshi, 2006). �

4.7.5 A Particle Filter Based on Importance Sampling

Motivated by the drawbacks of the simplest particle filter of the pre-
vious section, researchers have developed alternatives based on a more
flexible importance function (Arulampalam, Maskell, Gordon, and Clapp,
2002). We present this approach next. Rather than start with the sta-
tistical property of most interest, p(x(k)|y(k)), consider instead the
density of the entire trajectory of states conditioned on the measure-
ments, p(x(k)|y(k)), as we did in moving horizon estimation. Our first
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Figure 4.24: Fraction of particles inside the 95% contour of the true
conditional density versus time; with and without re-
sampling; average of 500 runs.

objective then is to obtain samples of p(x(k+ 1)|y(k+ 1)) from sam-
ples of p(x(k)|y(k)) and the model. We use importance sampling to
accomplish this objective. Assume we have s weighted samples of the
trajectory conditioned on measurements up to time k

p(x(k)|y(k)) = {xi(k),wi(k)} i = 1, . . . , s

in which the samples have been drawn from an importance function q,
whose properties will be chosen as we proceed further. The weights
wi(k) are given by

wi(k) =
h(xi(k))

q(xi(k)|y(k))

p(xi(k)|y(k)) =
h(xi(k))∫

h(xi(k))dxi(k)

wi(k) =
wi(k)∑
jwj(k)
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Notice xi(k) is a set of ks n-vector samples, and, as in full informa-
tion estimation, the storage requirements grow linearly with time. We
remove this drawback subsequently, but for now we wish to obtain
samples of p(x(k + 1)|y(k + 1)) in which x(k + 1) = {x(k + 1),x(k)}
and y(k+ 1) = {y(k+ 1),y(k)}. We start with

p(x(k+ 1)|y(k+ 1)) = p(y(k+ 1)|x(k+ 1))p(x(k+ 1)|y(k))
p(y(k+ 1)|y(k)) (4.55)

in which we have used the second identity in Exercise 1.47 and the
Markov property, which implies

p(y(k+ 1)|x(k+ 1),y(k)) = p(y(k+ 1)|x(k+ 1))

Again, because the process is Markov p(y(k+ 1)|x(k+ 1)) = p(y(k+
1)|x(k+1)). We next use the identitypA,B|C(a, b|c) = pA|B,C(a|b, c)pB|C(b|c)
(see Exercise 1.46) and obtain

p(x(k+ 1)|y(k)) = p(x(k+ 1)|x(k),y(k))p(x(k)|y(k))

Again using the Markov property in this equation, we know p(x(k +
1)|x(k),y(k)) = p(x(k+ 1)|x(k)) and therefore

p(x(k+ 1)|y(k)) = p(x(k+ 1)|x(k))p(x(k)|y(k))

Substituting these relations into (4.55) gives

p(x(k+ 1)|y(k+ 1)) =
p(y(k+ 1)|x(k+ 1))p(x(k+ 1)|x(k))

p(y(k+ 1)|y(k)) p(x(k)|y(k)) (4.56)

We use importance sampling to sample this density. Notice the denom-
inator does not depend on x(k+1) and is therefore not required when
using importance sampling. We use instead

p(x(k+ 1)|y(k+ 1)) = h(x(k+ 1))∫
h(x(k+ 1))dx(k+ 1)

h(x(k+ 1)) =
p(y(k+ 1)|x(k+ 1))p(x(k+ 1)|x(k))p(x(k)|y(k)) (4.57)

Note also that using importance sampling here when we do not wish to
evaluate the normalizing constant introduces bias for finite sample size
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as stated in (4.49). We now state the two properties of q that provide a
convenient importance function

q(x(k+ 1)|x(k),y(k+ 1)) = q(x(k+ 1)|x(k),y(k+ 1))

q(x(k+ 1)|y(k+ 1)) =
q(x(k+ 1)|x(k),y(k+ 1)) q(x(k)|y(k)) (4.58)

The first property of q is satisfied also by the density p, so it is not
unusual to pick an importance function to share this behavior. The
second property is not satisfied by the density, however, and it is cho-
sen strictly for convenience; it allows a recursive evaluation of q at time
k+1 from the value at time k. See Exercise 4.18 for further discussion
of this point.

Next we need to generate the samples of q(x(k+1)|y(k+1)). Given
the second property in (4.58), we have

q(x(k+ 1)|y(k+ 1)) = q(x(k+ 1), x(k),x(k− 1)|y(k+ 1),y(k))
= q(x(k+ 1)|x(k),y(k+ 1)) q(x(k),x(k− 1)|y(k))

which is of the form studied in Example 4.32 with the substitution

a = x(k+1) b = x(k) c = x(k−1) d = y(k+1) e = y(k)

Using the results of that example, our sampling procedure is as follows.
We have available samples of q(x(k),y(k)) = q(x(k),x(k − 1)|y(k)).
Denote these samples by (xi(k),xi(k− 1)), i = 1, . . . , s. Then we draw
one sample from q(x(k+ 1)|xi(k),y(k+ 1)) for each i = 1, . . . , s. De-
note these samples as xi(k+1). Then the samples of q(x(k+1)|y(k+
1)) are given by (xi(k+1), xi(k),xi(k−1)) = (xi(k+1),xi(k)). So we
have

xi(k+ 1) = (xi(k+ 1),xi(k)) i = 1, . . . , s

Next we evaluate the weights for these samples

wi(k+ 1) = h(xi(k+ 1)|y(k+ 1))
q(xi(k+ 1)|y(k+ 1))

Using (4.57) to evaluate h and the second property of the importance
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function to evaluate q gives

wi(k+ 1) = p(y(k+ 1)|xi(k+ 1))p(xi(k+ 1)|xi(k))
q(xi(k+ 1)|xi(k),y(k+ 1))

h(xi(k)|y(k))
q(xi(k)|y(k))

wi(k+ 1) = p(y(k+ 1)|xi(k+ 1))p(xi(k+ 1)|xi(k))
q(xi(k+ 1)|xi(k),y(k+ 1))

wi(k) (4.59)

wi(k+ 1) = wi(k+ 1)∑
jwj(k+ 1)

Notice we obtain a convenient recursion for the weights that depends
only on the values of the samples xi(k+1) and xi(k) and not the rest of
the trajectory contained in the samples xi(k). The trajectory’s sampled
density is given by

p(x(k+ 1),x(k)|y(k+ 1)) =
s∑
i=1

wi(k+ 1)δ(x(k+ 1)− xi(k+ 1))δ(x(k)− xi(k))

Integrating both sides over the x(k) variables gives the final result

p(x(k+ 1)|y(k+ 1)) =
s∑
i=1

wi(k+ 1)δ(x(k+ 1)− xi(k+ 1))

Since we generate xi(k+1) from sampling q(x(k+1)|xi(k),y(k+1)),
the trajectory samples, xi(k), and measurement trajectory, y(k), are
not required at all, and the particle filter storage requirements do not
grow with time. Notice also that if we choose the importance function

q(xi(k+ 1)|xi(k),y(k+ 1)) = p(xi(k+ 1)|xi(k))

which ignores the current measurement when sampling, we obtain for
the weights

wi(k+ 1) = wi(k) p(y(k+ 1)|xi(k+ 1))

This choice of importance function reduces to the simplest particle
filter of the previous section, with its concomitant drawbacks.

Summary. We select an importance function q(x(k+ 1)|x(k),y(k+
1)). We start with s samples of p(x(0)). We assume that we can
evaluate p(y(k)|x(k)) using the measurement equation and p(x(k +
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1)|x(k)) using the model equation. The importance function particle
filter is summarized by the following recursion

p(x(0)|y(0)) = {xi(0),wi(0)}

wi(0) = p(y(0)|xi(0)) wi(0) =
wi(0)∑
jwj(0)

p(x(k)|y(k)) = {xi(k),wi(k)}

wi(k+ 1) = wi(k)
p(y(k+ 1)|xi(k+ 1))p(xi(k+ 1)|xi(k))

q(xi(k+ 1)|xi(k),y(k+ 1))

wi(k+ 1) = wi(k+ 1)∑
jwj(k+ 1)

and xi(k+ 1) is a sample of q(x(k+ 1)|xi(k),y(k+ 1)), i = 1, . . . , s.
The sampled density of the importance-sampled particle filter con-
verges to the conditional density p(x(k)|y(k)) in the limit of infinite
samples. Because of the way importance sampling was used, the sam-
pled density is biased for all finite sample sizes.

Exercise 4.23 provides the recursion for the weights in the unbiased
particle filter; these weights require the evaluation of p(y(k)|y(k−1)).
Exercise 4.24 shows that the variance of the unbiased weights increases
with time.

4.7.6 Optimal Importance Function

In this section we develop the so-called “optimal” importance function
q(x(k)|xi(k − 1),y(k)). We start with the weight recursion for the
importance function particle filter given in (4.59), repeated here with k
replacing k+ 1

wi(k) = wi(k− 1)
p(y(k)|xi(k))p(xi(k)|xi(k− 1))

q(xi(k)|xi(k− 1),y(k))

We consider the wi(k) conditioned on the random variables xi(k −
1),y(k). The weight wi(k) is then a function of the random variable
xi(k), which is sampled from the importance function q(x(k)|xi(k −
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1),y(k)). Taking the expectation gives

E (wi(k)|xi(k− 1),y(k))

=
∫
wi(k) q(xi(k)|xi(k− 1),y(k)) dxi(k)

=
∫
p(y(k)|xi(k))p(xi(k)|xi(k− 1))

q(xi(k)|xi(k− 1),y(k))
wi(k− 1) q(xi(k)|xi(k− 1),y(k)) dxi(k)

=
∫
p(y(k)|xi(k)) p(xi(k)|xi(k− 1)) wi(k− 1) dxi(k)

= wi(k− 1) p(y(k)|xi(k− 1))

Next we compute the conditional variance of the weights

var(wi(k)|xi(k− 1),y(k))

= E(w2
i (k)|xi(k− 1),y(k))−E2(wi|xi(k− 1),y(k))

Using the recursion in the first term and the expectation just derived
in the second term gives

var(wi(k)|xi(k− 1),y(k)) =∫
w2
i (k) q(xi(k)|xi(k− 1),y(k)) dxi(k)

−
(
wi(k− 1) p(y(k)|xi(k− 1))

)2

var(wi(k)|xi(k− 1),y(k))

=
∫
w2
i (k− 1)

(
p(y(k)|xi(k)) p(xi(k)|xi(k− 1))

)2

q2(xi(k)|xi(k− 1),y(k))

q(xi(k)|xi(k− 1),y(k)) dxi(k)−
(
wi(k− 1) p(y(k)|xi(k− 1))

)2

= w2
i (k− 1)

[∫
p2(y(k)|xi(k)) p2(xi(k)|xi(k− 1))

q(xi(k)|xi(k− 1),y(k))
dxi(k)

− p2(y(k)|xi(k− 1))
]

We can now optimize the choice of q(xi(k)|xi(k−1),y(k)) to minimize
this conditional variance. Consider the choice

q(xi(k)|xi(k− 1),y(k)) = p(xi(k)|xi(k− 1),y(k)) (4.60)
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which makes the samples at k depend on current measurement y(k)
as well as the past samples. We know from Bayes’s rule and the Markov
property

q(xi(k)|xi(k− 1),y(k)) = p(xi(k)|xi(k− 1),y(k))

= p(y(k)|xi(k), xi(k− 1))p(xi(k)|xi(k− 1))
p(y(k)|xi(k− 1))

q(xi(k)|xi(k− 1),y(k)) = p(y(k)|xi(k))p(xi(k)|xi(k− 1))
p(y(k)|xi(k− 1))

Using this result we have for the integral term

∫
p2(y(k)|xi(k)) p2(xi(k)|xi(k− 1))

q(xi(k)|xi(k− 1),y(k))
dxi(k)

= p(y(k)|xi(k− 1))
∫
p(y(k)|xi(k)) p(xi(k)|xi(k− 1)) dxi(k)

= p2(y(k)|xi(k− 1))

Substituting this result into the previous equation for conditional vari-
ance gives

var(wi(k)|xi(k− 1),y(k)) = 0

Since variance is nonnegative, the choice of importance function given
in (4.60) is optimal for reducing the conditional variance of the weights.
This choice has the important benefit of making the samplesxi(k)more
responsive to the measurement y(k), which we show in the next exam-
ple is a big improvement over the simplest particle filter.

Example 4.39: Optimal importance function applied to a linear esti-
mation problem

Given the linear system of Example 4.37 and 250 particles, show the
particles’ locations for times k = 0,1, . . . ,5 along with the 95% elliptical
contour of the true conditional density p(x(k)|y(k)). Perform this
calculation with and without resampling after every time step.

Solution

The optimal importance function is given in (4.60)

q(xi(k)|xi(k− 1),y(k)) = p(xi(k)|xi(k− 1),y(k))
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Figure 4.25: Particles’ locations versus time using the optimal im-
portance function; 250 particles. Ellipses show the 95%
contour of the true conditional densities before and af-
ter measurement.

The conditional density on the right-hand side is given by

p(xi(k)|xi(k− 1),y(k)) ∼ N(x(k), P)

x(k) = P
(
Q−1(Axi(k− 1)+ Bu(k− 1))+ C′R−1y(k)

)
P =

(
Q−1 + C′R−1C

)−1

Exercise 4.25 discusses establishing this result. So the xi(k) are gener-
ated by sampling this normal, and the results are shown in Figure 4.25.
We see that the optimal importance function adds a y(k) term to the
evolution of the particle mean. This term makes the particles more
responsive to the data and the mean particle location better tracks the
conditional density’s mean. Compare Figure 4.22 for the simplest par-
ticle filter with Figure 4.25 to see the improvement. Also the variance
no longer increases with time as in the simplest particle filter so the
particles do not continue to spread apart.
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Figure 4.26: Particles’ locations versus time using the optimal impor-
tance function with resampling; 250 particles. Ellipses
show the 95% contour of the true conditional densities
before and after measurement.

If we apply resampling at every time step, we obtain the results
in Figure 4.26. As we saw in the case of the simplest particle filter,
resampling greatly increases the number of samples inside the 95%
probability ellipse of the conditional density.

If we rerun the simulation 500 times and plot versus time the frac-
tion of particles that are inside the 95% contour of the true conditional
density, we obtain the result shown in Figure 4.27. The optimal im-
portance function is able to maintain about 20% of the particles in the
95% probability ellipse. With the optimal importance function and re-
sampling, more than 90% of the particles are inside the 95% probability
ellipse. The earlier warning about sample impoverishment applies here
as well. �



348 State Estimation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

k

without resampling

with resampling

fr
ac

ti
o

n

Figure 4.27: Fraction of particles inside the 95% contour of the true
conditional density versus time; with and without re-
sampling; average of 500 runs.

4.8 Combined MHE/Particle Filtering

We next propose a new state estimation method that combines some
of the best elements of MHE and PF. This type of combination has sev-
eral design parameters and can take different forms, and we use the
general term combined MHE/PF to designate this entire class of state
estimators. To motivate the design of MHE/PF, consider the strengths
and weaknesses of pure MHE and pure PF. The main strengths of MHE
are

1. MHE propagates the state using the full nonlinear model.

2. MHE uses optimization to find the most likely estimate. Physical
constraints can be included in the optimization.

3. MHE employs a horizon of measurements.

Using the full nonlinear model prevents inaccurate model lineariza-
tions from interfering with the fitting of the model to the data. The
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use of optimization produces the best state or state trajectory to de-
scribe the current snapshot of data. Optimization methods generally
evaluate a small set of points in the state space to find the best es-
timate compared to exhaustive enumeration, gridding, and sampling
strategies. That becomes a significant strength as the dimension of the
state space model increases past n ≈ 2–3. The use of a moving window
of data provides some robustness to unmodeled disturbances entering
the system. The goal in most recursive estimation is to consider mea-
surements one at a time. That is often a valid goal, mainly because it al-
lows faster computation of the current estimate given the current mea-
surement. But unmodeled disturbances are often problematic when
measurements are considered one at a time. No single measurement is
sufficient to conclude that an unmodeled disturbance has shifted the
state significantly from its current estimated value. Only when sev-
eral sequential measurements are considered at once is the evidence
sufficient to overturn the current state estimate and move the state a
significant distance to better match all of the measurements. MHE has
this capability built in.

The main weaknesses of MHE are

1. MHE may take significant computation time.

2. MHE uses local instead of global optimization.

Of course attempting global optimization is possible, but that exacer-
bates weakness 1 significantly and no guarantees of finding a global
optimum are available for anything but the simplest nonlinear models.
Note that for the special case of linear models, MHE finds the global
optimum and weakness 2 is removed.

Particle filtering displays quite different characteristics than those
of MHE. The main strengths of PF are

1. PF uses the full nonlinear model to propagate the samples.

2. The PF sampled density can represent a general conditional den-
sity.

3. PF is simple to program and executes quickly for small sample
sizes.

As we have illustrated with simple examples, pure PF also demonstrates
significant weaknesses, and these are not remedied by any suggestions
in the research literature of which we are aware. The weaknesses of PF
include
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1. PF exhibits significant decrease in performance with increasing
state dimension.

2. PF displays poor robustness to unmodeled disturbances.

The lack of robustness is a direct outcome of the sampling strategies.
Sampling any of the proposed PF importance functions does not locate
the samples close to the true state after a significant and unmodeled
disturbance. Once the samples are in the wrong place with respect to
the peak in the conditional density, they do not recover. If the samples
are in the wrong part of the state space, the weights cannot carry the
load and represent the conditional density. Resampling does not suc-
cessfully reposition the particles if they are already out of place. An
appeal to sampled density convergence to the true conditional density
with increasing sample number is unrealistic. The number of samples
required is simply too large for even reasonably small state dimensions
considered in applications; n > 50 is not unusual in applications.

In constructing a class of combined methods we propose to

1. Use MHE to locate/relocate the samples.

2. Use PF to obtain fast recursive estimation between MHE optimiza-
tions.

We overcome the potentially expensive MHE optimization by using PF to
process the measurements and provide rapid online estimates while an
MHE computation is underway. We position the samples in regions of
high conditional density after every run of the MHE optimization, which
allows recovery from unmodeled disturbances as soon as an MHE com-
putation completes. A challenge that is not addressed is the appear-
ance of multiple peaks in the conditional density when using nonlinear
models. Handling the multimodal conditional density remains a chal-
lenge for any online, and indeed offline, state estimation procedure.

Next we propose a specific state estimator in this general MHE/PF
class and examine its performance with some simple computational
examples. Because this class of estimators is new, we fully expect sig-
nificant modifications and improvements to come along. At this early
juncture we expect only to be able to illustrate some of the new capa-
bilities of the approach.

Let Ẑk(x) denote the MHE arrival cost function given in Definition
4.16. We let V̂0

k denote the optimal cost and x̂(k) the optimal estimate
of the last stage at time k. We consider the quadratic approximation of
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Ẑk(·) at the optimum x̂(k)

V(x) = V0
k (x̂(k))+ (1/2)(x − x̂(k))′H(x − x̂(k))

in which H is the Hessian of Ẑk(x) evaluated at the optimum x̂(k).
We use this function as an importance function for sampling the con-
ditional density. Notice that this procedure is not the same as as-
suming the conditional density itself is a normal distribution. We are
using N(x̂(k),H−1) strictly as an importance function for sampling
the unknown conditional density. The samples xi(k) are drawn from
N(x̂(k),H−1). The weights are given by

wi(k) = V(xi(k)) wi(k) =
wi(k)∑
jwj(k)

(4.61)

and the sampled density is given by

ps(x) = {xi(k),wi(k)}

If the conditional density is well represented by the normal approxima-
tion, then the normalized weights are all nearly equal to 1/s. The MHE
cost function modifies these ideal weights as shown in (4.61).

Example 4.40: Comparison of MHE, PF, and combined MHE/PF

Consider a well-mixed semibatch chemical reactor in which the follow-
ing reaction takes place

2A
k
-→ B r = kc2

A

The material balances for the two components are

dcA
dt

= −2kc2
A +

Qf
V
cAf

dcB
dt

= kc2
A +

Qf
V
cBf

with constant parameter values

Qf
V
= 0.4 k = 0.16 cAf = 1 cBf = 0

The scalar measurement is the total pressure, which is the sum of the
two states. The sample time is∆ = 0.1. The initial state is x(0) = [3 1]′

and the initial prior mean is x̂(0) = [0.1 4.5]′. Moreover, the input
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Figure 4.28: Pure MHE.

suffers an unmodeled step disturbance at t = 5 for two samples. So
this example tests robustness of the estimator to initial state error and
unmodeled disturbances.

First we apply MHE to the example and the results are displayed in
Figure 4.28. The horizon is chosen as N = 15. The initial covariance is
chosen to be P0 = 10I2 to reflect the poor confidence in the initial state.
Notice that MHE is able to recover from the poor initial state prior in
only 4 or 5 samples.

Next we apply pure particle filtering using 50 particles. We use the
optimal importance function because the measurement equation is lin-
ear. The particles are initialized using the same initial density as used
in the MHE estimator.

px(0)(x) = n(x, x̂(0), P(0))

The results are shown in Figure 4.29. The figure shows the state and
output mean versus time. We notice two effects. The particle filter is
unable to recover from the poor initial samples. The measurement is
predicted well but neither state is estimated accurately. The A concen-
tration estimate is also negative, which is physically impossible. The
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Figure 4.29: Pure PF with optimal importance function.

disturbance at t = 5 is fortuitous and helps the PF get back on track.
Next we assume that the MHE optimization cannot finish in one

sample, but requires M samples. If we attempt a pure MHE solution in
this situation, the estimator falls hopelessly behind; an estimate using
data y(k−M,k), k ≥ M is not available until time Mk. Instead we use
MHE/PF as follows.

1. At time k run MHE on data y(k −M,k). This computation is as-
sumed to finish at time k+M . For simplicity, assume N large and
a noninformative prior.

2. Draw samples from N(x̂(k), P(k)). Run the particle filtering up-
date from time k to time k + M . For illustrative purposes, we
assume this PF step finishes in one sample.

3. Update k to k+M and repeat.

For illustrative purposes, we choose M = 10 and apply the combi-
nation of MHE and PF with the simple importance function, also using
50 particles as before. The results are shown in Figure 4.30. Notice
that again the poor initial samples lead to significant estimate error.
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Figure 4.30: Combination MHE/PF with simple importance function.

But the inaccurate sample is repaired after M = 10 samples. The MHE
calculation completes by about t = 2, and the samples are reinitialized
from the MHE cost function at t = 1, and run forward from t = 1. These
reinitialized samples converge to the true state shortly after t = 1.7

The disturbance at t = 5 also causes the PF samples with the sim-
ple importance function to be in the wrong locations. They do not
recover and inaccurate estimates are produced by the PF. Another MHE
calculation starts at t = 5 and finishes at t = 6, and the samples are
reinitialized with the MHE cost function at t = 5 and run forward. Af-
ter this resampling, the PF estimates again quickly converge to the true
estimates after t = 6.

Next we use the combination of MHE and PF with the optimal im-
portance function. These results are shown in Figure 4.31. We see as

7Even with only 50 particles, we find that particle filtering is not so much faster
than MHE, that its computation time can be neglected as we have done here. The two
computations take about the same time with 50 particles. The computational expense
in PF arises from calling an ODE solver 50 times at each sample time. No attempt was
made to tailor the ODE solver for efficiency by exploiting the fact that the sample time
is small. Note, however, that tailoring the ODE solver would speed up MHE as well as
PF.
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Figure 4.31: Combination MHE/PF with optimal importance function.

in the early part of Figure 4.29 that the samples cannot recover from
the poor initial state prior and resampling from the MHE cost function
takes place at t = 1 after the first MHE calculation finishes at t = 2. But
as in the case of pure PF with the optimal importance function, the dis-
turbance does not move the state so far from the samples that they are
unable to recover and continue to provide accurate estimates. The MHE
resampling that takes place at t = 5 after MHE finishes at t = 6 does not
modify significantly the PF samples that are already well placed. �

Of course, the simulations shown in Figures 4.28–4.31 display the
outcome of only single random realizations. A full characterization
of the behavior of the four estimators is determined by running many
such random simulations and computing the statistics of interest. We
have not compiled these statistics because the single simulations are
rather time consuming. After running several random simulations for
each estimator, these single simulations were selected manually as rep-
resentative behavior of the different estimators.
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4.9 Notes

State estimation is a fundamental topic appearing in many branches of
science and engineering, and has a large literature. A nice and brief
annotated bibliography describing the early contributions to optimal
state estimation of the linear Gaussian system is provided by Åström
(1970, pp. 252-255). Kailath (1974) provides a comprehensive and his-
torical review of linear filtering theory including the historical devel-
opment of Wiener-Kolmogorov theory for filtering and prediction that
preceded Kalman filtering (Wiener, 1949; Kolmogorov, 1941).

Jazwinski (1970) provides an early and comprehensive treatment of
the optimal stochastic state estimation problem for linear and nonlin-
ear systems. As mentioned in Section 4.2.1, Jazwinski (1970) proves
stability of the optimal time-varying state estimator for the linear Gaus-
sian case using V(k,x) = x′P(k)−1x as the Lyapunov function for the
linear time-varying system governing estimate error. Note that this dy-
namic system is time-varying even if the model is time invariant be-
cause the optimal estimator gains are time varying. This choice of
Lyapunov function has been used to establish estimator stability in
many subsequent textbooks (Stengel, 1994, pp.474-475). Kailath (1974,
p.152) remarks that the known proofs that the optimal filter is stable
“are somewhat difficult, and it is significant that only a small fraction
of the vast literature on the Kalman filter deals with this problem.”
Perhaps the stability analysis developed in Section 4.2 can alleviate the
difficulties associated with developing Lyapunov function arguments
in optimal estimation.

For establishing stability of the steady-state optimal linear estima-
tor, simpler arguments suffice because the estimate error equation is
time invariant. Establishing duality with the optimal regulator is a fa-
vorite technique for establishing estimator stability in this case. See,
for example, Kwakernaak and Sivan (1972, Theorem 4.11) for a general
steady-state stability theorem for the linear Gaussian case. This result
is proved by establishing properties of the steady-state solution to the
Riccati equation for regulation and, by duality, estimation.

Many of the full information and MHE results in this chapter are
given by Rao (2000) and Rao, Rawlings, and Mayne (2003). The full in-
formation analysis given here is more general because (i) we assume
nonlinear detectability rather than nonlinear observability, and (ii) we
establish asymptotic stability under process and measurement distur-
bances, which were neglected in previous analysis.
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Muske, Rawlings, and Lee (1993) and Meadows, Muske, and Rawl-
ings (1993) apparently were the first to use the increasing property
of the optimal cost to establish asymptotic stability for full informa-
tion estimation for linear models with constraints. Robertson and Lee
(2002) present the interesting statistical interpretation of MHE for the
constrained linear system. Michalska and Mayne (1995) establish sta-
bility of moving horizon estimation with zero prior weighting for the
continuous time nonlinear system.
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4.10 Exercises

Exercise 4.1: Input to state stability and convergence

Assume the nonlinear system
x+ = f(x,u)

is input to state stable (ISS) so that for all x0 ∈ Rn, input sequences u, and k ≥ 0

|x(k;x0,u)| ≤ β(|x0| , k)+ γ(‖u‖)
in which x(k;x0,u) is the solution to the system equation at time k starting at state
x0 using input sequence u, and γ ∈ K and β ∈ KL.

(a) Show that the ISS property also implies

|x(k;x0,u)| ≤ β(|x0| , k)+ γ(‖u‖0:k)

in which ‖u‖0:k =max0≤j≤k
∣∣u(j)∣∣.

(b) Show that the ISS property implies the “converging-input converging-state” prop-
erty (Jiang and Wang, 2001), (Sontag, 1998a, p. 330), i.e., show that if the system
is ISS, then u(k)→ 0 implies x(k)→ 0.

Exercise 4.2: Output to state stability and convergence

Assume the nonlinear system

x+ = f(x) y = h(x)
is output to state stable (OSS) so that for all x0 ∈ Rn and k ≥ 0

|x(k;x0)| ≤ β(|x0| , k)+ γ(‖y‖0:k)

in which x(k;x0) is the solution to the system equation at time k starting at state x0,
and γ ∈ K and β ∈ KL.

Show that the OSS property implies the “converging-output converging-state” prop-
erty (Sontag and Wang, 1997, p. 281) i.e., show that if the system is OSS, then y(k)→ 0
implies x(k)→ 0.

Exercise 4.3: i-IOSS and convergence

Prove Proposition 4.2, which states that if system

x+ = f(x,w) y = g(x)
is i-IOSS, and w1(k)→ w2(k) and y1(k)→ y2(k) as k→∞, then

x(k;z1,w1)→ x(k;z2,w2) as k→∞ for all z1, z2

Exercise 4.4: Observability and detectability of linear time-invariant sys-
tems and OSS

Consider the linear time-invariant system

x+ = Ax y = Cx
(a) Show that if the system is observable, then the system is OSS.

(b) Show that the system is detectable if and only if the system is OSS.
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Exercise 4.5: Observability and detectability of linear time-invariant system
and IOSS

Consider the linear time-invariant system with input

x+ = Ax +Gw y = Cx

(a) Show that if the system is observable, then the system is IOSS.

(b) Show that the system is detectable if and only if the system is IOSS.

Exercise 4.6: Max or sum?

Given γ1, γ2 ∈ K, show there exists a,b > 0 such that

a(γ1(x)+ γ2(y)) ≤max(γ1(x), γ2(y)) ≤ b(γ1(x)+ γ2(y))

for all x ∈ Rn, y ∈ Rm. Therefore it is equivalent if ISS or OSS is defined in terms of

inequalities using the max or the sum.

Exercise 4.7: Linear systems and incremental stability

Show that for a linear time-invariant system, i-ISS (i-OSS, i-IOSS) is equivalent to ISS
(OSS, IOSS).

Exercise 4.8: Nonlinear observability and Lipschitz continuity implies i-OSS

Consider the following definition of observability for nonlinear systems in which f and
h are Lipschitz continuous. A system

x+ = f(x) y = h(x)

is observable if there exists No ∈ I≥1 andK-function γ such that

No−1∑
k=0

∣∣y(k;x1)−y(k;x2)
∣∣ ≥ γ(|x1 − x2|) (4.62)

holds for all x1, x2 ∈ Rn. This definition was used by Rao et al. (2003) in showing
stability of nonlinear MHE to initial condition error under zero state and measurement
disturbances.

(a) Show that this form of nonlinear observability implies i-OSS.

(b) Show that i-OSS does not imply this form of nonlinear observability and, there-
fore, i-OSS is a weaker assumption.

The i-OSS concept generalizes the linear system concept of detectability to nonlinear
systems.

Exercise 4.9: Robust GAS implies GAS in estimation

Show that robust GAS of an estimator implies GAS for the estimator.
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Exercise 4.10: Relationships between observability, FSO, MHE detectability
and i-IOSS

Show that for the nonlinear system x+ = f(x,w), y = h(x) with Lipschitz continuous
f andh, the following relationships hold between observability, FSO, MHE detectability,
and i-IOSS (detectability).

observable =⇒ FSO =⇒ MHE detectable =⇒ i-IOSS

observable 6⇐= FSO 6⇐= MHE detectable 6⇐= i-IOSS

Exercise 4.11: Observability, FSO, and detectability of linear systems

Consider the linear time-invariant system

x+ = Ax y = Cx

and its observability canonical form. What conditions must the system satisfy to be

(a) observable?

(b) final-state observable (FSO)?

(c) detectable?

Exercise 4.12: Dynamic programming recursion for Kalman predictor

In the Kalman predictor, we use forward DP to solve at stage k

min
x,w

`(x,w)+ V−k (x) s.t. z = Ax +w

in which x is the state at the current stage and z is the state at the next stage. The
stage cost and arrival cost are given by

`(x,w) = (1/2)
( ∣∣y(k)− Cx∣∣2

R−1+w′Q−1w
)

V−k (x) = (1/2)
∣∣x − x̂−(k)∣∣2

(P−(k))−1

and we wish to find the value function V0(z), which we denote V−k+1(z) in the Kalman
predictor estimation problem.

(a) Combine the two x terms to obtain

min
x,w

1
2

(
w′Q−1w + (x − x̂(k))′P(k)−1(x − x̂(k))

)
s.t. z = Ax +w

and, using the third part of Example 1.1, show

P(k) = P−(k)− P−(k)C′(CP−(k)C′ + R)−1CP−(k)

L(k) = P−(k)C′(CP−(k)C′ + R)−1C′R−1

x̂(k) = x̂−(k)+ L(k)(y(k)− Cx̂−(k))

(b) Add the w term and use the inverse form in Exercise 1.18 to show the optimal
cost is given by

V0(z) = (1/2)(z −Ax̂−(k+ 1))′(P−(k+ 1))−1(z −Ax̂−(k+ 1))

x̂−(k+ 1) = Ax̂(k)
P−(k+ 1) = AP(k)A′ +Q
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Substitute the results for x̂(k) and P(k) above and show

V−k+1(z) = (1/2)(z − x̂
−(k+ 1))′(P−(k+ 1))−1(z − x̂(k+ 1))

P−(k+ 1) = Q+AP−(k)A′ −AP−(k)C′(CP−(k)C′ + R)−1CP−(k)A

x̂−(k+ 1) = Ax̂−(k)+ L̃(k)(y(k)− Cx̂−(k))

L̃(k) = AP−(k)C′(CP−(k)C′ + R)−1

(c) Compare and contrast this form of the estimation problem to the one given in
Exercise 1.29 that describes the Kalman filter.

Exercise 4.13: Duality, cost to go, and covariance

Using the duality variables of Table 4.2, translate Theorem 4.10 into the version that is
relevant to the state estimation problem.

Exercise 4.14: Estimator convergence for (A, G) not stabilizable

What happens to the stability of the optimal estimator if we violate the condition

(A,G) stabilizable

(a) Is the steady-state Kalman filter a stable estimator? Is the full information esti-
mator a stable estimator? Are these two answers contradictory? Work out the
results for the case A = 1, G = 0, C = 1, P−(0) = 1,Q = 1, R = 1.
Hint: you may want to consult de Souza, Gevers, and Goodwin (1986).

(b) Can this phenomenon happen in the LQ regulator? Provide the interpretation
of the time-varying regulator that corresponds to the time-varying filter given
above. Does this make sense as a regulation problem?

Exercise 4.15: Exponential stability of the Kalman predictor

Establish that the Kalman predictor defined in Section 4.2.1 is a globally exponentially
stable estimator. What is the corresponding linear quadratic regulator?

Exercise 4.16: The resampling theorem

Generalize the proof of Theorem 4.35 to cover any number of samples.
Hint: you may find the multinomial expansion formula useful

(x1 + x2 + · · · + xs)k =
k∑

r1=0

k∑
r2=0

· · ·
k∑

rs=0

a(r1, r2, . . . , rs)x
r1
1 x

r2
2 · · ·x

rs
s

in which the coefficients in the expansion formula are given by Feller (1968, p.37)

a(r1, r2, . . . , rs) =


k!

r1! r2! · · · rs !
r1 + r2 + · · · + rs = k

0 r1 + r2 + · · · + rs ≠ k
(4.63)
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Exercise 4.17: Pruning while resampling

Sometimes it is convenient in a simulation to reduce the number of samples when
resampling a density. In many discrete processes, for example, the number of possible
states that may be reached in the simulation increases with time. To keep the number of
samples constant, we may wish to remove samples at each time through the resampling
process. Consider a modification of Theorem 4.35 in which the number of resamples
is s̃, which does not have to be equal to s.

Theorem 4.41 (Resampling and pruning). Consider a sampled density p(x) with s sam-
ples at x = xi and associated weights wi

p(x) =
s∑
i=1

wiδ(x − xi) wi ≥ 0
s∑
i=1

wi = 1

Consider the resampling procedure that gives a resampled density with s̃ > 0 samples

p̃(x) =
s̃∑
i=1

w̃iδ(x − x̃i)

in which the x̃i are chosen according to resample probability pr

pr (x̃i) =
{
wj , x̃i = xj
0, x̃i ≠ xj

and with uniform weights w̃i = 1/s̃. Consider a function f(·) defined on a set X con-
taining the points xi.

Under this resampling procedure, the expectation over resampling of any integral
of the resampled density is equal to that same integral of the original density

Er
(∫
f(x)p̃(x)dx

)
=
∫
f(x)p(x)dx all f

(a) Is the proposed theorem correct? If so, prove it. If not, provide a counter-
example.

(b) What do you suppose happens in a simulation if we perform aggressive pruning
by always choosing s̃ = 1?

Exercise 4.18: Properties of the importance function

It is stated in the chapter that p(x(k+ 1)|y(k+ 1)) does not satisfy the second impor-
tance function property listed in (4.58)

q(x(k+ 1)|y(k+ 1)) = q(x(k+ 1)|x(k),y(k+ 1)) q(x(k)|y(k)) (4.64)

Derive a similar property that p(x(k+1)|y(k+1)) does satisfy. What has been altered

in (4.64)? Why do you think this change has been made?

Exercise 4.19: A single sample of joint density

Consider again Example 4.31 in which we have sx and sy samples of the marginals of
independent random variables ξ and η, respectively

ξ ∼ {xi,wxi} wxi = 1/sx , i = 1, . . . , sx
η ∼ {yj ,wyj} wyj = 1/sy , j = 1, . . . , sy
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and wish to sample the joint density pξ,η(x,y) = pξ(x)pη(y). Show that selecting
any single sample is a valid sample of the joint density

{(x1, y1),w}, w = 1

Exercise 4.20: Kolmogorov-Smirnov limit theorem for sampling error

Consider again s mutually independent samples taken from cumulative distribution
P(x) to produce the sampled cumulative distribution Ps(x; s) as discussed in Sec-
tion 4.7.2. Define sampling error as in the chapter

Ds = sup
x
|Ps(x; s)− P(x)|

(a) Reproduce the results of Example 4.30. Plot the actual and limiting distributions
for Ds for s = 10,100,1000 when sampling a normal distribution with unit
variance. Your result should resemble Figure 4.14

(b) Now compute the actual and limiting probability densities of the sampling error
p(Ds) rather than the distribution Pr(Ds). Give a formula for l(z) = dL(z)/dz.
Plot p(Ds) for s = 10,100,1000 samples for sampling the normal distribution
with unit variance.

Exercise 4.21: Sampled density from a weighted importance function

Given a weighted sample of an importance function q(x)

qs(x) =
s∑
i=1

w−i δ(x − xi)
∑
i
w−i = 1

(a) Show that the sampled density

ps(x) =
s∑
i=1

wiδ(x − xi) wi = w−i
p(xi)
q(xi)

converges to p(x) as sample size increases.

(b) Show that the sampled density is unbiased for all samples sizes.

Exercise 4.22: Sampled density from a weighted importance function when
unable to evaluate the density

Given a weighted sample of an importance function q(x)

qs(x) =
s∑
i=1

w−i δ(x − xi)
∑
i
w−i = 1

and a density of the following form

p(x) = h(x)∫
h(x)dx

in which p(x) cannot be conveniently evaluated but h(x) can be evaluated.
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(a) Show that the sampled density

ps(x) =
s∑
i=1

wiδ(x − xi) wi = w−i
h(xi)
q(xi)

wi =
wi∑
jwj

converges to p(x) as sample size increases.

(b) Show that the sampled density is biased for all finite sample sizes.

Exercise 4.23: Unbiased particle filter with importance sampling

Show that an unbiased particle filter using importance sampling is given by

ps(x(k)|y(k)) = {xi(k), w̃i(k)}

w̃i(k+ 1) = w̃i(k)
p(y(k+ 1)|xi(k+ 1)) p(xi(k+ 1)|xi(k))

p(y(k+ 1)|y(k)) q(xi(k+ 1)|xi(k),y(k+ 1))

in which xi(k) are samples of the importance function q(x(k)|xi(k− 1),y(k)). Note
that normalization of w̃i is not required in this form of a particle filter, but evaluation
of p(y(k+ 1)|y(k)) is required.

Exercise 4.24: Variance of the unbiased particle filter with importance sam-
pling

Show that the variance of the weights of the unbiased particle filter given in Exer-
cise 4.23 increases with time.

Exercise 4.25: Optimal importance function for a linear system

The optimal importance function is given in (4.60), repeated here

q(xi(k)|xi(k− 1),y(k)) = p(xi(k)|xi(k− 1),y(k))

For the linear time-invariant model, this conditional density is the following normal
density (Doucet et al., 2000)

p(xi(k)|xi(k− 1),y(k)) ∼ N(x(k), P)
x(k) = PQ−1(Axi(k− 1)+ Bu(k− 1))+ PC′R−1y(k)

P =
(
Q−1 + C′R−1C

)−1

Establish this result by first considering the linear transformation between (xi(k),y(k))
and xi(k−1),w(k), v(k), and then using the formulas for taking conditional densities
of normals.

Exercise 4.26: Equivalance of detectability and IOSS for continuous-time,
linear, time-invariant system

Consider the continuous-time, linear, time-invariant system with input

ẋ = Ax + Bu y = Cx

Show that the system is detectable if and only if the system is IOSS.
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5
Output Model Predictive Control

5.1 Introduction

In Chapter 2 we show how model predictive control (MPC) may be em-
ployed to control a deterministic system, that is, a system in which there
are no uncertainties and the state is known. In Chapter 3 we show how
to control an uncertain system in which uncertainties are present but
the state is known. Here we address the problem of MPC of an un-
certain system in which the state is not fully known. We assume that
there are outputs available that may be used to estimate the state as
shown in Chapter 4. These outputs are used by the model predictive
controller to generate control actions; hence the name output MPC.

Output feedback control is, in general, more complex than state
feedback control since knowledge of the state provides considerable
information. If the state is known, optimal control is, in general, a time-
varying function of the current state even if the system is uncertain as,
for example, when it is subject to an additive disturbance. In this case,
the state must include the state of the disturbance.

Generally, however, the state is not known; instead, a noisy mea-
surement y(t) of the state is available at each time t. Since the state
x is not known, it is replaced by a hyperstate p that summarizes all
prior information (previous inputs and outputs and the prior distribu-
tion of the initial state) and that has the “state” property: future values
of p can be determined from the current value of p and current and
future inputs and outputs. Usually p(t) is the conditional density of
x(t) given the prior density p(0) of x(0) and the current available “in-
formation” I(t) := {y(0),y(1), . . . , y(t − 1),u(0),u(1), . . . , u(t − 1)}.
If the current hyperstate is known, future hyperstates have to be pre-
dicted since future noisy measurements of the state are not known. So

371



372 Output Model Predictive Control

the hyperstate satisfies an uncertain difference equation of the form

p+ = φ(p,u,ψ) (5.1)

where {ψ(t)} is a sequence of random variables; the problem of con-
trolling a system with unknown statex is transformed into the problem
of controlling an uncertain system with known state p. For example, if
the underlying system is described by

x+ = Ax + Bu+w
y = Cx + ν

where {w(t)} and {ν(t)} are sequences of zero mean normal indepen-
dent random variables with variances Σw and Σν , respectively, and if
the prior density p(0) of x(0) is normal with density n(x̄0,Σ0) then,
as is well known, p(t) is the normal density n(x̂(t),Σ(t)) so that the
hyperstate p(t) is finitely parameterized by (x̂(t),Σ(t)); hence the evo-
lution equation for p(t) is defined by the evolution equation for (x̂,Σ),
that is by:

x̂(t + 1) = Ax̂(t)+ Bu+ L(t)ψ(t) (5.2)

Σ(t + 1) = Φ(Σ(t)) (5.3)

in which

Φ(Σ) := AΣA′ −AΣC′(C′ΣC + Σν)−1CΣA′ + Σw
ψ(t) := y(t)− Cx̂(t) = Cx̃(t)+ ν(t)
x̃(t) := x(t)− x̂(t)

The initial conditions for (5.2) and (5.3) are

x̂(0) = x̄0 Σ(0) = Σ0

These are, of course, the celebrated Kalman filter equations derived in
Chapter 1. The random variables x̃ andψ have the following densities:
x̃(t) ∼ n(0,Σ(t)) and ψ(t) ∼ n(0,Σν + C′Σ(t)C). The finite dimen-
sional equations (5.2) and (5.3) replace the difference equation (5.1) for
the hyperstate p that is a conditional density and, therefore, infinite di-
mensional in general. The sequence {ψ(t)} is known as the innovation
sequence; ψ(t) is the “new” information contained in y(t).

Output control, in general, requires control of the hyperstate p
which may be computed and is, therefore, known, but which satisfies
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a complex evolution equation p+ = φ(p,u,ψ) where ψ is a random
disturbance. Controlling p is a problem of the same type as that con-
sidered in Chapter 3, but considerably more complex since the function
p(·) is infinite dimensional. Because of the complexity of the evolution
equation for p, the separation principle is often invoked; assuming that
the state x is known, a stabilizing controller u = κ(x) and an observer
or filter yielding an estimate x̂ of the state are separately designed; the
control u = κ(x̂) is then applied to the plant. Indeed, this form of con-
trol is actually optimal for the linear quadratic Gaussian (LQG) optimal
control problem considered briefly above but is not necessarily stabiliz-
ing when the system is nonlinear and constrained. We propose a variant
of this procedure, modified to cope with state and control constraints.
The state estimate x̂ satisfies an uncertain difference equation with an
additive disturbance of the same type as that considered in Chapter
3. Hence we employ tube MPC, similar to that employed in Chapter 3,
but modified to ensure that state estimation error, not considered in
Chapter 3, does not result in transgression of the control and state con-
straints. An advantage of the method presented here is that its online
complexity is comparable to that of conventional MPC.

As in Chapter 3, a caveat is necessary. Because of the inherent com-
plexity of output MPC, different compromises between simplicity and
efficiency are possible; for this reason, output MPC remains an active
research area and alternative methods, available or yet to be developed,
may be preferred.

5.2 A Method for Output MPC

Suppose the system to be controlled is described by

x+ = f(x,u,w) (5.4)

y = h(x, ν) (5.5)

where x ∈ Rn, u ∈ Rm and y ∈ Rp; the disturbance w lies in Rn, and
the measurement noise ν lies in Rp A prime requirement for simplifi-
cation is replacement of the infinite dimensional hyperstate p, which
is n(x̂,Σ) in the linear Gaussian case, by something considerably sim-
pler. The hyperstate p, being a conditional density, may be regarded
as a continuum of nested confidence regions, each of which is a subset
of Rn. Our initial simplification is the replacement, if this is possible,
of this continuum of confidence regions by a single region of the form
{x̂} ⊕ � ⊆ Rn, where x̂ is the “center” of the confidence region and �
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{x̂(0)} ⊕ �
x̂(k)
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Figure 5.1: State estimator tube.

now denotes a subset of Rn rather than a variance. If the problem is
stochastic, {x̂}⊕� may be a β confidence region for p, i.e., a region sat-
isfying Pr{x ∈ {x̂}⊕�|I} = β. When all disturbances are bounded, the
usual assumption in robust MPC, � is chosen to ensure that all possible
values of x lie in the set {x̂}⊕�. The finite dimensional variable (x̂,�)
replaces the infinite dimensional object p.1 In the linear time-invariant
case, the state estimator (x̂,�) evolves, as shown in the sequel, accord-
ing to

x̂+ = φ(x̂,u,ψ) (5.6)

�+ = Φ(�) (5.7)

in which ψ is a random variable in the stochastic case and a bounded
disturbance taking values in 	 whenw and ν are bounded. In the latter
case, x ∈ {x̂} ⊕ � implies x+ ∈ {x̂+} ⊕ �+ for all ψ ∈ 	.

More generally, let X ⊆ Rn denote the set of states consistent with
the current information I; although X = {x̂} ⊕ � in the linear case,
the evolution of X, in the nonlinear case, is more complex than (5.6)
and (5.7). The hope remains that X has an outer approximation of
the form {x̂} ⊕ � where x̂ may be obtained by one of the methods
described in Chapter 4; however � may no longer be independent of
the observation sequence.

As illustrated in Figure 5.1, the evolution equations generate a tube,
which is the set sequence {{x̂(t)} ⊕ �(t)}; at time t the center of the

1The object {x̂}⊕� may be regarded (Moitié, Quincampoix, and Veliov, 2002) as the
“state” for the output MPC problem.
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tube is x̂(t) and the “cross section” is �(t). When the disturbances are
bounded, which is the only case we consider in the sequel, all possible
realizations of the state trajectory {x(t)} lie in the set {{x̂(t)} ⊕�(t)}
for all t; the dashed line is a sample trajectory of x(t).

From (5.6), the estimator trajectory {x̂(t)} is influenced both by
the control that is applied and by the disturbance sequence {ψ(t)}.
If the trajectory were influenced only by the control, we could choose
the control to satisfy both the control constraints and to cause the
estimator tube to lie in a region such that the state constraints are
satisfied by all possible realizations of the state trajectory. Hence the
output MPC problem would reduce to a conventional MPC problem with
modified constraints in which the state is x̂, rather than x. The new
state constraint is x̂ ∈ X̂where X̂ is chosen to ensure that x̂ ∈ X̂ implies
x ∈ X and, therefore, satisfies X̂ ⊆ X	� if � does not vary with time t.

But the estimator state {x̂(t)} is influenced by the disturbance ψ
(see (5.6)), so it cannot be precisely controlled. The problem of control-
ling the system described by (5.6) is the same type of problem studied
in Chapter 3, where the system was described by x+ = f(x,u,w) with
the estimator state x̂, which is accessible, replacing the actual state x.
Hence we may use the techniques presented in Chapter 3 to choose a
control that forces x̂ to lie in another tube {{z(t)} ⊕ S(t)} where the
set sequence {S(t)} that defines the cross section of the tube is pre-
computed, and {z(t)} that defines the center of the tube is the state
trajectory of the nominal (deterministic) system defined by

z+ = φ(z,u,0) (5.8)

which is the nominal version of (5.6). Equations (5.8) is obtained by
replacing ψ by 0 in the original equations. Thus we get two tubes, one
embedded in the other. At time t the estimator state x̂(t) lies in the
set {z(t)}⊕S(t), and x(t) lies in the set {x̂(t)}⊕�(t), so that for all t

x(t) ∈ {z(t)} ⊕ �(t) �(t) := �(t)⊕ S(t)

The tubes {{z(t)} ⊕ S(t)}, in which the trajectory {x̂(t)} lies, and
{{z(t)} ⊕ �(t)}, in which the state trajectory {x(t)} lies, are shown
in Figure 5.2. The tube {{z(t)} ⊕ S(t)} is embedded in the larger tube
{{z(t)} ⊕ �(t)}.
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Figure 5.2: State tube.

5.3 Linear Constrained Systems: Time-Invariant Case

5.3.1 Introduction

We consider the following uncertain linear time-invariant system

x+ = Ax + Bu+w
y = Cx + ν (5.9)

in which x ∈ Rn is the current state, u ∈ Rm is the current control
action, x+ is the successor state, w ∈ Rn is an unknown state distur-
bance, y ∈ Rp is the current measured output, ν ∈ Rp is an unknown
output disturbance, the pair (A, B) is assumed to be controllable, and
the pair (A,C) observable. The state and additive disturbances w and
ν are known only to the extent that they lie, respectively, in the C-
sets2 W ⊆ Rn and N ⊆ Rp. Let φ(i;x(0),u,w) denote the solution
of (5.9) at time i if the initial state at time 0 is x(0), and the control
and disturbance sequences are, respectively, u := {u(0),u(1), . . .} and
w := {w(0),w(1), . . .}. The system (5.9) is subject to the following set
of hard state and control constraints

x ∈ X u ∈ U (5.10)

where X ⊆ Rn and U ⊆ Rm are polyhedral and polytopic sets respec-
tively; both sets contain the origin as an interior point.

2Recall, a C-set is a convex, compact set containing the origin.
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5.3.2 State Estimator

To estimate the state a simple Luenberger observer is employed

x̂+ = Ax̂ + Bu+ L(y − ŷ)
ŷ = Cx̂ (5.11)

where x̂ ∈ Rn is the current observer state (state estimate), u ∈ Rm

is the current control action, x̂+ is the successor state of the observer
system, ŷ ∈ Rp is the current observer output, and L ∈ Rn×p. The
output injection matrix L is chosen to satisfy ρ(AL) < 1 where AL :=
A− LC .

The estimated state x̂ therefore satisfies the following uncertain
difference equation

x̂+ = Ax̂ + Bu+ L(Cx̃ + ν)

where the state estimation error x̃ is defined by x̃ := x − x̂ so that
x = x̂ + x̃. Since x+ = Ax + Bu + w, the state estimation error x̃
satisfies

x̃+ = ALx̃ + w̃ w̃ := w − Lν (5.12)

Because w and ν are bounded, so is w̃; in fact, w̃ takes values in the
C-set W̃ defined by

W̃ :=W⊕ (−LN)

We recall the following standard definitions (Blanchini, 1999):

Definition 5.1 (Positive invariance; robust positive invariance). A set
Ω ⊆ Rn is positive invariant for the system x+ = f(x) and the con-
straint set X if Ω ⊆ X and f(x) ∈ Ω, ∀x ∈ Ω.
A set Ω ⊆ Rn is robust positive invariant for the system x+ = f(x,w)
and the constraint set (X,W) if Ω ⊆ X and f(x,w) ∈ Ω, ∀w ∈ W,
∀x ∈ Ω.

Since ρ(AL) < 1 and W̃ is compact, there exists, as shown in Kol-
manovsky and Gilbert (1998), Theorem 4.1, a robust positive invariant
set � ⊆ Rn, satisfying

AL�⊕ W̃ = � (5.13)

Hence, for all x̃ ∈ �, x̃+ = ALx̃ + w̃ ∈ � for all w̃ ∈ W̃; the term robust
in the description of � refers to this property. In fact, � is the minimal
robust, positive invariant set for x̃+ = ALx̃ + w̃, w̃ ∈ W̃, i.e., a set that
is a subset of all robust positive invariant sets. There exist techniques
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(Rakovíc, Kerrigan, Kouramas, and Mayne, 2005) for obtaining, for ev-
ery ε > 0, a polytopic, nonminimal, robust, positive invariant set �0

that satisfies dH(�,�0) ≤ ε where dH(·, ·) is the Hausdorff metric. An
immediate consequence of (5.13) is:

Proposition 5.2 (Proximity of state and state estimate). If the initial
system and observer states, x(0) and x̂(0) respectively, satisfy {x(0)} ∈
{x̂(0)} ⊕ �, then x(i) ∈ {x̂(i)} ⊕ � for all i ∈ I≥0, and all admissible
disturbance sequences w and ν.

The assumption that x̃(i) ∈ � for all i is a steady-state assumption;
if x̃(0) ∈ �, then x̃(i) ∈ � for all i. If, on the other hand, x̃(0) ∈ �(0)
where �(0) ⊇ �, then it is possible to show that x̃(i) ∈ �(i) for all
i ∈ I≥0 where �(i)→ � in the Hausdorff metric as i→∞; the sequence
{�(i)} satisfies �(0) ⊇ �(1) ⊇ �(2) ⊇ · · · ⊇ �. Hence, it is reasonable
to assume that if the estimator has been running for a “long” time, it
is in steady state.

Hence we have obtained a state estimator, with “state” (x̂,�) satis-
fying

x̂+ = Ax̂ + Bu+ L(y − ŷ) (5.14)

�+ = �

and x(i) ∈ x̂(i) ⊕ � for all i ∈ I≥0, thus meeting the requirements
specified in Section 5.2. Knowing this, our remaining task is to control
x̂(i) so that the resultant closed-loop system is stable and satisfies all
constraints.

5.3.3 Controlling x̂

Since x̃(i) ∈ � for all i, we seek a method for controlling the observer
state x̂(i) in such a way that x(i) = x̂(i) + x̃(i) satisfies the state
constraint x(i) ∈ X for all i. The state constraint x(i) ∈ X will be
satisfied if we control the estimator state to satisfy x̂(i) ∈ X	� for all
i. The estimator state satisfies (5.14) which can be written in the form

x̂+ = Ax̂ + Bu+ δ (5.15)

where the disturbance δ is defined by

δ := L(y − ŷ) = L(Cx̃ + ν)

and, therefore, always lies in the C-set � defined by

� := L(C�⊕N)
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The problem of controlling x̂ is, therefore, the same as that of control-
ling an uncertain system with known state. This problem was exten-
sively discussed in Chapter 3. We can therefore use the approach of
Chapter 3 here with x̂ replacing x, δ replacing w, X 	 � replacing X
and � replacing W.

To control (5.15) we use, as in Chapter 3, a combination of open-loop
and feedback control, i.e., we choose the control u as follows

u = v +Ke e := x̂ − z (5.16)

where z is the state of a nominal (deterministic) system that we shall
shortly specify; v is the feedforward component of the control u, and
Ke is the feedback component. The matrix K is chosen to satisfy
ρ(AK) < 1 where AK := A + BK. The feedforward component v of
the control u generates, as we show subsequently, a trajectory {z(i)},
which is the center of the tube in which the state estimator trajectory
{x̂(i)} lies. The feedback component Ke attempts to steer the trajec-
tory {x̂(i)} of the state estimate toward the center of the tube and
thereby controls the cross section of the tube. The controller is dy-
namic since it incorporates the nominal dynamic system.

With this control, x̂ satisfies the following difference equation

x̂+ = Ax̂ + Bv + BKe+ δ δ ∈ � (5.17)

The nominal (deterministic) system describing the evolution of z is ob-
tained by neglecting the disturbances BKe and δ in (5.17) yielding

z+ = Az + Bv

The deviation e = x̂ − z between the state x̂ of the estimator and the
state z of the nominal system satisfies

e+ = AKe+ δ AK := A+ BK (5.18)

The feedforward component v of the controlu generates the trajectory
{z(i)}, which is the center of the tube in which the state estimator
trajectory {x̂(i)} lies. Because � is a C-set and ρ(AK) < 1, there exists
a robust positive invariant C-set S satisfying

AKS⊕ � = S

An immediate consequence is the following.
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Proposition 5.3 (Proximity of state estimate and nominal state). If the
initial states of the estimator and nominal system, x̂(0) and z(0) re-
spectively, satisfy x̂(0) ∈ {z(0)}⊕S, then x̂(i) ∈ {z(i)}⊕S and u(i) ∈
{v(i)} ⊕KS for all i ∈ I≥0, and all admissible disturbance sequences w
and ν.

It follows from Proposition 5.3 that the state estimator trajectory
x̂ remains in the tube X̂(z(0),v) := {{z(i)} ⊕ S | i ∈ I≥0} and the
control trajectory v remains in the tube V̂(v) := {{v(i)}⊕KS | i ∈ I≥0}
provided that e(0) ∈ S. Hence, from Propositions 5.2 and 5.3, the state
trajectory x lies in the tube X(z(0),v) := {{z(i)} ⊕ � | i ∈ I≥0} where
� := S ⊕ � provided that x̃(0) = x(0) − x̂(0) ∈ � and e(0) ∈ S. This
information may be used to construct a robust output feedback model
predictive controller using the procedures outlined in Chapter 3 for
robust state feedback MPC of systems; the major difference is that we
now control the estimator state x̂ and use the fact that the actual state
x lies in {x̂} ⊕ �.

5.3.4 Output MPC

Model predictive controllers can now be constructed as described in
Chapter 3, which dealt with robust control when the state was known.
There is an obvious difference in that we are now concerned with con-
trolling x̂ whereas, in Chapter 3, our concern was control of x. We
describe here the appropriate modification of the simple model predic-
tive controller presented in Section 3.4.2. We adopt the same procedure
of defining a nominal optimal control problem with tighter constraints
than in the original problem. The solution to this problem defines the
center of a tube in which solutions to the original system lie, and the
tighter constraints in the nominal problem ensure that the original con-
straints are satisfied by the actual system.

The nominal system is described by

z+ = Az + Bv (5.19)

The nominal optimal control problem is the minimization of the cost
function V̄N(z,v) where

V̄N(z,v) :=
N−1∑
k=0

`(z(k), v(k))+ Vf (z(N)) (5.20)
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subject to satisfaction by the state and control sequences of (5.19) and
the tighter constraints

z(i) ∈ Z ⊆ X	 � � := S⊕ � (5.21)

v(i) ∈ V ⊆ U	KS (5.22)

as well as a terminal constraint z(N) ∈ Zf ⊆ Z. Notice that � appears in
(5.21) whereas S, the set in which e = x̂ − z lies, appears in (5.22); this
differs from the case studied in Chapter 3 where the same set appears
in both equations. The sets W and N are assumed to be sufficiently
small to ensure the following condition.

Assumption 5.4 (Constraint bounds). � = S⊕ � ⊆ X and KS ⊆ U.

If Assumption 5.4 holds, the sets on the right-hand side of (5.21)
and (5.22) are not empty; it can be seen from their definitions that the
sets � and S tend to the set {0} as W and N tend to the set {0} in the
sense that dH(W, {0})→ 0 and dH(N, {0})→ 0.

It follows from Propositions 5.2 and 5.3, if Assumption 5.4 holds,
that satisfaction of the constraints (5.21) and (5.22) by the nominal
system ensures satisfaction of the constraints (5.10) by the original
system. The nominal optimal control problem is, therefore,

PN(z) : V̄0
N(z) =min

v
{V̄N(z,v) | v ∈ VN(z)}

where the constraint set VN(z) is defined by

VN(z) := {v | v(k) ∈ V and φ̄(k;z,v) ∈ Z ∀k ∈ {0,1, . . . ,N − 1},
φ̄(N;z,v) ∈ Zf } (5.23)

In (5.23), Zf ⊆ Z is the terminal constraint set, and φ̄(k;z,v) denotes
the solution of z+ = Az + Bv at time k if the initial state at time 0 is z
and the control sequence is v = {v(0), v(1), . . . , v(N − 1)}. Let v0(z)
denote the minimizing control sequence; the stage cost `(·) is chosen
to ensure uniqueness of v0(z). The implicit MPC control law for the
nominal system is κ̄N(·) defined by

κ̄N(z) := v0(0;z)

where v0(0;z) is the first element in the sequence v0(z). The domain
of V̄0

N(·) and v0(·), and, hence, of κ̄N(·), is ZN defined by

ZN := {z ∈ Z | VN(z) ≠∅} (5.24)
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ZN is the set of initial states z that can be steered to Zf by an admis-
sible control v that satisfies the state and control constraints, (5.21)
and (5.22), and the terminal constraint. From (5.16), the implicit con-
trol law for the state estimator x̂+ = Ax̂ + Bu + δ is κN(·) defined
by

κN(x̂, z) := κ̄N(z)+K(x̂ − z)

The controlled composite system with state (x̂, z) satisfies

x̂+ = Ax̂ + BκN(x̂, z)+ δ (5.25)

z+ = Az + Bκ̄N(z) (5.26)

with initial state (x̂(0), z(0)) satisfying x̂(0) ∈ {z(0)} ⊕ S, z(0) ∈ ZN .
These constraints are satisfied if z(0) = x̂(0) ∈ ZN . The control algo-
rithm may be formally stated as follows:

Robust control algorithm (linear constrained systems).

Initialization: At time 0, set i = 0, set x̂ = x̂(0) and set z = x̂.

Step 1: At time i, solve the nominal optimal control problem P̄N(z)
to obtain the current nominal control action v = κ̄N(z) and the
control u = v +K(x̂ − z).

Step 2: If x̂ 6∈ {z} ⊕ S or u 6∈ {v} ⊕ KS, set z = x̂ and re-solve P̄N(z)
to obtain v = κ̄N(z) and u = v .

Step 3: Apply the control u to the system being controlled.

Step 4: (a) Compute the successor state estimate x̂+ = Ax̂+Bu+L(y−
Cx̂). (b) Compute the successor state z+ = f(z, v) of the nominal
system.

Step 5: Set (x̂, z) = (x̂+, z+), set i = i+ 1 and go to Step 1.

In normal operation, Step 2 is not activated; Propositions 5.2 and 5.3 en-
sure that the constraints are satisfied. In the event of an unanticipated
event, Step 2 is activated, the controller is reinitialized and normal op-
eration resumed. If Step 2 is activated, v = κ̄N(x̂) and u = v . Hence
nominal MPC would ensue if Step 2 were activated at each sample.

If the terminal cost Vf (·) and terminal constraint set Zf satisfy
the stability Assumptions 2.12 and 2.13 of Chapter 2, and if Assump-
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tion 5.4 is satisfied, the value function V̄0
N(·) satisfies

V̄0
N(z) ≥ `(z, κ̄N(z)) ∀z ∈ ZN

∆V̄0
N(z) ≤ −`(z, κ̄N(z)) ∀z ∈ ZN
V̄0
N(z) ≤ Vf (z) ∀z ∈ Zf

in which ∆V̄0
N(z) := V̄0

N(f (z, κ̄N(z)))− V̄0
N(z).

As shown in Section 3.4.3, if, in addition to Assumption 5.4, (i)
the stability Assumptions 2.12 and 2.13 are satisfied, (ii) `(z, v) =
(1/2)(|z|2Q + |v|2R) where Q and R are positive definite, (iii) Vf (z) =
(1/2) |Z|2Pf where Pf is positive definite, and (iv) ZN is a C-set, then
there exist positive constants c1 and c2 such that

V̄0
N(z) ≥ c1|z|2 ∀z ∈ ZN

∆V̄0
N(z) ≤ −c1|z|2 ∀z ∈ ZN
V̄0
N(z) ≤ c2|z|2 ∀z ∈ ZN

It follows from Chapter 2 that the origin is exponentially stable for the
nominal system z+ = Az + Bκ̄N(z) with a region of attraction ZN so
that there exists a c > 0 and a γ ∈ (0,1) such that

|z(i)| ≤ c|z(0)|γi

for all z(0) ∈ ZN , all i ∈ I≥0. Also z(i) ∈ ZN for all i ∈ I≥0 if z(0) ∈ ZN
so that problem PN(z(i)) is always feasible. Because the state x̂(i) of
the state estimator always lies in {z(i)} ⊕ S, and the state x(i) of the
system being controlled always lies in {z(i)} ⊕ �, it follows that x̂(i)
converges robustly and exponentially fast to S, and x(i) converges ro-
bustly and exponentially fast to �. We are now in a position to estab-
lish exponential stability of A := S × {0} with a region of attraction
(ZN ⊕ S)×ZN for the composite system (5.25) and (5.26).

Proposition 5.5 (Exponential stability of output MPC). The set A :=
S×{0} is exponentially stable with a region of attraction (ZN ⊕S)×ZN
for the composite system (5.25) and (5.26).

Proof. Let φ := (x̂, z) denote the state of the composite system. Then
|φ|A is defined by

|φ|A = |x̂|S + |z|
where |x̂|S := d(x̂,S). But x̂ ∈ {z} ⊕ S implies

|x̂|S = d(x̂,S) = d(z + e,S) ≤ d(z + e, e) = |z|
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since e ∈ S. Hence |φ|A ≤ 2|z| so that

|φ(i)|A ≤ 2|z(i)| ≤ 2c|z(0)|γi ≤ 2c|φ(0)|γi

for all φ(0) ∈ (ZN ⊕ S) × ZN . Since, for all z(0) ∈ ZN , z(i) ∈ Z and
v(i) ∈ V, it follows that x̂(i) ∈ {z(i)} ⊕ S, x(i) ∈ X, and u(i) ∈ U for
all i ∈ I≥0. Thus A := S × {0} is exponentially stable with a region of
attraction (ZN⊕S)×ZN for the composite system (5.25) and (5.26). �

It follows from Proposition 5.5 thatx(i), which lies in the set {z(i)}⊕
�, � := S ⊕ �, converges to the set �. In fact x(i) converges to a set
that is, in general, smaller than � since � is a conservative bound on
x̃(i) + e(i). We determine this smaller set as follows. Let φ := (x̃, e)
and let ψ := (w, ν); φ is the state of the two error systems and ψ is
a bounded disturbance lying in a C-set 	 := W × N. Then, from (5.12)
and (5.18) the state φ evolves according to

φ+ = Ãφ+ B̃ψ (5.27)

where

Ã :=
[
AL 0
LC AK

]
B̃ :=

[
I −L
0 L

]
Because ρ(AL) < 1 and ρ(AK) < 1, it follows that ρ(Ã) < 1. Since
ρ(Ã) < 1 and 	 is compact, there exists a robust positive invariant set
� ⊆ Rn ×Rn for (5.27) satisfying

Ã�⊕ B̃	 = �

Hence φ(i) ∈ � for all i ∈ I≥0 if φ(0) ∈ �. Since x(i) = z(i) + e(i) +
x̃(i), it follows that x(i) ∈ {z(i)} ⊕ H�, H :=

[
In In

]
, for all i ∈

I≥0 provided that x(0), x̂(0) and z(0) satisfy (x̃(0), e(0)) ∈ � where
x̃(0) = x(0)− x̂(0) and e(0) = x̂(0)− z(0). If these initial conditions
are satisfied, x(i) converges robustly and exponentially fast to the set
H�.

The remaining robust controllers presented in Section 3.4 of Chap-
ter 3 may be similarly modified to obtain a robust output model pre-
dictive controller.

5.4 Linear Constrained Systems: Time-Varying Case

5.4.1 Introduction

In the previous section we considered the case when the state estimator
was time-invariant in the sense that the state estimation error x̃(i) lies
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in a constant set � for all i. The state estimator, in this case, is anal-
ogous to the steady-state Kalman filter for which the state estimation
error has constant variance. In this section we consider the case where
the initial state estimation error x̃(0) lies in a set �(0), which is larger
than the time-invariant set � considered in Section 5.3. We show subse-
quently that in the time-varying case, the estimation error lies in a set
�(i) at time i where �(i) converges to � as i tends to infinity. Because
the set �(i) in which the state estimation error lies is now time varying,
the nominal optimal control problem has time-varying constraints and
thus requires a different approach. Although this section shows that
extension of the tube-based controller to the time-varying case is the-
oretically relatively simple, implementation is considerably more com-
plex; readers whose main interest is in controllers that may be imple-
mented simply should omit this section. To deal with the time-varying
case, we extend slightly standard definitions of positive invariance and
robust positive invariance.

Definition 5.6 (Positive invariance; time-varying case). A sequence {�(i)}
of sets is positive invariant for the time-varying system x+ = f(x, i),
i+ = i+ 1 if, for all i ∈ I≥0, all x ∈ �(i), f(x, i) ∈ �(i+ 1).

Definition 5.7 (Robust positive invariance; time-varying case). A se-
quence {�(i)} of sets is robust positive invariant for the time-varying
system x+ = f(x,w, i), i+ = i+ 1 where the disturbance w lies in the
set W if, for all i ∈ I≥0, all x ∈ �(i), f(x,w, i) ∈ �(i+1) for allw ∈W.

We assume, as before, that (A, B,C) is stabilizable and detectable.

5.4.2 State Estimator

The state estimator is defined as in (5.11) in Section 5.3.2. The state
estimate x̂ satisfies the difference equation

x̂+ = Ax̂ + Bu+ δ δ := L(y − Cx̂)

and the state estimation error x̃ satisfies

x̃+ = ALx̃ + w̃ w̃ := w − Lν

5.4.3 Controlling x and x̂

As before, we use MPC to control the state estimator and the system
x+ = Ax + Bu by controlling the nominal system

z+ = Az + Bv
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e

x̃
�(i)

�(i)S(i)

Figure 5.3: The sets �(i), �(i) and S(i).

and setting u = v + Ke, e := x̂ − z. With this control, the composite
system whose state is φ := (x̃, e) satisfies

x̃+ = ALx̃ +w − Lν w ∈W

e+ = AKe+ LCx̃ + Lν ν ∈ N

whereAK := A+BK. The difference equations for the composite system
may be written in the more compact form

φ+ = Ãφ+ B̃ψ

where the composite state φ := (x̃, e) lies in Rn×Rn and the bounded
disturbance ψ := (w, ν) lies in the constant compact set 	 := W × N;
the state matrix Ã and the disturbance matrix B̃ are defined by

Ã =
[
AL 0
LC AK

]
B̃ =

[
I −L
0 L

]

We assume that K and L are such that ρ(AK) < 1 and ρ(AL) < 1; hence
ρ(Ã) < 1. Consider the set sequence {�(i)} defined by

�(i+ 1) = Ã�(i)⊕ B̃	

with initial condition �(0) = �(0) × S(0) where x̃(0) lies in �(0), the
initial state uncertainty set, and e(0) lies in S(0). A comprehensive
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analysis of this coupled set of equations is provided in Rakovíc (2007).
It follows that the sequence {�(i)} is robust positive invariant forφ+ =
Ãφ+B̃ψ,ψ ∈ 	; ifφ(0) = (x̃(0), e(0)) ∈ �(0); thenφ(i) = (x̃(i), e(i)) ∈
�(i), x̃(i) ∈ �(i) :=

[
In 0

]
�(i) and e(i) ∈ S(i) :=

[
0 In

]
�(i) for all

i ∈ I≥0. Sincex(i) = z(i)+e(i)+x̃(i) andu(i) = v(i)+Ke(i), it follows
that x(i) ∈ {z(i)}⊕�(i), �i :=

[
In In

]
�(i), and u(i) ∈ {v(i)}⊕KS(i)

for all i ∈ I≥0. See Figure 5.3. The following result provides further
properties of the sequence {�(i)} that we will require in the sequel.

Proposition 5.8 (Properties of composite system). If �(0) is compact
and 0 ∈ �(0), then 0 ∈ �(i) for all i ∈ I≥0 and the sequence {�(i)}
converges, in the Hausdorff metric to �, the compact, minimal robust
positive invariant set for φ+ = Ãφ + B̃ψ, ψ ∈ 	. Moreover, 0 ∈ �, �
satisfies � = Ã� ⊕ B̃	, and there exist c > 0 and λ ∈ (0,1) such that
dH(�(i),�) ≤ cdH(�(0),�)λi for all i ∈ I≥0. If, in addition, �(0) is a
robust positive invariant set for the system φ+ = Ãφ+ B̃ψ, ψ ∈ 	, then,
for each i ∈ I≥0, �(i) is robust positive invariant for φ+ = Ãφ + B̃ψ,
ψ ∈ 	, and {�(i)} is a monotonically nonincreasing sequence satisfying
0 ∈ �(i) and �(i+ 1) ⊆ �(i) for all i ∈ I≥0.

Proof. It follows from the definition of the sequence {�(i)} that

�(i) = Ã
i
�(0)⊕A(i) A(i) :=

i−1∑
j=0

Ã
j
B̃	

where ρ(Ã) < 1. The family of compact sets in Rn endowed with
the Hausdorff metric is a complete space so any Cauchy sequence has
a limit in this space. As shown in Kolmanovsky and Gilbert (1998),
{A(i)} is a Cauchy sequence which, therefore, converges in the Haus-
dorff metric to the compact set � that satisfies � = Ã� ⊕ B̃	 and is
the minimal robust positive invariant set for φ+ = Ãφ + B̃ψ, ψ ∈ 	.

Because �(0) is compact, and contains the origin, the set Ã
i
�(0) con-

verges to {0}. Hence �(i) converges in the Hausdorff metric to �.
Clearly 0 ∈ A(i) for all i ∈ I≥0. Because 0 ∈ �(0), it follows that
0 ∈ �(i) for all i ∈ I≥0; because � is closed, 0 ∈ �. By hypothesis �(0)
is robust positive invariant for φ+ = Ãφ+ B̃ψ, ψ ∈ 	(0) so that

�(1) = Ã�(0)+ B̃	 ⊆ �(0)

Let i ∈ I≥0 be arbitrary and assume that �(i) is robust positive invariant
for φ+ = Ãφ+ B̃ψ, ψ ∈ 	. Then

�(i+ 1) = Ã�(i)⊕ B̃	 ⊆ �(i)
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so that �(i) is robust positive invariant for φ+ = Ãφ + B̃ψ, ψ ∈ 	
and �(i+ 1) ⊆ �(i). By induction, �(i) is robust positive invariant for
φ+ = Ãφ+B̃ψ,ψ ∈ 	 and �(i+1) ⊆ �(i) for all i ∈ I≥0. Hence {�(i)} is
a monotonically nonincreasing sequence. The proof that dH(�(i),�) ≤
cdH(�(0),�)γi is left as Exercise 5.8. �

It follows that �(i)→ � and S(i)→ S as i→∞ where � and S satisfy

� = AL�⊕ (W⊕ (−LN))
S = AKS⊕ L(C�⊕N)

and are the minimal robust positive invariant sets for, respectively,
x̃+ = ALx̃ + w̃, w̃ ∈ (W ⊕ (−LN)) and e+ = AKe + δ, δ ∈ L(C� ⊕ N);
the sequences {�(i)} and {S(i)} are nonincreasing and converge in the
Hausdorff metric to � =

[
In 0

]
� and S =

[
0 In

]
�, respectively.

5.4.4 Control of the Nominal System

Since x(i) ∈ {z(i)} ⊕ �(i) and u(i) ∈ {v(i)} ⊕ KS(i) for all i, we can
use MPC to control the sequences {z(i)} and {v(i)} so that x(i) ∈ X
and u(i) ∈ U for all i. The constraints on x and u are satisfied if z and
v are required to satisfy the tighter time-varying constraints

z(i) ∈ Zi := X	 �(i) v(i) ∈ Vi := U	KS(i)

for all i; Zi and Vi may be replaced by outer approximating sets. For
this to be possible, we assume

Assumption 5.9 (Constraint bounds; time-varying case). �(0) ⊂ X and
KS(0) ⊂ U.

Since both {�(i)} and {S(i)} are nonincreasing sequences, {Zi} and
{Si} are nondecreasing sequences so that satisfaction of Assumption 5.9
ensures that Zi and Vi are not empty for all i ∈ I≥0. The constraints are
time varying, so the nominal MPC problem at time k, state z is PN(z, k)
defined by

PN(z, k) : V̄0
N(z, k) =min

v
{V̄N(z,v) | v ∈ VN(z, k)}

where the cost function V̄N(·) is defined by

V̄N(z,v) :=
N−1∑
k=0

`(z(k), v(k))+ Vf (z(N))
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and the constraint set VN(z, k) by

VN(z, k) :=
{
v | v(i) ∈ Vk+i, z(i) ∈ Zk+i, ∀i ∈ {0,1, . . . ,N},

z(N) ∈ Zf
}

(5.28)

where, for all i, z(i) := φ̄(i;z,v), the solution of z+ = Ax+ Bv at time
i if the initial state at time 0 is z and the nominal control sequence
is v = {v(0), v(1), . . . , v(N − 1)}. In (5.28), Zf ⊆ ZN is the terminal
constraint set and z(i) is the predicted state at time k + i which is
why z(i) is required to lie in the set Zk+i and v(i) to lie in Vk+i; clearly
Zf ⊆ Zi for all i ≥ N so there is no need to make the terminal constraint
set time varying. Let v0(z, k) = {v0(0;z, k), v0(1;z, k), . . . , v0(N;z, k)}
denote the minimizing control sequence; the stage cost `(·) is chosen
to ensure uniqueness of v0(z, k). The implicit MPC control law for the
nominal system is κ̄N(·) defined by

κ̄N(z, k) := v0(0;z, k)

where v0(0;z, k) is the first element in the sequence v0(z, k). The do-
main of V̄0

N(·, k) and v(·, k) and, hence, of κ̄N(·, k), is ZN(k) defined
by

ZN(k) := {z ∈ Zk | VN(z, k) ≠∅}

ZN(k) is the set of states z at time k that can be robustly steered to Zf
in N steps by an admissible control v. Because the constraints become
weaker with time, the domain ZN(k + 1) of V̄0

N(·, k + 1) is larger than
the domain ZN(k) of V̄0

N(·, k) for all k > 0; the sequence {ZN(k)} is
monotonically nondecreasing.

If the terminal cost Vf (·) and terminal constraint set Zf satisfy the
stability Assumptions 2.12 and 2.13 of Chapter 2, and if Assumption
5.9 is satisfied, the value function V̄0

N(·) satisfies, for all k ∈ I≥0

V̄0
N(z, k) ≥ `(z, κ̄N(z, k)) ∀z ∈ ZN(k)

∆V̄0
N(z, k) ≤ −`(z, κ̄N(z, k)) ∀z ∈ ZN(k)
V̄0
N(z, k) ≤ Vf (z) ∀z ∈ Zf

where ∆V̄0
N(z, k) := V̄0

N(f (z, κN(z)), k+ 1)− V̄0
N(z, k).

If, in addition, we assume that `(z, v) = (1/2)(|z|2Q+|v|2R) whereQ
and R are positive definite and Vf (z) = (1/2)|z|2Pf where Pf is positive
definite, and if ZN(0) is a C-set, then, as shown in Section 3.4.2, there
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exist positive constants c1 and c2 such that

V̄0
N(z, k) ≥ c1|z|2

∆V̄0
N(z, k) ≤ −c1|z|2

V̄0
N(z) ≤ c2|z|2

for all z ∈ ZN(k), all k ∈ I≥0. It follows from Chapter 2 that the
origin is uniformly (in time k) exponentially stable for the nominal
system z+ = Az + Bκ̄N(z, k) with a region of attraction ZN(0), and
that z(k) ∈ ZN(0) ⊆ ZN(k) for all k ∈ I≥0 if z(0) ∈ ZN(0) so that
problem PN(z(k), k) is always feasible; here z(k) is the solution of
z+ = Az+ Bκ̄N(z, k) at time k if the initial state is z(0). There exists a
c > 0 and a λ ∈ (0,1) such that |z(k)| ≤ c|z(0)|λk for all k ∈ I≥0, all
z(0) ∈ ZN(0).

5.4.5 Control of the State Estimator

The implicit control law for the state estimator is κN(·) defined by

κN(x̂, z, k) := κ̄N(z, k)+K(x̂ − z)

Hence, the composite system with state (x̂, z) satisfies

x̂+ = Ax̂ + BκN(x̂, z, k)+ δ(k) (5.29)

z+ = Az + Bκ̄N(z, k) (5.30)

k+ = k+ 1 (5.31)

with initial state (x̂(0), z(0)) satisfying x̂(0) ∈ {z(0)} ⊕ S(0), z(0) ∈
ZN(0); these constraints are satisfied if z(0) = x̂(0) ∈ ZN(0).

Also, from Proposition 5.8, the sequences {�(k)}, {�(k)} and {S(k)}
converge exponentially fast to �, � and S, respectively. We have the
following result for robust time-varying output MPC:

Proposition 5.10 (Exponential convergence of output MPC: time-vary-
ing case). There exists a c > 0 and a γ ∈ (0,1) such that |z(k)| ≤
c|z(0)|γk and d(x(k),�) ≤ c(|z(0)| + 1)γk for all k ∈ I≥0, all x(0),
x̂(0), z(0) such that (x(0)− x̂(0), x̂(0)− z(0)) ∈ �(0), z(0) ∈ ZN(0).

Proof. If z(0) ∈ ZN(0), we have x(k) ∈ {z(k)} ⊕ �(k) for all k ∈ I≥0.
From Proposition 5.8, there exists a c > 0 and a γ ∈ (0,1) such that
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dH(�(k),�) ≤ cγk and |z(k)| ≤ c |z(0)|γk, z(0) ∈ ZN(0), for all k ∈
I≥0. Hence

d(x(k),�) ≤ dH({z(k)} ⊕ �(k),�)
≤ |z(k)| + dH(�(k),�)
≤ c(|z(0)| + 1)γk (5.32)

for all k ∈ I≥0, all (x(0), x̂(0)) such that φ(0) = (x(0) − x̂(0), x̂(0) −
z(0)) ∈ �(0) �

Similarly it can be shown that there exist a possibly different c > 0
and γ ∈ (0,1) such that

d(x̂(k),S) ≤ c(|z(0)| + 1)γk

for all k ∈ I≥0. This result is not as strong as the corresponding result
in Proposition 5.5 where exponential stability of S×{0}with a region of
attraction (ZN ⊕S)×ZN is established for the composite system (5.25)
and (5.26); the time-varying nature of the problem appears to preclude
a stronger result.

5.5 Offset-Free MPC

We are now in a position to give a more realistic solution to the problem
of offset-free MPC, briefly introduced in Chapter 2 in a deterministic
context. Suppose the system to be controlled is described by

x+ = Ax + Bdd+ Bu+wx
y = Cx + Cdd+ ν
r = Hy r̃ = r − r̄

where wx and ν are unknown bounded disturbances taking values,
respectively, in the compact setsWx andN containing the origin in their
interiors. We assume d is constant, or almost constant, but unknown,
and models an additive disturbance; y = Cx + Cdd is the output of
the system being controlled, r is the controlled variable and r̄ is its
setpoint. The variable r̃ is the tracking error that we wish to minimize.
We assume, for purposes of determining a control, that d satisfies

d+ = d+wd

where wd is a bounded disturbance taking values in the compact set
Wd; in practice d is bounded although this is not implied by our model.
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Set Definition Membership

X state constraint set x ∈ X
U input constraint set u ∈ U
Wx state disturbance set wx ∈Wx
Wd integrating disturbance set wd ∈Wd
W total state disturbance set, Wx ×Wd w ∈W
N measurement error set ν ∈ N

W̃ estimate error disturbance set, W⊕ (−LN) w̃ ∈ W̃
� total estimate error disturbance set,

� = ÃL�⊕ W̃ φ ∈ �

�x state estimate error disturbance set,
[
In 0

]
� x̃ ∈ �x

�d integrating disturbance estimate error set,[
0 Ip

]
� d̃ ∈ �d

� innovation set, L(C̃�⊕N) Lỹ ∈ �
�x set containing state component

of innovation, Lx(C̃�⊕N) Lxỹ ∈ �x
�d set containing integrating disturbance

component of innovation, Ld(C̃�⊕N) Ldỹ ∈ �d
S nominal state tracking error invariance set, e ∈ S

AKS⊕ �x = S x̂ ∈ {z} + S
� state tracking error invariance set, S+ �x x ∈ {z} + �
V nominal input constraint set, V = U	KS v ∈ V
Z nominal state constraint set, Z = X	 � z ∈ Z

Table 5.1: Summary of the sets and variables used in output MPC.

We assume that x ∈ Rn, d ∈ Rp ,u ∈ Rm, y ∈ Rr , and e ∈ Rq, q ≤ r
and that the system to be controlled is subject to the usual state and
control constraints

x ∈ X u ∈ U

where X is polyhedral and U is polytopic.

5.5.1 Estimation

Given the numerous sets that are required to specify the output feed-
back case we are about to develop, Table 5.1 may serve as a reference
for the sets defined in the chapter and the variables that are members
of these sets.
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Since both x and d are unknown, it is necessary to estimate them.
For estimation purposes, it is convenient to work with the composite
system whose state is φ := (x,d). This system may be described more
compactly by

φ+ = Ãφ+ B̃u+w

y = C̃φ+ ν

in which

Ã :=
[
A Bd
0 I

]
B̃ :=

[
B
0

]
C̃ :=

[
C Cd

]
and w := (wx,wd) takes values in W =Wx ×Wd. A necessary and suf-
ficient condition for the detectability of (Ã, C̃) is given in Lemma 1.8 in
Chapter 1; a sufficient condition is detectability of (A,C) coupled with
invertibility of Cd. If (Ã, C̃) is detectable, the state may be estimated
using the time-invariant observer or filter described by

φ̂+ = Ãφ̂+ B̃u+ δ δ := L(y − C̃φ̂)

in which L is such that ρ(ÃL) < 1 where ÃL := Ã− LC̃ . Clearly δ = Lỹ
where ỹ = C̃φ̃+ ν . The estimation error φ̃ := φ− φ̂ satisfies

φ̃
+
= Ãφ̃+w − L(C̃φ̃+ ν)

or, in simpler form

φ̃
+
= ÃLφ̃+ w̃ w̃ := w − Lν

Clearly w̃ = w − Lν takes values in the compact set W̃ defined by

W̃ :=W⊕ (−LN)

Ifw and ν are zero, φ̃ decays to zero exponentially fast. Since ρ(ÃL) <
1 and W̃ is compact, there exists a robust positive invariant set � for

φ̃
+
= ÃLφ̃+ w̃, w̃ ∈ W̃ satisfying

� = ÃL�⊕ W̃

Hence φ̃(i) ∈ � for all i ∈ I≥0 if φ̃(0) ∈ �. Since φ̃ = (x̃, d̃) ∈ Rn ×Rp
where x̃ := x−x̂ and d̃ := d−d̂, we define the sets �x and �d as follows

�x :=
[
In 0

]
� �d :=

[
0 Ip

]
�

It follows that x̃(i) ∈ �x and d̃(i) ∈ �d for all i ∈ I≥0 if φ̃(0) =
(x̃(0), d̃(0)) ∈ �. That φ̃(0) ∈ � is a steady-state assumption.
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5.5.2 Control

The estimation problem has a solution similar to previous solutions.
The control problem is more difficult. As before, we control the esti-
mator state, making allowance for state estimation error. The estimator
state φ̂ satisfies the difference equation

φ̂+ = Ãφ̂+ B̃u+ δ

where the disturbance δ is defined by

δ := Lỹ = L(C̃φ̃+ ν)

The disturbance δ = (δx, δd) lies in the C−set � defined by

� := L(C̃�⊕N)

where the set � is defined in Section 5.5.1. The system φ̂+ = Ãφ̂+B̃u+δ
is not stabilizable, however, so we examine the subsystems with states
x̂ and d̂

x̂+ = Ax̂ + Bdd̂+ Bu+ δx
d̂+ = d̂+ δd

where the disturbances δx and δd are components of δ (δ = (δx, δd))
and are defined by

δx := Lxỹ = Lx(C̃φ̃+ ν) δd := Ldỹ = Ld(C̃φ̃+ ν)

The matrices Lx and Ld are the corresponding components of L. The
disturbance δx and δd lie in the C−sets �x and �d defined by

�x :=
[
In 0

]
� = Lx[C̃�⊕N] �d :=

[
0 Ip

]
� = Ld[C̃�⊕N]

We assume that (A, B) is a stabilizable pair so the tube methodology
may be employed to control x̂. The system d̂+ = d̂ + δd is uncontrol-
lable. The central trajectory is therefore described by

z+ = Az + Bdd̂+ Bv
d̂+ = d̂

We obtainv = κ̄N(z, d̂, r̄ ) by solving a nominal optimal control problem
defined later and set u = v + Ke, e := x̂ − z where K is chosen so that
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ρ(AK) < 1, AK := A+BK; this is possible since (A, B) is assumed to be
stabilizable. It follows that e := x̂ − z satisfies the difference equation

e+ = AKe+ δx δx ∈ �x

Because �x is compact and ρ(AK) < 1, there exists a robust positive
invariant set S for e+ = AKe+ δx , δx ∈ �x satisfying

AKS⊕ �x = S

Hence e(i) ∈ S for all i ∈ I≥0 if e(0) ∈ S. So, as in Proposition 5.3, the
states and controls of the estimator and nominal system satisfy x̂(i) ∈
{z(i)} ⊕ S and u(i) ∈ {v(i)} ⊕ KS for all i ∈ I≥0 if the initial states
x̂(0) and z(0) satisfy x̂(0) ∈ {z(0)} ⊕ S. Using the fact established
previously that x̃(i) ∈ �x for all i, we can also conclude that x(i) =
z(i)+e(i)+x̃(i) ∈ {z(i)}⊕� and thatu(i) = v(i)+Ke(i) ∈ {v(i)}+KS
for all i where � := S⊕�x provided, of course, that φ(0) ∈ {φ̂(0)}⊕�

and x(0) ∈ {x̂(0)} ⊕ S. These conditions are equivalent to φ̃(0) ∈ �
and e(0) ∈ S where, for all i, e(i) := x̂(i) − z(i). Hence x(i) lies in X
and u(i) lies in U if z(i) ∈ Z := X	 � and v(i) ∈ V := U	KS.

Thus x̂(i) and x(i) evolve in known neighborhoods of the central
state z(i) that we can control. Although we know that the uncontrol-
lable state d(i) lies, for all i, in the set {d̂(i)}⊕i�d, the evolution of d̂(i)
is an uncontrollable random walk and is, therefore, unbounded; if the
initial value of d̂ at time 0 is d̂0, then d̂(i) lies in the set {d̂0}⊕Wd that
increases without bound as i increases. This behavior is a defect in our
model for the disturbance d; the model is useful for estimation pur-
poses, but is unrealistic in permitting unbounded values for d. Hence
we assume in the sequel that d evolves in a compact C−set Xd. We can
modify the observer to ensure that d̂ lies in Xd but find it simpler to
observe that, if d lies in Xd, d̂ must lie in Xd ⊕ �d.

Target Calculation. We are now in a position to specify the optimal
control problem whose solution yieldsv = κ̄N(z, k) and, hence,u = v+
K(x̂−z). Our first task is to determine the target state z̄ and associated
control v̄ ; we require our estimate of the tracking error r̃ = r − r̄ to
be zero. Since our estimate of the measurement noise ν is 0 and since
our best estimate of d when the target state is reached is d̂, we require

r̂ − r̄ = H(Cz̄ + Cdd̂)− r̄ = 0

We also require the target state to be an equilibrium state satisfying,
therefore, z̄ = Az̄ + Bdd̂ + Bv̄ for some control v̄ . Given (d̂, r̄ ), the
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target equilibrium pair (z̄, v̄)(d̂, r̄ ) is computed as follows

(z̄, v̄)(d̂, r̄ ) = arg min
z,v
{L(z,v) | z = Az+Bdd̂+Bv, H(Cz+Cdd̂) = r̄ ,

z ∈ Z, v ∈ V}

where L(·) is an appropriate cost function; e.g. L(v) = (1/2)|v|2R̄. The
equality constraints in this optimization problem can be satisfied if
the matrix

[
I−A −B
HC 0

]
has full rank. As the notation indicates, the target

equilibrium pair (z̄, v̄)(d̂, r̄ ) is not constant but varies with the estimate
of the disturbance state d.

MPC algorithm. The control objective is to steer the central state z to
the target state z̄(d̂, r̄ )while satisfying the state and control constraints
x ∈ X and u ∈ U. It is desirable that z(i) converges to z̄(d̂, r̄ ) if d̂
remains constant in which case x(i) converges to the set {z̄(d̂, r̄ )}⊕�.
To achieve this objective, we define the deterministic optimal control
problem

P̄N(z, d̂, r̄ ) : V0
N(z, d̂, r̄ ) :=min

v
{VN(z, d̂, r̄ ,v) | v ∈ VN(z, d̂, r̄ )}

in which the cost VN(·) and the constraint set VN(z, d̂, r̄ ) are defined
by

VN(z, d̂, r̄ ,v) :=
N−1∑
i=0

`(z(i)− z̄(d̂, r̄ ), v(i)− v̄(d̂, r̄ ))+ Vf (z(N), z̄(d̂, r̄ ))

VN(z, d̂, r̄ ) := {v | z(i) ∈ Z, v(i) ∈ V ∀i ∈ I0:N−1, z(N) ∈ Zf (z̄(d̂, r̄ ))}

where, for each i, z(i) = φ̄(i;z, d̂,v), the solution of z+ = Az+Bdd̂+Bv
when the initial state is z, the control sequence is v, and the disturbance
d̂ is constant. The terminal cost is zero when the terminal state is equal
to the target state and the target state lies in the center of the terminal
constraint set. The solution to P̄N(z, d̂, r̄ ) is

v0(z, d̂, r̄ ) = {v0(0;z, d̂, r̄ ), v0(1;z, d̂, r̄ ), . . . , v0(N − 1;z, d̂, r̄ )}

and the implicit model control law κ̄N(·) is defined by

κ̄N(z, d̂, r̄ ) := v0(0;z, d̂, r̄ )

where v0(0;z, d̂, r̄ ) is the first element in the sequence v0(z, d̂, r̄ ). The
control u applied to the plant and the observer is u = κN(x̂, z, d̂, r̄ )
where κN(·) is defined by

κN(x̂, z, d̂, r̄ ) := κ̄N(z, d̂, r̄ )+K(x̂ − z)
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Although the optimal control problem P̄N(z, d̂, r̄ ) is deterministic, d̂ is
random, so that the sequence {z(i)} is random. The control algorithm
may now be formally stated:

Robust control algorithm (offset-free MPC).

Initialization: At time 0, set i = 0, set φ̂ = φ̂(0) in which φ̂ = (x̂, d̂)
and set z = x̂.

Step 1 (Compute control): At time i, solve the “nominal” optimal con-
trol problem P̄N(z, d̂, r̄ ) to obtain the current “nominal” control
action v = κ̄N(z, d̂, r̄ ) and the control action u = v +K(x̂ − z).

Step 2 (Check): If P̄N(z, d̂, r̄ ) is infeasible, adopt safety/recovery pro-
cedure.

Step 3 (Apply control): Apply the control u to the system being con-
trolled.

Step 4 (Update): (a) Compute the successor state estimate φ̂+ = Ãx̂ +
B̃u+L(y−C̃φ̂). (b) Compute the successor state z+ = Az+Bdd̂+
Bv of the nominal system.

Step 5: Set (φ̂, z) = (φ̂+, z+), set i = i+ 1, and go to Step 1.

In normal operation, Step 2 is not activated; Propositions 5.2 and 5.3
ensure that the constraints x̂ ∈ {z}⊕S andu ∈ {v}⊕KS are satisfied. If
an unanticipated event occurs and Step 2 is activated, the controller can
be reinitialized by setting v = κ̄N(x̂, d̂, r̄ ), setting u = v and relaxing
constraints if necessary.

5.5.3 Stability Analysis

We give here an informal discussion of the stability properties of the
controller because offset-free MPC of constrained uncertain systems
remains an area of current research. The controller described above is
motivated by the following consideration: nominal MPC is able to han-
dle “slow” uncertainties such as the drift of a target point if the value
function V0

N(·) is Lipschitz continuous.“Fast” uncertainties, however,
are better handled by the tube controller that generates, using MPC, a
suitable central trajectory that uses a “fast” ancillary controller to steer
trajectories of the uncertain system toward the central trajectory. As
shown above, the controller ensures that x(i) ∈ {z(i)} ⊕ � for all i; its
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success therefore depends on the ability of the controlled nominal sys-
tem z+ = Az + Bdd̂ + Bκ̄N(z, d̂, r̄ ), v = κ̄N(z, d̂, r̄ ), to track the target
z̄(d̂, r̄ ), which varies as d̂ evolves.

Assuming that the standard stability assumptions are satisfied for
the nominal optimal control problem P̄N(z, d̂, r̄ ) defined above, we
have

V0
N(z, d̂, r̄ ) ≥ c1|z − z̄(d̂, r̄ )|2

∆V0
N(z, d̂, r̄ ) ≤ −c1|z − z̄(d̂, r̄ )|2

V0
N(z, d̂, r̄ ) ≤ c2|z − z̄(d̂, r̄ )|2

for all z ∈ ZN(d̂, r̄ ) where, since (d̂, r̄ ) is constant,

∆V0
N(z, d̂, r̄ ) := V0

N(Az + Bdd̂+ Bκ̄N(z, d̂, r̄ ), d̂, r̄ )− V0
N(z, d̂, r̄ )

and, for each (d̂, r̄ ), ZN(d̂, r̄ ) = {z | VN(z, d̂, r̄ ) ≠∅} is the domain of
V0
N(·, d̂, r̄ ).

Constant d̂. If d̂ remains constant, z̄(d̂, r̄ ) is exponentially stable for
z+ = Az + Bdd̂ + Bκ̄N(z, d̂, r̄ ) with a region of attraction ZN(d̂, r̄ ). It
can be shown, as in the proof of Proposition 5.5, that the setA(d̂, r̄ ) :=
({z̄(d̂, r̄ )} ⊕ S) × {z̄(x̂, r̄ )} is exponentially stable for the composite
system x̂+ = Ax̂+Bdd̂+BκN(x̂, z, d̂, r̄ )+δx , z+ = Az+Bdd̂+Bκ̄N(z, d̂),
δx ∈ �x , with a region of attraction (ZN(d̂, r̄ ) ⊕ S) × ZN(d̂, r̄ ). Hence
x(i) ∈ {z(i)} ⊕ � tends to the set {z̄(d̂, r̄ )} ⊕ � exponentially fast. If
the external disturbance w is zero, W = {0}. If, in addition, N = {0},
then � = {0} and S = {0} and x(i)→ z̄(d̂, r̄ ) exponentially fast so that
the tracking error r̃ (i)→ 0 as i→∞.

Slowly varying d̂. If d̂ is varying, the inequality for ∆V0
N(·) must be

replaced by

∆V0
N(z, d̂, r̄ ,wd) = V0

N(Az+Bdd̂+Bκ̄N(z, d̂, r̄ ), d̂+δd, r̄ )−V0
N(z, d̂, r̄ )

≤ −c1

∣∣∣z − z̄(d̂, r̄ )∣∣∣2
+ k̄ |δd|

where k̄ is a Lipschitz constant for V0
N(·). Employing the approach

adopted in Section 3.2.4, it can be shown, if �d is sufficiently small,
that there exist two sublevel sets Sb(d̂, r̄ ) := {z | V0

N(z, d̂, r̄ ) ≤ b} and
Sc(d̂, r̄ ) := {z | V0

N(z, d̂, r̄ ) ≤ c}, c > b such that z(0) ∈ Sc(d̂(0), r̄ )
implies the existence of a finite time i0 such that z(i) ∈ Sb(d̂(i), r̄ ) for
all i ≥ i0. The center of each set is the target state z̄(d̂(i), r̄ ) so that, if
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�d is small and recursive feasibility is maintained, z(i) remains close to
the target state; x(i) ∈ {z(i)}⊕� also remains close if, in addition, Wx
and N are small. Recursive feasibility is ensured if there are no state
or terminal constraints in the nominal optimal control problem.

5.6 Nonlinear Constrained Systems

5.6.1 Introduction

For simplicity, we consider here the following uncertain, discrete time,
nonlinear system

x+ = f(x,u)+w y = h(x)+ ν (5.33)

where x ∈ Rn is the current state, u ∈ Rm is the current control action,
x+ is the successor state,w ∈ Rn is an unknown state disturbance, y ∈
Rp is the current measured output, and ν ∈ Rp is an unknown output
disturbance. The state and additive disturbances w and ν are known
only to the extent that they lie, respectively, in the C sets W ⊆ Rn and
N ⊆ Rp. Let φ(i;x(0),u,w) denote the solution of (5.9) at time i if the
initial state at time 0 isx(0), and the control and disturbance sequences
are, respectively, u := {u(0),u(1), . . .} and w := {w(0),w(1), . . .}. The
system (5.33) is subject to the following set of hard state and control
constraints

(x,u) ∈ X× U

in which X ⊆ Rn and U ⊆ Rm are polyhedral and polytopic sets, respec-
tively, with each set containing the origin in its interior. Output MPC
of nonlinear systems remains an active area of research; the proposals
to follow are speculative.

5.6.2 State Estimator

Several state estimators for nonlinear systems are described in Chap-
ter 4. For each t, let I(t) denote the information available to the state
estimator at time t: for a full information estimator

I(t) := {(y(j),u(j)) | j ∈ I−∞:t}

whereas for a moving horizon estimator

I(t) := {(y(j),u(j)) | j ∈ It−T :t}
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where T is the horizon. For each t, j let x̂(t|j) denote the estimate of
x(t) give data I(j); for simplicity, we use x̂(t) to denote x̂(t|t − 1).
We make the strong assumption that we have available an estimator
satisfying the following difference equation

x̂(t + 1) = f(x̂(t),u(t))+ δ

where δ ∈ � and � is a compact subset of Rn. Since

x̂(t + 1) = f(x̂(t|t),u(t))+w(t) = f(x̂(t),u(t))+ δ(t)

where
δ(t) := [f (x̂(t|t),u(t))− f(x̂(t),u(t))]+w(t)

the form of the evolution equation for x̂(t) is acceptable; the assump-
tion that � is constant is conservative. However controlling a random
system with a time-varying bound on the disturbance would be consid-
erably more complicated.

Our second assumption is the the state estimation error x̃(t) :=
x(t) − x̂(t) lies in a compact set �x . This is also a conservative as-
sumption, made for simplicity.

Before proceeding to propose a tube-based controller, we examine
briefly nominal MPC.

5.6.3 Nominal MPC

In nominal output MPC, the control u is determined by solving an op-
timal control problem P̄N(x̂) for the nominal deterministic system de-
fined by

z+ = f(z,u) z(0) = x̂
where x̂ is the current estimate of the state x. This yields the implicit
control law κ̄N(·) so the controlu applied to the system x+ = f(x,u)+
w when the current state estimate is x̂ is

u = κ̄N(x̂)

Because the evolution of the state x differs from the evolution of the
state estimate x̂, the control u = κ̄N(x̂) is not necessarily stabilizing.
If the ingredients Vf (·) and Zf of the optimal control problem P̄N(x̂)
are chosen appropriately, and `(·) is quadratic and positive definite,
the value function V̄0

N(·) satisfies the usual inequalities:

c1|z|2 ≤ V̄0
N(z) ≤ c2|z|2

V̄0
N(z

+) ≤ V̄0
N(z)− c1|z|2
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where z+ = f(z, κ̄N(z)). These inequalities are sufficient to establish
the exponential stability of the origin for the nominal system z+ =
f(z, κ̄N(z)) with a region of attraction ZN which is the domain of the
value function if bounded, or an appropriate level set of the value func-
tion otherwise.

5.6.4 Tube-Based Output MPC

We apply the methodology of Chapter 3, Section 3.6 to the control of
the uncertain system x̂+ = f(x̂,u) + δ, δ ∈ �, making allowance for
the fact that x(i) lies in {x̂(i)} ⊕ �x for all i. This method of control
permits, in principle, larger disturbances.

We assume, therefore, that we have an implicit, stabilizing, control
law v = κ̄N(z) for the nominal system z+ = f(z, v). This control law
is chosen to satisfy the tightened constraints

z ∈ Z v ∈ V

We discuss the choice of Z and V later. The control law is obtained by
solving the nominal control problem P̄N(z) whose solution also yields
the “central” state and control trajectories {z∗(i;z)} and {u∗(i;z)};
these trajectories are the solutions of

z+ = f(z, κ̄N(z)), v = κ̄N(z)

with initial state z(0) = z.
The second ingredient of the tube-based controller is the ancillary

controller that attempts to steer the trajectories of the uncertain sys-
tem x̂+ = f(x̂,u) + δ toward the central path defined above. This
determines u by solving the ancillary problem PN(x̂, z) defined by

V̄0
N(x̂, z) =min

u
{VN(x̂, z,u) | u ∈ UN(x̂, z)}

in which the cost function V̄0
N(·) is defined, as in Chapter 3, by

VN(x̂, z,u) :=
N−1∑
i=0

`(x̂(i)− z∗(i;z),u(i)− v∗(i;z))

where x̂(i) := φ̄(i; x̂,u), the solution at time i of the nominal system
z+ = f(z,u) with initial state x̂ and control sequence u; z∗(i;z) :=
φ̄(i;z, κ̄N(·)), the solution at time i of the controlled nominal system
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z+ = f(z, κ̄N(z)) MPC with initial state z, and v∗(i;z) = κ̄N(z∗(i;z)).
The constraint set UN(x̂, z) is defined by

UN(x̂, z) := {u ∈ RNm | φ̄(N; x̂,u) = z∗(N;z)}

The terminal equality constraint is chosen for simplicity. Because of
the terminal equality constraint, there is no terminal cost. The ter-
minal constraint x̂(N) = z∗(N;z) induces the implicit constraint u ∈
UN(x̂, z) on the control sequence u. For each z ∈ ZN , the domain of
the value function V̄0

N(·, z), and of the minimizer u0(·, z), is the set
X̂N(z) defined by

X̂N(z) := {x̂ | UN(x̂, z) ≠∅}

The minimizing control sequence is

u0(x̂, z) = {u0(0; x̂, z),u0(1; x̂, z), . . . , u0(N − 1; x̂, z)}

and the control applied to the estimator system (when the estimator
state is x̂ and the state of the nominal system is z) isu0(0; x̂, z), the first
element in this sequence. The corresponding optimal state sequence is

x̂0(x̂, z) = {x̂0(0; x̂, z), x̂0(1; x̂, z), . . . , x̂0(N; x̂, z)}

The implicit ancillary control law is, therefore, κN(·) defined by

κN(x̂, z) := u0(0; x̂, z)

The controlled composite system satisfies

x̂+ = f(x̂, κN(x̂, z))+ δ
z+ = f(z, κ̄N(z))

For each c > 0, each z ∈ ZN , let Sc(z) := {x̂ | V̄0
N(x̂, z) ≤ c}. With

appropriate assumptions, there exists a c ∈ (0,∞) such that if x̂(0) ∈
Sc(z(0)), then x̂(i) ∈ Sc(z0(i;z(0))) for all i ∈ I≥0 and all admissi-
ble disturbance and measurement noise sequences, w and ν. In other
words, c is such that Sc(·) is x̂-robust positive invariant for the con-
trolled composite system. It follows from the discussion previously
that the solutions x̂(i) and z(i) of the controlled composite system
satisfy

z(i)→ 0 as i→∞
x̂(i) ∈ Sc(z(i)) ∀i ∈ I≥0

x(i) ∈ Sc(z(i))⊕ �x ∀i ∈ I≥0
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provided that z(0) ∈ ZN and x̂(0) ∈ Sc(z(0)). Thus, the constraint
sets Z and V required for the nominal optimal control problem should
satisfy

Zf ⊆ Z

Sc(z)⊕ �x ⊆ X ∀z ∈ ZN
κN(x̂, z) ∈ U ∀x̂ ∈ Sc(z), ∀z ∈ ZN

If these conditions are satisfied, the solutions x̂(i) and z(i) of the con-
trolled composite system and the associated control u(i) = κN(x̂(i),
z(i)) satisfy

z(i)→ 0 as i→∞
x(i) ∈ Sc(z(i))⊕ �x ⊆ X ∀i ∈ I≥0

u(i) ∈ U ∀i ∈ I≥0

Compared with the corresponding conditions in Chapter 3, we see that
the state constraint set Z now has to satisfy a stronger requirement
than the condition Sc(z) ⊆ X for all z ∈ Z precisely because of the state
estimation error, which is bounded by �x . Hence the state constraint
set Z required here is smaller than that required in Chapter 3.

5.6.5 Choosing Z and V

Because the sets �x and Sd(z) cannot be easily computed, a pragmatic
approach is required for choosing Z and V. One simple, if conserva-
tive, possibility is to set Z = αX and V = βU where α and β lie in (0,1).
The tuning parameters α and β may be adjusted using data obtained
by Monte Carlo simulation or from operation. If constraints are vio-
lated in the simulation, or in operation, α and βmay be reduced; if the
constraints are too conservative, α and β may be increased.

5.7 Notes

The problem of output feedback control has been extensively discussed
in the general control literature. It is well known that, for linear sys-
tems, a stabilizing state feedback controller and an observer may be
separately designed and combined to give a stabilizing output feed-
back controller (the separation principle). For nonlinear systems, Teel
and Praly (1994) show that global stabilizability and complete uniform
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observability are sufficient to guarantee semiglobal stabilizability us-
ing a dynamic observer and provide useful references to related work
on this topic.

Although output MPC in which nominal MPC is combined with a
separately designed observer is widely used in industry since the state
is seldom available, it has received relatively little attention in the liter-
ature because of the inherent difficulty in establishing asymptotic sta-
bility. An extra complexity in MPC is the presence of hard constraints.
A useful survey, more comprehensive than these notes, is provided in
Findeisen, Imsland, Allgöwer, and Foss (2003). Thus Michalska and
Mayne (1995) show for deterministic systems that, for any subset of
the region of attraction of the full state feedback system, there exists
a sampling time and convergence rate for the observer such that the
subset also lies in the region of attraction of the output feedback sys-
tem. A more sophisticated analysis in Imsland, Findeisen, Allgöwer,
and Foss (2003) using continuous time MPC shows that the region of
attraction and rate of convergence of the output feedback system can
approach that of the state feedback system as observer gain increases.

We consider systems with input disturbances and noisy state mea-
surement; we employ the “tube” methodology that has its roots in
the work of Bertsekas and Rhodes (1971), and Glover and Schweppe
(1971) on constrained discrete time systems subject to bounded dis-
turbances. Reachability of a “target set” and a “target tube” are con-
sidered in these papers. These concepts were substantially developed
in the context of continuous time systems in Khurzhanski and Valyi
(1997); Aubin (1991); Kurzhanski and Filippova (1993). The theory for
discrete time systems is considerably simpler; a modern tube-based
theory for optimal control of discrete time uncertain systems with im-
perfect state measurement appears in Moitié et al. (2002). As in this
chapter, they regard a set X of states x that are consistent with past
measurements as the “state” of the optimal control problem. The set
X satisfies an uncertain “full information” difference equation of the
formX+ = f∗(X,u,W, v) so the output feedback optimal control prob-
lem reduces to robust control of an uncertain system with known state
X. The optimal control problem remains difficult because the state X,
a subset of Rn, is difficult to obtain numerically and determination of
a control law as a function of (X, t) prohibitive. In Mayne, Rakovíc,
Findeisen, and Allgöwer (2006, 2009) the output feedback problem is
simplified considerably by replacing X(t) by a simple outer approxima-
tion {x̂(t)}⊕�x in the time-invariant case and by {x̂(t)}⊕�x(t) in the
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time-varying case. The set �x , or the sequence {�x(t)}, may be precom-
puted so the difficult evolution equation for X is replaced by a simple
evolution equation for x̂; in the linear case, the Luenberger observer or
Kalman filter describes the evolution of x̂. The output feedback control
problem reduces to control of an uncertain system with known state
x̂.
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5.8 Exercises

Exercise 5.1: Hausdorff distance between a set and a subset

Show that dH(A,B) =maxa∈A d(a,B) if A and B are two compact subsets of Rn satis-

fying B ⊆ A.

Exercise 5.2: Hausdorff distance between sets A ⊕ B and B

Show that dH(A ⊕ B,A) ≤ |B| if A and B are two compact subsets of Rn satisfying

0 ∈ B in which |B| :=maxb{|b| | b ∈ B}.

Exercise 5.3: Hausdorff distance between sets {z} ⊕ B and A

Show that dH({z} ⊕ B,A) ≤ |z| + dH(A,B) if A and B are two compact sets in Rn.

Exercise 5.4: Hausdorff distance between sets {z} ⊕ A and A

Show that dH({z} ⊕A,A) = |z| if z is a point and A is a compact set in Rn.

Exercise 5.5: Hausdorff distance between sets A ⊕ C and B ⊕ C

Show that dH(A ⊕ C,B ⊕ C) = dH(A,B) if A, B and C are compact subsets of Rn

satisfying B ⊆ A.

Exercise 5.6: Hausdorff distance between sets FA and FB

Let A and B be two compact sets in Rn satisfying A ⊆ B, and let F ∈ Rn×n. Show

that dH(FA, FB) ≤ |F|dH(A,B) in which |F| is the induced norm of F satisfying |Fx| ≤
|F| |x| and |x| := d(x,0).

Exercise 5.7: Linear combination of sets; λ1W ⊕ λ2W = (λ1 + λ2)W

If W is a convex set, show that λ1W⊕ λ2W = (λ1 + λ2)W for any λ1, λ2 ∈ R≥0. Hence

show W⊕ λW⊕ λ2W⊕ · · · = (1− λ)−1W if λ ∈ [0,1).

Exercise 5.8: Hausdorff distance between the sets �(i) and �

Show that there exist c > 0 and γ ∈ (0,1) such that

dH(�(i),�) ≤ cdH(�(0),�)γi

in which

�(i) = Ã�(i− 1)+ B̃	

� = Ã�+ B̃	

and Ã is a stable matrix (ρ(Ã) < 1).
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L. Imsland, R. Findeisen, F. Allgöwer, and B. A. Foss. A note on stability, ro-
bustness and performance of output feedback nonlinear model predictive
control. J. Proc. Cont., 13:633–644, 2003.

A. B. Khurzhanski and I. Valyi. Ellipsoidal-valued dynamics for estimation and
control. Systems & Control: Foundations & Applications. Birkhauser, Boston,
Basel, Berlin, 1997.

I. Kolmanovsky and E. G. Gilbert. Theory and computation of disturbance
invariant sets for discrete-time linear systems. Math. Probl. Eng., 4(4):317–
367, 1998.

A. B. Kurzhanski and T. F. Filippova. On the theory of trajectory tubes: A
mathematical formalism for uncertain dynamics, viability and control. In
A. B. Kurzhanski, editor, Advances in Nonlinear Dynamics and Control: A
Report from Russia, volume 17 of PSCT, pages 122–188. Birkhauser, Boston,
Basel, Berlin, 1993.

D. Q. Mayne, S. V. Rakovíc, R. Findeisen, and F. Allgöwer. Robust output feed-
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6
Distributed Model Predictive Control

6.1 Introduction and Preliminary Results

In many large-scale control applications, it becomes convenient to break
the large plantwide problem into a set of smaller and simpler subprob-
lems in which the local inputs are used to regulate the local outputs.
The overall plantwide control is then accomplished by the composite
behavior of the interacting, local controllers. There are many ways to
design the local controllers, some of which produce guaranteed prop-
erties of the overall plantwide system. We consider four control ap-
proaches in this chapter: decentralized, noncooperative, cooperative,
and centralized control. The first three methods require the local con-
trollers to optimize over only their local inputs. Their computational
requirements are identical. The communication overhead is different,
however. Decentralized control requires no communication between
subsystems. Noncooperative and cooperative control require the in-
put sequences and the current states or state estimates for all the
other local subsystems. Centralized control solves the large, complex
plantwide optimization over all the inputs. Communication is not a rel-
evant property for centralized control because all information is avail-
able in the single plantwide controller. We use centralized control in
this chapter to provide a benchmark of comparison for the distributed
controllers.

We have established the basic properties of centralized MPC, both
with and without state estimation, in Chapters 2, 3, and 5. In this
chapter, we analyze some basic properties of the three distributed
approaches: decentralized, noncooperative, and cooperative MPC. We
show that the conditions required for closed-loop stability of decentral-
ized control and noncooperative control are often violated for models
of chemical plants under reasonable decompositions into subsystems.
For ensuring closed-loop stability of a wide class of plantwide models

409
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and decomposition choices, cooperative control emerges as the most
attractive option for distributed MPC. We then establish the closed-loop
properties of cooperative MPC for unconstrained and constrained lin-
ear systems with and without state estimation. We also discuss current
challenges facing this method, such as input constraints that are cou-
pled between subsystems.

In our development of distributed MPC, we require some basic re-
sults on two topics: how to organize and solve the linear algebra of
linear MPC, and how to ensure stability when using suboptimal MPC.
We cover these two topics in the next sections, and then turn to the
distributed MPC approaches.

6.1.1 Least Squares Solution

In comparing various forms of linear distributed MPC it proves conve-
nient to see the MPC quadratic program for the sequence of states and
inputs as a single large linear algebra problem. To develop this linear
algebra problem, we consider first the unconstrained LQ problem of
Chapter 1, which we solved efficiently with dynamic programming (DP)
in Section 1.3.3

V(x(0),u) = 1
2

N−1∑
k=0

(
x(k)′Qx(k)+u(k)′Ru(k)

)
+ (1/2)x(N)′Pfx(N)

subject to
x+ = Ax + Bu

In this section, we first take the direct but brute-force approach to find-
ing the optimal control law. We write the model solution as
x(1)
x(2)

...
x(N)

 =

A
A2

...
AN


︸ ︷︷ ︸
A

x(0)+


B 0 · · · 0
AB B · · · 0

...
...

. . .
...

AN−1B AN−2B · · · B


︸ ︷︷ ︸

B


u(0)
u(1)

...
u(N − 1)

 (6.1)

or using the input and state sequences

x =Ax(0)+Bu

The objective function can be expressed as

V(x(0),u) = (1/2)
(
x′(0)Qx(0)+ x′Qx+ u′Ru

)
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in which

Q = diag
([
Q Q . . . Pf

])
∈ RNn×Nn

R = diag
([
R R . . . R

])
∈ RNm×Nm (6.2)

Eliminating the state sequence. Substituting the model into the ob-
jective function and eliminating the state sequence gives a quadratic
function of u

V(x(0),u) = (1/2)x′(0)(Q+A′QA)x(0)+ u′(B′QA)x(0)+
(1/2)u′(B′QB+R)u (6.3)

and the optimal solution for the entire set of inputs is obtained in one
shot

u0(x(0)) = −(B′QB+R)−1B′QA x(0)

and the optimal cost is

V0(x(0)) =
(

1
2

)
x′(0)

(
Q+A′QA−A′QB(B′QB+R)−1B′QA

)
x(0)

If used explicitly, this procedure for computing u0 would be inefficient
because B′QB + R is an (mN ×mN) matrix. Notice that in the DP
formulation one has to invert instead an (m×m)matrixN times, which
is computationally less expensive.1 Notice also that unlike DP, the least
squares approach provides all input moves as a function of the initial
state, x(0). The gain for the control law comes from the first input
move in the sequence

K(0) = −
[
Im 0 · · · 0

]
(B′QB+R)−1B′QA

It is not immediately clear that the K(0) and V0 given above from the
least squares approach are equivalent to the result from the Riccati
iteration, (1.11)–(1.15) of Chapter 1, but since we have solved the same
optimization problem, the two results are the same.2

Retaining the state sequence. In this section we set up the least
squares problem again, but with an eye toward improving its efficiency.
Retaining the state sequence and adjoining the model equations as

1Would you prefer to invert by hand 100 (1 × 1) matrices or a single (100 × 100)
dense matrix?

2Establishing this result directly is an exercise in using the partitioned matrix inver-
sion formula. The next section provides another way to show they are equivalent.
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equality constraints is a central idea in optimal control and is described
in standard texts (Bryson and Ho, 1975, p. 44). We apply this standard
approach here. Wright (1997) provides a discussion of this problem in
the linear model MPC context and the extensions required for the quad-
ratic programming problem when there are inequality constraints on
the states and inputs. Including the state with the input in the sequence
of unknowns, we define the enlarged vector z to be

z =



u(0)
x(1)
u(1)
x(2)

...
u(N − 1)
x(N)


The objective function is

min
u
(1/2)(x′(0)Qx(0)+ z′Hz)

in which
H = diag

([
R Q R Q · · · R Pf

])
The constraints are

Dz = d
in which

D = −


B −I

A B −I
. . .

A B −I

 d =


A
0
...
0

x(0)
We now substitute these results into (1.58) and obtain the linear algebra
problem

R B′
Q −I A′

R B′
Q −I

. . .
. . .

R B′
Pf −I

B −I
A B −I

. . .
B −I





u(0)
x(1)
u(1)
x(2)

...
u(N − 1)
x(N)
λ(1)
λ(2)

...
λ(N)



=



0
0
0
0
...
0
0
−A
0
...
0



x(0)
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Method FLOPs

dynamic programming (DP) Nm3

dense least squares N3m3

banded least squares N(2n+m)(3n+m)2

Table 6.1: Computational cost of solving finite horizon LQR problem.

This equation is rather cumbersome, but if we reorder the unknown
vector to put the Lagrange multiplier together with the state and input
from the same time index, and reorder the equations, we obtain the
following banded matrix problem



R B′
B −I

−I Q
R
. . .

. . .
R B′

A B −I
−I Q A′

R B′
A B −I

−I Pf





u(0)
λ(1)
x(1)
u(1)

...
u(N − 2)
λ(N − 1)
x(N − 1)
u(N − 1)
λ(N)
x(N)



=



0
−A
0
0
...
0
0
0
0
0
0



x(0) (6.4)

The banded structure allows a more efficient solution procedure.
The floating operation (FLOP) count for the factorization of a banded
matrix isO(LM2) in which L is the dimension of the matrix andM is the
bandwidth. This compares to the regular FLOP count of O(L3) for the
factorization of a regular dense matrix. The bandwidth of the matrix in
(6.4) is 3n+m and the dimension of the matrix isN(2n+m). Therefore
the FLOP count for solving this equation is O(N(2n +m)(3n +m)2).
Notice that this approach reduces the N3 dependence of the previous
MPC solution method. That is the computational advantage provided
by these adjoint methods for treating the model constraints. Table 6.1
summarizes the computational cost of the three approaches. As shown
in the table, DP is highly efficient. When we add input and state inequal-
ity constraints to the control problem and the state dimension is large,
however, we cannot conveniently apply DP. The dense least squares
computational cost is high if we wish to compute a large number of
moves in the horizon. Note the cost of dense least squares scales with
the third power of horizon length N. As we have discussed in Chap-



414 Distributed Model Predictive Control

ter 2, considerations of control theory favor large N. Another factor
increasing the computational cost is the trend in industrial MPC imple-
mentations to larger multivariable control problems with more states
and inputs, i.e., largerm and n. Therefore, the adjoint approach using
banded least squares method becomes important for industrial applica-
tions in which the problems are large and a solid theoretical foundation
for the control method is desirable.

We might obtain more efficiency than the banded structure if we
view (6.4) as a block tridiagonal matrix and use the method provided
by Golub and Van Loan (1996, p. 174). The final fine tuning of the
solution method for this class of problems is a topic of current research,
but the important point is that, whatever final procedure is selected,
the computational cost will be linear in N as in DP instead of cubic in
N as in dense least squares.

Furthermore, if we wish to see the connection to the DP solution, we
can proceed as follows. Substitute Π(N) = Pf as in (1.12) of Chapter 1
and consider the last three-equation block of the matrix appearing in
(6.4)  R B′

A B −I
−I Π(N)



x(N − 1)
u(N − 1)
λ(N)
x(N)

 =
 0

0
0


We can eliminate this small set of equations and solve for u(N − 1),
λ(N), x(N) in terms of x(N − 1), resulting in

 u(N − 1)
λ(N)
x(N)

 =
 −(B′Π(N)B + R)−1B′Π(N)A
Π(N)(I − B(B′Π(N)B + R)−1B′Π(N))A

(I − B(B′Π(N)B + R)−1B′Π(N))A

x(N − 1)

Notice that in terms of the Riccati matrix, we also have the relationship

A′λ(N) = Π(N − 1)x(N − 1)−Qx(N − 1)

We then proceed to the next to last block of three equations

 R B′

A B −I
−I Q A′




x(N − 2)
u(N − 2)
λ(N − 1)
x(N − 1)
u(N − 1)
λ(N)


=

 0
0
0
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Note that the last equation gives

λ(N − 1) = Qx(N − 1)+A′λ(N) = Π(N − 1)x(N − 1)

Using this relationship and continuing on to solve forx(N−1), λ(N−1),
u(N − 2) in terms of x(N − 2) gives

 u(N − 2)
λ(N − 1)
x(N − 1)

 =
 −(B′Π(N − 1)B + R)−1B′Π(N − 1)A
Π(N − 1)(I − B(B′Π(N − 1)B + R)−1B′Π(N − 1))A

(I − B(B′Π(N − 1)B + R)−1B′Π(N − 1))A

x(N − 2)

Continuing on through each previous block of three equations pro-
duces the Riccati iteration and feedback gains of (1.11)–(1.14). The
other unknowns, the multipliers, are simply

λ(k) = Π(k)x(k) k = 1,2, . . . ,N

so the cost to go at each stage is simply x(k)′λ(k), and we see the nice
connection between the Lagrange multipliers and the cost of the LQR
control problem.

6.1.2 Stability of Suboptimal MPC

When using distributed MPC, it may be necessary or convenient to im-
plement the control without solving the complete optimization. We
then have a form of suboptimal MPC, which was first considered in
Chapter 2, Section 2.8. Before adding the complexity of the distributed
version, we wish to further develop a few features of suboptimal MPC
in the centralized, single-player setting. These same features arise in
the distributed, many-player setting as we discuss subsequently.

We consider a specific variation of suboptimal MPC in which a start-
ing guess is available from the control trajectory at the previous time
and we take a fixed number of steps of an optimization algorithm. The
exact nature of the optimization method is not essential, but we do
restrict the method so that each iteration is feasible and decreases the
value of the cost function. To initialize the suboptimal controller, we
are given an initial state x(0) = x0, and we generate an initial control
sequence u(0) = h(x0). We consider input constraints u(i) ∈ U ⊆
Rm, i ∈ I0:N−1, which we also write as u ∈ UN ⊆ RN . As in Chapter 2 we
denote the set of feasible states as XN . These are the states for which
the initial control sequence h(x0) is well defined. The suboptimal MPC
algorithm is as follows.
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Suboptimal MPC algorithm.

Data: Integer Niter.

Initialize: Set current state x = x0, current control sequence, u =
h(x0).

Step 1 (State evolution): Apply controlu = u(0) to the system. Obtain
state at next sample, x+. For the nominal system

x+ = f(x,u(0))

Step 2 (Warm start): Denote the warm start for the next sample time
as ũ

+
. We use

ũ
+ = {u(1),u(2), . . . , u(N − 1),0}

in which x(N) = φ(N;x,u). The warm start ũ
+

therefore is a
function of (x,u). This warm start is a simplified version of the
one considered in Chapter 2, in which the final control move in
the warm start was determined by the control law κf (x). In dis-
tributed MPC it is simpler to use zero for the final control move
in the warm start.

Step 3 (Iteration of an optimization method): The controller performs
Niter iterations of a feasible path optimization algorithm to obtain
an improved control sequence using initial state x+. The final in-
put sequence u+ is a function of the state initial condition and the
warm start (x+, ũ). Noting that x+ and ũ are both functions of
(x,u), the input sequence u+ can also be expressed as function
of only (x,u)

u+ = g(x,u)

Step 4 (Next time step): Update state and input sequence: x ← x+,
u ← u+. Go to Step 1.

We establish later in the chapter that the system cost functionV(x,u)
satisfies the following properties for the form of suboptimal MPC gen-
erated by distributed MPC. There exist constants a,b, c > 0 such that

a |(x,u)|2 ≤ V(x,u) ≤ b |(x,u)|2

V(x+,u+)− V(x,u) ≤ −c |(x,u(0))|2
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These properties are similar to those required for a valid Lyapunov
function. The difference is that the cost decrease here does not de-
pend on the size of u, but only x and the first element of u, u(0). This
cost decrease is sufficient to establish that x(k) and u(k) converge to
zero, but allows the possibility that u(k) is large even though x(k) is
small. That fact prevents us from establishing the solution x(k) = 0
for all k is Lyapunov stable. We can establish that the solution x(k) = 0
for all k is Lyapunov stable at k = 0 only. We cannot establish uniform
Lyapunov stability nor Lyapunov stability for any k > 0. The problem
is not that our proof technique is deficient. There is no reason to expect
that the solution x(k) = 0 for all k is Lyapunov stable for suboptimal
MPC. The lack of Lyapunov stability of x(k) = 0 for all k is a subtle
issue and warrants some discussion. To make these matters more pre-
cise, consider the following standard definitions of Lyapunov stability
at time k and uniform Lyapunov stability (Vidyasagar, 1993, p. 136).

Definition 6.1 (Lyapunov stability). The zero solution x(k) = 0 for all
k is stable (in the sense of Lyapunov) at k = k0 if for any ε > 0 there
exists a δ(k0, ε) > 0 such that

|x(k0)| < δ =⇒ |x(k)| < ε ∀k ≥ k0 (6.5)

Lyapunov stability is defined at a time k0. Uniform stability is the
concept that guarantees that the zero solution is not losing stability
with time. For a uniformly stable zero solution, δ in Definition 6.1 is
not a function of k0, so that (6.5) holds for all k0.

Definition 6.2 (Uniform Lyapunov stability). The zero solution x(k) =
0 for all k is uniformly stable (in the sense of Lyapunov) if for any ε > 0
there exists a δ(ε) > 0 such that

|x(k0)| < δ =⇒ |x(k)| < ε ∀k ≥ k0 ∀k0

Exercise 6.6 gives an example of a linear system for which x(k)
converges exponentially to zero with increasing k for all x(0), but the
zero solution x(k) = 0 for all k is Lyapunov stable only at k = 0. It
is not uniformly Lyapunov stable nor Lyapunov stable for any k > 0.
Without further restrictions, suboptimal MPC admits this same type of
behavior.

To ensure uniform Lyapunov stability, we add requirements to sub-
optimal MPC beyond obtaining only a cost decrease. Here we impose
the constraint

|u| ≤ d |x| x ∈ rB
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in which d, r > 0. This type of constraint was first introduced in (2.43)
of Chapter 2. In that arrangement of suboptimal MPC it was simplest to
switch to local controller u = κf (x) when the state entered Xf to auto-
matically enforce this constraint. In this chapter we instead include the
constraint explicitly in the distributed MPC optimization problem and
do not switch to a local controller. Both alternatives provide (uniform)
Lyapunov stability of the solution x(k) = 0 for all k. The following
lemma summarizes the conditions we use later in the chapter for estab-
lishing exponential stability of distributed MPC. A similar lemma estab-
lishing asymptotic stability of suboptimal MPC was given by Scokaert,
Mayne, and Rawlings (1999) (Theorem 1).

Definition 6.3 (Exponential stability). Let X be positive invariant for
x+ = f(x). Then the origin is exponentially stable for x+ = f(x) with
a region of attraction X if there exists c > 0 and γ < 1 such that∣∣φ(i;x)∣∣ ≤ c |x|γi
for all i ≥ 0, x ∈ X.

Consider next the suboptimal MPC controller. Let the system satisfy
(x+,u+) = (f (x,u), g(x,u)) with initial sequence u(0) = h(x(0)). The
controller constraints are x(i) ∈ X ⊆ Rn for all i ∈ I0:N and u(i) ∈ U ⊆
Rm for all i ∈ I0:N−1. Let XN denote the set of states for which the
MPC controller is feasible. The suboptimal MPC system satisfies the
following. Given r > 0, there exist a,b, c > 0 such that

a |(x,u)|2 ≤ V(x,u) ≤ b |(x,u)|2 x ∈ XN u ∈ UN

V(x+,u+)− V(x,u) ≤ −c |(x,u(0))|2 x ∈ XN u ∈ UN

|u| ≤ d |x| x ∈ rB

Lemma 6.4 (Exponential stability of suboptimal MPC). The origin is ex-
ponentially stable for the closed-loop system under suboptimal MPC with
region of attraction XN if either of the following assumptions holds

(a) U is compact. In this case, XN may be unbounded.

(b) XN is compact. In this case U may be unbounded.

Exercises 6.7 and 6.8 explore what to conclude about exponential
stability when both U and XN are unbounded.

Proof. First we show that the origin of the extended state (x,u) is ex-
ponentially stable for x(0) ∈ XN .



6.1 Introduction and Preliminary Results 419

(a) For the case U compact, we use the same argument used to prove
Proposition 2.18 of Chapter 2. We have |u| ≤ d |x| , x ∈ rB. Consider
the optimization

max
u∈UN

|u| = s > 0

The solution exists by the Weierstrass theorem since U is compact,
which implies UN is compact. Then we have |u| ≤ (s/r) |x| for x ∈
XN \rB, so we have |u| ≤ d′ |x| for x ∈ XN in which d′ =max(d, s/r).

(b) For the case XN compact, consider the optimization

max
x∈XN

V(x,h(x)) = V̄ > 0

The solution exists because XN is compact and h(·) and V(·) are con-
tinuous. Define the compact set Ū by

Ū = {u | V(x,u) ≤ V̄ , x ∈ XN}

The set is bounded because V(x,u) ≥ a |(x,u)|2 ≥ a |u|2. The set is
closed because V is continuous. The significance of this set is that for
all k ≥ 0 and all x ∈ XN , u(k) ∈ Ū. Therefore we have established that
XN compact implies u(k) evolves in a compact set as in the previous
case when U is assumed compact. Using the same argument as in that
case, we have established that there exists d′ > 0 such that |u| ≤ d′ |x|
for all x ∈ XN .

For the two cases, we therefore have established for all x ∈ XN ,
u ∈ UN (case (a)) or u ∈ Ū (case (b))

|(x,u)| ≤ |x| + |u| ≤ |x| + d′ |x| ≤ (1+ d′) |x|

which gives |x| ≥ c′ |(x,u)| with c′ = 1/(1 + d′) > 0. Hence, there
exists a3 = c(c′)2 such that V(x+,u+) − V(x,u) ≤ −a3 |(x,u)|2 for
all x ∈ XN . Therefore the extended state (x,u) satisfies the standard
conditions of an exponential stability Lyapunov function (see Theorem
B.14 in Appendix B) with a1 = a,a2 = b,a3 = c(c′)2, σ = 2 for (x,u) ∈
XN × UN (case (a)) or XN × Ū (case (b)). Therefore for all x(0) ∈ XN ,
k ≥ 0,

|(x(k),u(k))| ≤ α |(x(0),u(0))|γk

in which α > 0 and 0 < γ < 1.
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Finally we remove the input sequence and establish that the origin
for the state (rather than the extended state) is exponentially stable for
the closed-loop system. We have for all x(0) ∈ XN and k ≥ 0

|x(k)| ≤ |(x(k),u(k))| ≤ α |(x(0),u(0))|γk

≤ α(|x(0)| + |u(0)|)γk ≤ α(1+ d′) |x(0)|γk

≤ α′ |x(0)|γk

in which α′ = α(1 + d′) > 0, and we have established exponential
stability of the origin on the feasible set XN . �

We also consider later in the chapter the effects of state estimation
error on the closed-loop properties of distributed MPC. For analyzing
stability under perturbations, the following lemma is useful. Here e
plays the role of estimation error.

Lemma 6.5 (Exponential stability with mixed powers of norm). Con-
sider a dynamic system

(x+, e+) = f(x, e)

with a zero steady-state solution, f(0,0) = (0,0). Assume there exists
a function V : Rn+m → R≥0 that satisfies the following for all (x, e) ∈
Rn ×Rm

a(|x|σ + |e|γ) ≤ V((x, e)) ≤ b(|x|σ + |e|γ) (6.6)

V(f(x, e))− V((x, e)) ≤ −c(|x|σ + |e|γ) (6.7)

with constants a,b, c,σ , γ > 0. Then the zero steady-state solution is
globally exponentially stable for (x+, e+) = f(x, e).

The proof of this lemma is discussed in Exercise 6.9. We also require
a converse theorem for exponential stability.

Lemma 6.6 (Converse theorem for exponential stability). If the zero
steady-state solution of x+ = f(x) is globally exponentially stable, then
there exists Lipschitz continuous V : Rn → R≥0 that satisfies the follow-
ing: there exist constants a,b, c,σ > 0, such that for all x ∈ Rn

a |x|σ ≤ V(x) ≤ b |x|σ

V(f(x))− V(x) ≤ −c |x|σ

Moreover, any σ > 0 is valid, and the constant c can be chosen as large
as one wishes.

The proof of this lemma is discussed in Exercise B.3.
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6.2 Unconstrained Two-Player Game

To introduce clearly the concepts and notation required to analyze dis-
tributed MPC, we start with a two-player game. We then generalize to
an M-player game in the next section.

Let (A11, B11, C11) be a minimal state space realization of the (u1, y1)
input-output pair. Similarly, let (A12, B12, C12) be a minimal state space
realization of the (u2, y1) input-output pair. The dimensions are u1 ∈
Rm1 , y1 ∈ Rp1 , x11 ∈ Rn11 , x12 ∈ Rn12 with n1 = n11 +n12. Output y1

can then be represented as the following, possibly nonminimal, state
space model[

x11

x12

]+
=
[
A11 0

0 A12

][
x11

x12

]
+
[
B11

0

]
u1 +

[
0
B12

]
u2

y1 =
[
C11 C12

][x11

x12

]

Proceeding in an analogous fashion with output y2 and inputs u1 and
u2, we model y2 with the following state space model[

x22

x21

]+
=
[
A22 0

0 A21

][
x22

x21

]
+
[
B22

0

]
u2 +

[
0
B21

]
u1

y2 =
[
C22 C21

][x22

x21

]

We next define player one’s local cost functions

V1(x1(0),u1,u2) =
N−1∑
k=0

`1(x1(k),u1(k))+ V1f (x1(N))

in which

x1 =
[
x11

x12

]
Note that the first local objective is affected by the second player’s
inputs through the model evolution of x1, i.e., through the x12 states.
We choose the stage cost to account for the first player’s inputs and
outputs

`1(x1, u1) = (1/2)(y ′1Q1y1 +u′1R1u1)
`1(x1, u1) = (1/2)(x′1Q1x1 +u′1R1u1)
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in which
Q1 = C′1Q1C1 C1 =

[
C11 C12

]
Motivated by the warm start to be described later, for stable systems,
we choose the terminal penalty to be the infinite horizon cost to go
under zero control

V1f (x1(N)) = (1/2)x′1(N)P1fx1(N)

We choose P1f as the solution to the following Lyapunov equation as-
suming A1 is stable

A′1P1fA1 − P1f = −Q1 (6.8)

We proceed analogously to define player two’s local objective function
and penalties

V2(x2(0),u1,u2) =
N−1∑
k=0

`2(x2(k),u2(k))+ V2f (x2(N))

In centralized control and the cooperative game, the two players
share a common objective, which can be considered to be the overall
plant objective

V(x1(0), x2(0),u1,u2) = ρ1V1(x1(0),u1,u2)+ ρ2V2(x2(0),u2,u1)

in which the parameters ρ1, ρ2 are used to specify the relative weights
of the two subsystems in the overall plant objective. Their values are
restricted so ρ1, ρ2 > 0, ρ1 + ρ2 = 1 so that both local objectives must
have some nonzero effect on the overall plant objective.

6.2.1 Centralized Control

Centralized control requires the solution of the systemwide control
problem. It can be stated as

min
u1,u2

V(x1(0), x2(0),u1,u2)

s.t. x+1 = A1x1 + B11u1 + B12u2

x+2 = A2x2 + B22u2 + B21u1

in which

A1 =
[
A11 0

0 A12

]
A2 =

[
A22 0

0 A21

]

B11 =
[
B11

0

]
B12 =

[
0
B12

]
B21 =

[
0
B21

]
B22 =

[
B22

0

]
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This optimal control problem is more complex than all of the dis-
tributed cases to follow because the decision variables include both
u1 and u2. Because the performance is optimal, centralized control is a
natural benchmark against which to compare the distributed cases: co-
operative, noncooperative, and decentralized MPC. The plantwide stage
cost and terminal cost can be expressed as quadratic functions of the
subsystem states and inputs

`(x,u) = (1/2)(x′Qx +u′Ru)
Vf (x) = (1/2)x′Pfx

in which

x =
[
x1

x2

]
u =

[
u1

u2

]
Q =

[
ρ1Q1 0

0 ρ2Q2

]

R =
[
ρ1R1 0

0 ρ2R2

]
Pf =

[
ρ1P1f 0

0 ρ2P2f

]
(6.9)

and we have the standard MPC problem considered in Chapters 1 and 2

min
u
V(x(0),u)

s.t. x+ = Ax + Bu (6.10)

in which

A =
[
A1 0
0 A2

]
B =

[
B11 B12

B21 B22

]
(6.11)

Given the terminal penalty in (6.8), stability of the closed-loop central-
ized system is guaranteed for all choices of system models and tuning
parameters subject to the usual stabilizability assumption on the sys-
tem model.

6.2.2 Decentralized Control

Centralized and decentralized control define the two extremes in dis-
tributing the decision making in a large-scale system. Centralized con-
trol has full information and optimizes the full control problem over all
decision variables. Decentralized control, on the other hand, optimizes
only the local objectives and has no information about the actions of
the other subsystems. Player one’s objective function is

V1(x1(0),u1) =
N−1∑
k=0

`1(x1(k),u1(k))+ V1f (x1(N))
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We then have player one’s decentralized control problem

min
u1
V1(x1(0),u1)

s.t. x+1 = A1x1 + B11u1

We know the optimal solution for this kind of LQ problem is a linear
feedback law

u0
1 = K1x1(0)

Notice that in decentralized control, player one’s model does not
account for the inputs of player two, and already contains model er-
ror. In the decentralized problem, player one requires no information
about player two. The communication overhead for decentralized con-
trol is therefore minimal, which is an implementation advantage, but
the resulting performance may be quite poor for systems with rea-
sonably strong coupling. We compute an optimal K1 for system one
(A1, B11,Q1, R1) and optimal K2 for system 2. The closed-loop system
evolution is then[

x1

x2

]+
=
[
A1 + B11K1 B12K2

B21K1 A2 + B22K2

][
x1

x2

]

and we know only that A11 + B11K1 and A22 + B22K2 are stable matri-
ces. Obviously the stability of the closed-loop, decentralized system is
fragile and depends in a sensitive way on the sizes of the interaction
terms B12 and B21 and feedback gains K1, K2.

6.2.3 Noncooperative Game

In the noncooperative game, player one optimizes V1(x1(0),u1,u2)
over u1 and player two optimizes V2(x2(0),u1,u2) over u2. From player
one’s perspective, player two’s planned inputs u2 are known distur-
bances affecting player one’s output through the dynamic model. Part
of player one’s optimal control problem is therefore to compensate for
player two’s inputs with his optimal u1 sequence in order to optimize
his local objective V1. Similarly, player two considers player one’s in-
puts as a known disturbance and solves an optimal control problem
that removes their effect in his local objective V2. Because this game
is noncooperative (V1 ≠ V2), the struggle between players one and two
can produce an outcome that is bad for both of them as we show sub-
sequently. Notice that unlike decentralized control, there is no model
error in the noncooperative game. Player one knows exactly the effect



6.2 Unconstrained Two-Player Game 425

of the actions of player two and vice versa. Any poor nominal perfor-
mance is caused by the noncooperative game, not model error.

Summarizing the noncooperative control problem statement, player
one’s model is

x+1 = A1x1 + B11u1 + B12u2

and player one’s objective function is

V1(x1(0),u1,u2) =
N−1∑
k=0

`1(x1(k),u1(k))+ V1f (x1(N))

Note that V1 here depends on u2 because the state trajectory x1(k), k ≥
1 depends on u2 as shown in player one’s dynamic model. We then have
player one’s noncooperative control problem

min
u1
V1(x1(0),u1,u2)

s.t. x+1 = A1x1 + B11u1 + B12u2

Solution to player one’s optimal control problem. We now solve
player one’s optimal control problem. Proceeding as in Section 6.1.1
we define

z =



u1(0)
x1(1)

...
u1(N − 1)
x1(N)

 H = diag
([
R1 Q1 · · · R1 P1f

])

and can express player one’s optimal control problem as

min
z
(1/2)(z′Hz+ x1(0)′Q1x1(0))

s.t. Dz = d

in which

D = −


B11 −I

A1 B11 −I
. . .

A1 B11 −I



d =


A1x1(0)+ B12u2(0)

B12u2(1)
...

B12u2(N − 1)
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Figure 6.1: Convex step from (up1 , u
p
2 ) to (up+1

1 , up+1
2 ); the param-

eters w1, w2 with w1 + w2 = 1 determine location of
next iterate on line joining the two players’ optimiza-
tions: (u0

1, u
p
2 ) and (up1 , u

0
2).

We then apply (1.58) to obtain[
H −D′
−D 0

][
z
λ

]
=
[

0

−Ã1

]
x1(0)+

[
0

−B̃12

]
u2 (6.12)

in which we have defined

λ =


λ(1)
λ(2)

...
λ(N)

 Ã1 =


A1

0
...
0

 B̃12 =


B12

B12

. . .
B12


Solving this equation and picking out the rows of z corresponding to
the elements of u1 gives

u0
1 = K1x1(0)+ L1u2

and we see player one’s optimal decision depends linearly on his ini-
tial state, but also on player two’s decision. This is the key difference
between decentralized control and noncooperative control. In nonco-
operative control, player two’s decisions are communicated to player
one and player one accounts for them in optimizing the local objective.
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Convex step. Let p ∈ I≥0 denote the integer-valued iteration in the
optimization problem. Looking ahead to theM-player game, we do not
take the full step, but a convex combination of the the current optimal
solution, u0

1, and the current iterate, up1

up+1
1 = w1u0

1 + (1−w1)u
p
1 0 < w1 < 1

This iteration is displayed in Figure 6.1. Notice we have chosen a dis-
tributed optimization of the Gauss-Jacobi type (see Bertsekas and Tsit-
siklis, 1997, pp.219–223).

We place restrictions on the systems under consideration before
analyzing stability of the controller.

Assumption 6.7 (Unconstrained two-player game).

(a) All subsystems, Aij , i = 1,2, j = 1,2, are stable.

(b) The controller penalties Q1,Q2, R1, R2 are positive definite.

The assumption of stable models is purely for convenience of expo-
sition. We treat unstable, stabilizable systems in Section 6.3.

Convergence of the players’ iteration. To understand the conver-
gence of the two players’ iterations, we express both players’ moves as
follows

up+1
1 = w1u0

1 + (1−w1)u
p
1

up+1
2 = w2u0

2 + (1−w2)u
p
2

1 = w1 +w2 0 < w1,w2 < 1

or [
u1

u2

]p+1

=
[
w1I 0

0 w2I

][
u0

1

u0
2

]
+
[
(1−w1)I 0

0 (1−w2)I

][
u1

u2

]p
The optimal control for each player is[

u0
1

u0
2

]
=
[
K1 0
0 K2

][
x1(0)
x2(0)

]
+
[

0 L1

L2 0

][
u1

u2

]p
Substituting the optimal control into the iteration gives[

u1

u2

]p+1

=
[
w1K1 0

0 w2K2

]
︸ ︷︷ ︸

K

[
x1(0)
x2(0)

]
+
[
(1−w1)I w1L1

w2L2 (1−w2)I

]
︸ ︷︷ ︸

L

[
u1

u2

]p
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Finally writing this equation in the plantwide notation, we express the
iteration as

up+1 = Kx(0)+ Lup

The convergence of the two players’ control iteration is governed by
the eigenvalues of L. If L is stable, the control sequence converges to

u∞ = (I − L)−1Kx(0) |λ| < 1 for λ ∈ eig(L)

in which

(I − L)−1K =
[
w1I −w1L1

−w2L2 w2I

]−1 [
w1K1 0

0 w2K2

]

(I − L)−1K =
[
I −L1

−L2 I

]−1 [
K1 0
0 K2

]

Note that the weights w1, w2 do not appear in the converged input
sequence. The u∞1 , u∞2 pair have the equilibrium property that nei-
ther player can improve his position given the other player’s current
decision. This point is called a Nash equilibrium (Başar and Olsder,
1999, p. 4). Notice that the distributed MPC game does not have a Nash
equilibrium if the eigenvalues of L are on or outside the unit circle. If
the controllers have sufficient time during the control system’s sam-
ple time to iterate to convergence, then the effect of the initial control
sequence is removed by using the converged control sequence. If the
iteration has to be stopped before convergence, the solution is

up+1 = Lpu[0] +
p−1∑
j=0

LjKx(0) 0 ≤ p

in which u[0] is the p = 0 (initial) input sequence. We use the brackets
with p = 0 to distinguish this initial input sequence from an optimal
input sequence.

Stability of the closed-loop system. We assume the Nash equilib-
rium is stable and there is sufficient computation time to iterate to
convergence.

We require a matrix of zeros and ones to select the first move from
the input sequence for injection into the plant. For the first player, the
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required matrix is

u1(0) = E1u1

E1 =
[
Im1 0m1 . . . 0m1

]
m1 ×m1N matrix

The closed-loop system is then

[
x1

x2

]+
=
[
A1 0
0 A2

]
︸ ︷︷ ︸

A

[
x1

x2

]
+

[
B11 B12

B21 B22

]
︸ ︷︷ ︸

B

[
E1 0
0 E2

][
I −L1

−L2 I

]−1 [
K1 0
0 K2

]
︸ ︷︷ ︸

K

[
x1

x2

]

Using the plantwide notation for this equation and defining the feed-
back gain K gives

x+ = (A+ BK)x

The stability of the closed loop with converged, noncooperative control
is therefore determined by the eigenvalues of (A+ BK).

We next present three simple examples to show that (i) the Nash
equilibrium may not be stable (L is unstable), (ii) the Nash equilibrium
may be stable but the closed loop is unstable (L is stable, A+BK is un-
stable), and (iii) the Nash equilibrium may be stable and the closed loop
is stable (L is stable, A+ BK is stable). Which situation arises depends
in a nonobvious way on all of the problem data: A1, A2, B11, B12, B21,
B22, Q1, Q2, P1f , P2f , R1, R2, w1, w2, N. One has to examine the eigen-
values of L and A+BK for each application of interest to know how the
noncooperative distributed MPC is going to perform. Even for a fixed
dynamic model, when changing tuning parameters such asQ, Pf , R,w,
one has to examine eigenvalues of L and A+ BK to know the effect on
the closed-loop system. This is the main drawback of the noncoopera-
tive game. In many control system design methods, such as all forms of
MPC presented in Chapter 2, closed-loop properties such as exponen-
tial stability are guaranteed for the nominal system for all choices of
performance tuning parameters. Noncooperative distributed MPC does
not have this feature and a stability analysis is required. We show in the
next section that cooperative MPC does not suffer from this drawback,
at the cost of slightly more information exchange.
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Example 6.8: Nash equilibrium is unstable

Consider the following transfer function matrix for a simple two-input
two-output system[

y1(s)
y2(s)

]
=
[
G11(s) G12(s)
G21(s) G22(s)

][
u1(s)
u2(s)

]

in which

G(s) =


1

s2 + 2(0.2)s + 1
0.5

0.225s + 1
−0.5

(0.5s + 1)(0.25s + 1)
1.5

0.75s2 + 2(0.8)(0.75)s + 1


Obtain discrete time models (Aij , Bij , Cij) for each of the four transfer
functions Gij(s) using a sample time of T = 0.2 and zero-order holds
on the inputs. Set the control cost function parameters to be

Q1 = Q2 = 1 P1f = P2f = 0 R1 = R2 = 0.01

N = 30 w1 = w2 = 0.5

Compute the eigenvalues of the Lmatrix for this system using noncoop-
erative MPC. Show the Nash equilibrium is unstable and the closed-loop
system is therefore unstable. Discuss why this system is problematic
for noncooperative control.

Solution

For this problem L is a 60× 60 matrix (N(m1 +m2)). The magnitudes
of the largest eigenvalues are∣∣eig(L)

∣∣ = [1.11 1.11 1.03 1.03 0.914 0.914 · · ·
]

The noncooperative iteration does not converge. The steady-state gains
for this system are

G(0) =
[

1 0.5
−0.5 1.5

]
and we see that the diagonal elements are reasonably large compared
to the nondiagonal elements. So the steady-state coupling between the
two systems is relatively weak. The dynamic coupling is unfavorable,
however. The response of y1 to u2 is more than four times faster than
the response of y1 to u1. The faster input is the disturbance and the
slower input is used for control. Likewise the response of y2 to u1 is
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three times faster than the response of y2 to u2. Also in the second
loop, the faster input is the disturbance and the slower input is used
for control. These pairings are unfavorable dynamically, and that fact
is revealed in the instability of L and lack of a Nash equilibrium for the
noncooperative dynamic regulation problem. �

Example 6.9: Nash equilibrium is stable but closed loop is unstable

Switch the outputs for the previous example and compute the eigenval-
ues of L and (A+BK) for the noncooperative distributed MPC regulator
for the system

G(s) =


−0.5

(0.5s + 1)(0.25s + 1)
1.5

0.75s2 + 2(0.8)(0.75)s + 1
1

s2 + 2(0.2)s + 1
0.5

0.225s + 1


Show in this case that the Nash equilibrium is stable, but the noncoop-
erative regulator destabilizes the system. Discuss why this system is
problematic for noncooperative control.

Solution

For this case the largest magnitude eigenvalues of L are∣∣eig(L)
∣∣ = [0.63 0.63 0.62 0.62 0.59 0.59 · · ·

]
and we see the Nash equilibrium for the noncooperative game is sta-
ble. So we have removed the first source of closed-loop instability by
switching the input-output pairings of the two subsystems. There are
seven states in the complete system model, and the magnitudes of the
eigenvalues of the closed-loop regulator (A+ BK) are∣∣eig(A+ BK)

∣∣ = [1.03 1.03 0.37 0.37 0.77 0.77 0.04
]

which also gives an unstable closed-loop system. We see the distributed
noncooperative regulator has destabilized a stable open-loop system.
The problem with this pairing is the steady-state gains are now

G(0) =
[
−0.5 1.5

1 0.5

]
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If one computes any steady-state interaction measure, such as the rel-
ative gain array (RGA), we see the new pairings are poor from a steady-
state interaction perspective

RGA =
[

0.14 0.86
0.86 0.14

]

Neither pairing of the inputs and outputs is closed-loop stable with
noncooperative distributed MPC.

Decentralized control with this pairing is discussed in Exercise 6.10.
�

Example 6.10: Nash equilibrium is stable and the closed loop is stable

Next consider the system

G(s) =


1

s2 + 2(0.2)s + 1
0.5

0.9s + 1
−0.5

(2s + 1)(s + 1)
1.5

0.75s2 + 2(0.8)(0.75)s + 1


Compute the eigenvalues of L and A+BK for this system. What do you
conclude about noncooperative distributed MPC for this system?

Solution

This system is not difficult to handle with distributed control. The
gains are the same as in the original pairing in Example 6.8, and the
steady-state coupling between the two subsystems is reasonably weak.
Unlike Example 6.8, however, the responses of y1 to u2 and y2 to u1

have been slowed so they are not faster than the responses of y1 to u1

and y2 to u2, respectively. Computing the eigenvalues of L and A+BK
for noncooperative control gives∣∣eig(L)

∣∣ = [0.61 0.61 0.59 0.59 0.56 0.56 0.53 0.53 · · ·
]

∣∣eig(A+ BK)
∣∣ = [0.88 0.88 0.74 0.67 0.67 0.53 0.53

]
The Nash equilibrium is stable since L is stable, and the closed loop is
stable since both L and A+ BK are stable. �

These examples reveal the simple fact that communicating the ac-
tions of the other controllers does not guarantee acceptable closed-loop
behavior. If the coupling of the subsystems is weak enough, both dy-
namically and in steady state, then the closed loop is stable. In this
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sense, noncooperative MPC has few advantages over completely decen-
tralized control, which has this same basic property.

We next show how to obtain much better closed-loop properties
while maintaining the small size of the distributed control problems.

6.2.4 Cooperative Game

In the cooperative game, the two players share a common objective,
which can be considered to be the overall plant objective

V(x1(0), x2(0),u1,u2) = ρ1V1(x1(0),u1,u2)+ ρ2V2(x2(0),u2,u1)

in which the parameters ρ1, ρ2 are used to specify the relative weights
of the two subsystems in the overall plant objective. In the coopera-
tive problem, each player keeps track of how his input affects the other
player’s output as well as his own output. We can implement this co-
operative game in several ways. The implementation leading to the
simplest notation is to combine x1 and x2 into a single model[

x1

x2

]+
=
[
A1 0
0 A2

][
x1

x2

]
+
[
B11

B21

]
u1 +

[
B12

B22

]
u2

and then express player one’s stage cost as

`1(x1, x2, u1) =
1
2

[
x1

x2

]′ [
ρ1Q1 0

0 ρ2Q2

][
x1

x2

]
+ 1

2
u′1(ρ1R1)u1 + const.

V1f (x1, x2) =
1
2

[
x1

x2

]′ [
ρ1P1f 0

0 ρ2P2f

][
x1

x2

]

Notice that u2 does not appear because the contribution of u2 to the
stage cost cannot be affected by player one, and can therefore be ne-
glected. The cost function is then expressed as

V(x1(0), x2(0),u1,u2) =
N−1∑
k=0

`1(x1(k), x2(k),u1(k))+V1f (x1(N),x2(N))

Player one’s optimal control problem is

min
u1
V(x1(0), x2(0),u1,u2)

s.t.

[
x1

x2

]+
=
[
A1 0
0 A2

][
x1

x2

]
+
[
B11

B21

]
u1 +

[
B12

B22

]
u2



434 Distributed Model Predictive Control

Note that this form is identical to the noncooperative form presented
previously if we redefine the terms (noncooperative -→ cooperative)

x1 →
[
x1

x2

]
A1 →

[
A1 0
0 A2

]
B11 →

[
B11

B21

]
B12 →

[
B12

B22

]

Q1 →
[
ρ1Q1 0

0 ρ2Q2

]
R1 → ρ1R1 P1f →

[
ρ1P1f 0

0 ρ2P2f

]
Any computational program written to solve either the cooperative or
noncooperative optimal control problem can be used to solve the other.

Eliminating states x2. An alternative implementation is to remove
states x2(k), k ≥ 1 from player one’s optimal control problem by sub-
stituting the dynamic model of system two. This implementation re-
duces the size of the dynamic model because only states x1 are re-
tained. This reduction in model size may be important in applications
with many players. The removal of states x2(k), k ≥ 1 also introduces
linear terms into player one’s objective function. We start by using the
dynamic model for x2 to obtain

x2(1)
x2(2)

...
x2(N)

 =

A2

A2
2

...
AN2

x2(0)+


B21

A2B21 B21

...
...

. . .

AN−1
2 B21 AN−2

2 B21 . . . B21




u1(0)
u1(1)

...
u1(N − 1)

+


B22

A2B22 B22

...
...

. . .

AN−1
2 B22 AN−2

2 B22 . . . B22




u2(0)
u2(1)

...
u2(N − 1)


Using more compact notation, we have

x2 =A2x2(0)+B21u1 +B22u2

We can use this relation to replace the cost contribution of x2 with
linear and quadratic terms in u1 as follows

N−1∑
k=0

x2(k)′Q2x2(k)+ x2(N)′P2fx2(N) =

u′1
[
B′21Q2B21

]
u1 + 2

[
x2(0)′A′2 + u′2B′22

]
Q2B21 u1 + constant

in which

Q2 = diag
([
Q2 Q2 . . . P2f

])
Nn2 ×Nn2 matrix
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and the constant term contains products of x2(0) and u2, which are
constant with respect to player one’s decision variables and can there-
fore be neglected.

Next we insert the new terms created by eliminating x2 into the cost
function. Assembling the cost function gives

min
z
(1/2)z′H̃z+ h′z

s.t. Dz = d

and (1.58) again gives the necessary and sufficient conditions for the
optimal solution[
H̃ −D′
−D 0

][
z
λ

]
=
[

0

−Ã1

]
x1(0)+

[
−Ã2

0

]
x2(0)+

[
−B̃22

−B̃12

]
u2 (6.13)

in which

H̃ = H + E′B′21Q2B21E B̃22 = E′B′21Q2B22 Ã2 = E′B′21Q2A2

E = IN ⊗
[
Im1 0m1,n1

]
See also Exercise 6.13 for details on constructing the padding matrix E.
Comparing the cooperative and noncooperative dynamic games, (6.13)
and (6.12), we see the cooperative game has made three changes: (i)
the quadratic penalty H has been modified, (ii) the effect of x2(0) has
been included with the term Ã2, and (iii) the influence of u2 has been
modified with the term B̃22. Notice that the size of the vector z has not
changed, and we have accomplished the goal of keeping player one’s
dynamic model in the cooperative game the same size as his dynamic
model in the noncooperative game.

Regardless of the implementation choice, the cooperative optimal
control problem is no more complex than the noncooperative game con-
sidered previously. The extra information required by player one in the
cooperative game is x2(0). Player one requires u2 in both the cooper-
ative and noncooperative games. Only in decentralized control does
player one not require player two’s input sequence u2. The other ex-
tra required information, A2, B21,Q2, R2, P2f , are fixed parameters and
making their values available to player one is a minor communication
overhead.

Proceeding as before, we solve this equation for z0 and pick out the
rows corresponding to the elements of u0

1 giving

u0
1(x(0),u2) =

[
K11 K12

][x1(0)
x2(0)

]
+ L1u2
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Combining the optimal control laws for each player gives[
u0

1

u0
2

]
=
[
K11 K12

K21 K22

][
x1(0)
x2(0)

]
+
[

0 L1

L2 0

][
u1

u2

]p
in which the gain matrix multiplying the state is a full matrix for the
cooperative game. Substituting the optimal control into the iteration
gives[

u1

u2

]p+1

=
[
w1K11 w1K12

w2K21 w2K22

]
︸ ︷︷ ︸

K

[
x1(0)
x2(0)

]
+
[
(1−w1)I w1L1

w2L2 (1−w2)I

]
︸ ︷︷ ︸

L

[
u1

u2

]p

Finally writing this equation in the plantwide notation, we express the
iteration as

up+1 = Kx(0)+ Lup

Exponential stability of the closed-loop system. In the case of coop-
erative control, we consider the closed-loop system with a finite number
of iterations, p. With finite iterations, distributed MPC becomes a form
of suboptimal MPC as discussed in Sections 6.1.2 and 2.8. To analyze
the behavior of the cooperative controller with a finite number of it-
erations, we require the cost decrease achieved by a single iteration,
which we derive next. First we write the complete system evolution as
in (6.10)

x+ = Ax + Bu
in which A and B are defined in (6.11). We can then use (6.3) to express
the overall cost function

V(x(0),u) = (1/2)x′(0)(Q+A′QA)x(0)+ u′(B′QA)x(0)+
(1/2)u′Huu

in which A and B are given in (6.1), the cost penalties Q and R are
given in (6.2) and (6.9), and

Hu = B′QB+R

The overall cost is a positive definite quadratic function in u because
R1 and R2 are positive definite, and therefore so are R1, R2, and R.

The iteration in the two players’ moves satisfies

(up+1
1 ,up+1

2 ) =
(
(w1u0

1 + (1−w1)u
p
1 ), (w2u0

2 + (1−w2)u
p
2 )
)

= (w1u0
1, (1−w2)u

p
2 )+ ((1−w1)u

p
1 ,w2u0

2)

(up+1
1 ,up+1

2 ) = w1(u0
1,u

p
2 )+w2(u

p
1 ,u

0
2) (6.14)
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Exercise 6.18 analyzes the cost decrease for a convex step with a posi-
tive definite quadratic function and shows

V(x(0),up+1
1 ,up+1

2 ) = V(x(0),up1 ,u
p
2 )

− 1
2

[
up − u0(x(0))

]′
P
[
up − u0(x(0))

]
(6.15)

in which P > 0 is given by

P = HuD−1H̃D−1Hu H̃ = D −N

D =
[
w−1

1 Hu,11 0
0 w−1

2 Hu,22

]
N =

[
−w−1

1 w2Hu,11 Hu,12

Hu,21 −w1w−1
2 Hu,22

]
and Hu is partitioned for the two players’ input sequences. Notice that
the cost decrease achieved in a single iteration is quadratic in the dis-
tance from the optimum. An important conclusion is that each iter-
ation in the cooperative game reduces the systemwide cost. This cost
reduction is the key property that gives cooperative MPC its excellent
convergence properties, as we show next.

The two players’ warm starts at the next sample are given by

ũ
+
1 = {u1(1),u1(2), . . . , u1(N − 1),0}

ũ
+
2 = {u2(1),u2(2), . . . , u2(N − 1),0}

We define the following linear time-invariant functions gp1 and gp2 as
the outcome of applying the control iteration procedure p times

up1 = g
p
1 (x1, x2,u1,u2)

up2 = g
p
2 (x1, x2,u1,u2)

in which p ≥ 0 is an integer, x1 and x2 are the states, and u1,u2 are the
input sequences from the previous sample, used to generate the warm
start for the iteration. Here we consider p to be constant with time, but
Exercise 6.20 considers the case in which the controller iterations may
vary with sample time. The system evolution is then given by

x+1 = A1x1 + B11u1 + B12u2 x+2 = A2x2 + B21u1 + B22u2

u+1 = g
p
1 (x1, x2,u1,u2) u+2 = g

p
2 (x1, x2,u1,u2) (6.16)

By the construction of the warm start, ũ
+
1 , ũ

+
2 , we have

V(x+1 , x
+
2 , ũ

+
1 , ũ

+
2 ) = V(x1, x2,u1,u2)− ρ1`1(x1, u1)− ρ2`2(x2, u2)

+(1/2)ρ1x1(N)′
[
A′1P1fA1 − P1f +Q1

]
x1(N)

+(1/2)ρ2x2(N)′
[
A′2P2fA2 − P2f +Q2

]
x2(N)
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From our choice of terminal penalty satisfying (6.8), the last two terms
are zero giving

V(x+1 , x
+
2 , ũ

+
1 , ũ

+
2 ) = V(x1, x2,u1,u2)

− ρ1`1(x1, u1)− ρ2`2(x2, u2) (6.17)

No optimization, p = 0. If we do no further optimization, then we
have u+1 = ũ

+
1 , u+2 = ũ

+
2 , and the equality

V(x+1 , x
+
2 ,u

+
1 ,u

+
2 ) = V(x1, x2,u1,u2)− ρ1`1(x1, u1)− ρ2`2(x2, u2)

The input sequences add a zero at each sample until u1 = u2 = 0 at
time k = N. The system decays exponentially under zero control and
the closed loop is exponentially stable.

Further optimization, p ≥ 1. We next consider the case in which
optimization is performed. Equation 6.15 then gives

V(x+1 , x
+
2 ,u

+
1 ,u

+
2 ) ≤ V(x+1 , x+2 , ũ

+
1 , ũ

+
2 )−[

ũ
+ − u0(x+)

]′
P
[
ũ
+ − u0(x+)

]
p ≥ 1

with equality holding for p = 1. Using this result in (6.17) gives

V(x+1 , x
+
2 ,u

+
1 ,u

+
2 ) ≤ V(x1, x2,u1,u2)− ρ1`1(x1, u1)− ρ2`2(x2, u2)

−
[
ũ
+ − u0(x+)

]′
P
[
ũ
+ − u0(x+)

]
Since V is bounded below by zero and `1 and `2 are positive func-
tions, we conclude the time sequenceV(x1(k), x2(k),u1(k),u2(k)) con-
verges. and therefore x1(k), x2(k), u1(k), and u2(k) converge to zero.
Moreover, since P > 0, the last term implies that ũ

+
converges to

u0(x+), which converges to zero because x+ converges to zero. There-
fore, the entire input sequence u converges to zero. Because the total
system evolution is a linear time-invariant system, the convergence is
exponential. Even though we are considering here a form of subopti-
mal MPC, we do not require an additional inequality constraint on u
because the problem considered here is unconstrained and the itera-
tions satisfy (6.15).

6.2.5 Tracking Nonzero Setpoints

For tracking nonzero setpoints, we compute steady-state targets as dis-
cussed in Section 1.5. The steady-state input-output model is given by

ys = Gus G = C(I −A)−1B
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in which G is the steady-state gain of the system. The two subsystems
are denoted [

y1s
y2s

]
=
[
G11 G12

G21 G22

][
u1s
u2s

]
For simplicity, we assume that the targets are chosen to be the mea-
surements (H = I). Further, we assume that both local systems are
square, and that the local targets can be reached exactly with the local
inputs. This assumption means that G11 and G22 are square matrices
of full rank. We remove all of these assumptions when we treat the con-
strained two-player game in the next section. If there is model error,
integrating disturbance models are required as discussed in Chapter 1.
We discuss these later.

The target problem also can be solved with any of the four ap-
proaches discussed so far. We consider each.

Centralized case. The centralized problem gives in one shot both in-
puts required to meet both output setpoints

us = G−1ysp

ys = ysp

Decentralized case. The decentralized problem considers only the
diagonal terms and computes the following steady inputs

us =
[
G−1

11

G−1
22

]
ysp

Notice these inputs produce offset in both output setpoints

ys =
[

I G12G−1
22

G21G−1
11 I

]
ysp

Noncooperative case. In the noncooperative game, each player at-
tempts to remove offset in only its outputs. Player one solves the fol-
lowing problem

min
u1
(y1 −y1sp)′Q1(y1 −y1sp)

s.t. y1 = G11u1 +G12u2

Because the target can be reached exactly, the optimal solution is to
find u1 such that y1 = y1sp, which gives

u0
1s = G−1

11

(
y1sp −G12u

p
2

)
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Player two solves the analogous problem. If we iterate on the two play-
ers’ solutions, we obtain[

u1s
u2s

]p+1

=
[
w1G−1

11

w2G−1
22

]
︸ ︷︷ ︸

Ks

[
y1sp
y2sp

]
+

[
w2I −w1G−1

11G12

−w2G−1
22G21 w1I

]
︸ ︷︷ ︸

Ls

[
u1s
u2s

]p

This iteration can be summarized by

up+1
s = Ksysp + Lsups

If Ls is stable, this iteration converges to

u∞s = (I − Ls)−1Ksysp

u∞s = G−1ysp

and we have no offset. We already have seen that we cannot expect
the dynamic noncooperative iteration to converge. The next several
examples explore the issue of whether we can expect at least the steady-
state iteration to be stable.

Cooperative case. In the cooperative case, both players work on min-
imizing the offset in both outputs. Player one solves

min
u1
(1/2)

[
y1 −y1sp
y2 −y2sp

]′ [
ρ1Q1

ρ2Q2

][
y1 −y1sp
y2 −y2sp

]

s.t.

[
y1

y2

]
=
[
G11

G21

]
u1 +

[
G12

G22

]
u2

We can write this in the general form

min
rs
(1/2)r ′sHrs + h′rs

s.t. Drs = d

in which

rs =

y1s
y2s
u1s

 H =

ρ1Q1

ρ2Q2

0

 h =
[
−Qysp

0

]

D =
[
I −G1

]
d = G2u2 G1 =

[
G11

G12

]
G2 =

[
G12

G22

]
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We can then solve the linear algebra problem[
H −D′
−D 0

][
rs
λs

]
= −

[
h
d

]

and identify the linear gains between the optimal u1s and the setpoint
ysp and player two’s input u2s

u0
1s = K1sysp + L1su

p
2s

Combining the optimal control laws for each player gives[
u0

1s
u0

2s

]
=
[
K1s
K2s

]
ysp +

[
0 L1s
L2s 0

][
u1s
u2s

]p

Substituting the optimal control into the iteration gives[
u1s
u2s

]p+1

=
[
w1K1s
w2K2s

]
︸ ︷︷ ︸

Ks

ysp +
[
(1−w1)I w1L1s
w2L2s (1−w2)I

]
︸ ︷︷ ︸

Ls

[
u1s
u2s

]p

Finally writing this equation in the plantwide notation, we express the
iteration as

up+1
s = Ksysp + Lsups

As we did with the cooperative regulation problem, we can analyze the
optimization problem to show that this iteration is always stable and
converges to the centralized target. Next we explore the use of these
approaches in some illustrative examples.

Example 6.11: Stability and offset in the distributed target calcula-
tion

Consider the following two-input, two-output system with steady-state
gain matrix and setpoint[

y1s
y2s

]
=
[
−0.5 1.0
2.0 1.0

][
u1s
u2s

] [
y1sp
y2sp

]
=
[

1
1

]

(a) Show the first 10 iterations of the noncooperative and cooperative
steady-state cases starting with the decentralized solution as the
initial guess.
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Describe the differences. Compute the eigenvalues of L for the
cooperative and noncooperative cases. Discuss the relationship
between these eigenvalues and the result of the iteration calcula-
tions.

Mark also the solution to the centralized and decentralized cases
on your plots.

(b) Switch the pairings and repeat the previous part. Explain your
results.

Solution

(a) The first 10 iterations of the noncooperative steady-state calcu-
lation are shown in Figure 6.2. Notice the iteration is unstable
and the steady-state target does not converge. The cooperative
case is shown in Figure 6.3. This case is stable and the iterations
converge to the centralized target and achieve zero offset. The
magnitudes of the eigenvalues of Ls for the noncooperative (nc)
and cooperative (co) cases are given by∣∣eig(Lsnc)

∣∣ = {1.12,1.12}
∣∣eig(Lsco)

∣∣ = {0.757,0.243}

Stability of the iteration is determined by the magnitudes of the
eigenvalues of Ls .

(b) Reversing the pairings leads to the following gain matrix in which
we have reversed the labels of the outputs for the two systems[

y1s
y2s

]
=
[

2.0 1.0
−0.5 1.0

][
u1s
u2s

]

The first 10 iterations of the noncooperative and cooperative games
are shown in Figures 6.4 and 6.5. For this pairing, the noncoopera-
tive case also converges to the centralized target. The eigenvalues
are given by∣∣eig(Lsnc)

∣∣ = {0.559,0.559}
∣∣eig(Lsco)

∣∣ = {0.757,0.243}

The eigenvalues of the cooperative case are unaffected by the re-
versal of pairings. �

Given the stability analysis of the simple unconstrained two-player
game, we remove from further consideration two options we have been
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Figure 6.2: Ten iterations of the noncooperative steady-state calcu-
lation, u[0] = ude; iterations are unstable, up →∞.
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Figure 6.3: Ten iterations of the cooperative steady-state calculation,
u[0] = ude; iterations are stable, up → uce.
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Figure 6.4: Ten iterations of the noncooperative steady-state calcu-
lation, u[0] = ude; iterations are now stable with reversed
pairing.
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Figure 6.5: Ten iterations of the cooperative steady-state calculation,
u[0] = ude; iterations remain stable with reversed pair-
ing.
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discussing to this point: noncooperative control and decentralized con-
trol. We next further develop the theory of cooperative MPC and com-
pare its performance to centralized MPC in more general and challeng-
ing situations.

6.2.6 State Estimation

Given output measurements, we can express the state estimation prob-
lem also in distributed form. Player one uses local measurements of
y1 and knowledge of both inputs u1 and u2 to estimate state x1

x̂+1 = A1x̂1 + B11u1 + B12u2 + L1(y1 − C1x̂1)

Defining estimate error to be e1 = x1 − x̂1 gives

e+1 = (A1 − L1C1)e1

Because all the subsystems are stable, we know L1 exists so that A1 −
L1C1 is stable and player one’s local estimator is stable. The estimate
error for the two subsystems is then given by[

e1

e2

]+
=
[
AL1

AL2

][
e1

e2

]
(6.18)

in which ALi = Ai − LiCi.

Closed-Loop Stability. The dynamics of the estimator are given by

[
x̂1

x̂2

]+
=
[
A1

A2

][
x̂1

x̂2

]
+
[
B11 B12

B21 B22

][
u1

u2

]
+[
L1C1

L2C2

][
e1

e2

]

In the control law we use the state estimate in place of the state, which
is unmeasured and unknown. We consider two cases.

Converged controller. In this case the distributed control law con-
verges to the centralized controller, and we have[

u1

u2

]
=
[
K11 K12

K21 K22

][
x̂1

x̂2

]
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The closed-loop system evolves according to

[
x̂1

x̂2

]+
=
{[
A1

A2

]
+
[
B11 B12

B21 B22

][
K11 K12

K21 K22

]}[
x̂1

x̂2

]
+[

L1C1

L2C2

][
e1

e2

]

TheA+BK term is stable because this term is the same as in the stabiliz-
ing centralized controller. The perturbation is exponentially decaying
because the distributed estimators are stable. Therefore x̂ goes to zero
exponentially, which, along with e going to zero exponentially, implies
x goes to zero exponentially.

Finite iterations. Here we use the state plus input sequence descrip-
tion given in (6.16), which, as we have already noted, is a linear time-
invariant system. With estimate error, the system equation is

x̂+1
x̂+2
u+1
u+2

 =

A1x̂1 + B11u1 + B12u2

A2x̂2 + B21u1 + B22u2

gp1 (x̂1, x̂2,u1,u2)
gp2 (x̂1, x̂2,u1,u2)

+

L1C1e1

L2C2e2

0
0


Because there is again only one-way coupling between the estimate er-
ror evolution, (6.18), and the system evolution given above, the com-
posite system is exponentially stable.

6.3 Constrained Two-Player Game

Now that we have introduced most of the notation and the fundamen-
tal ideas, we consider more general cases. Because we are interested
in establishing stability properties of the controlled systems, we focus
exclusively on cooperative distributed MPC from this point forward. In
this section we consider convex input constraints on the two players.
We assume output constraints have been softened with exact soft con-
straints and added to the objective function, so do not consider output
constraints explicitly. The input constraints break into two significant
categories: coupled and uncoupled constraints. We treat each of these
in turn.

We also allow unstable systems and replace Assumption 6.7 with
the following more general restrictions on the systems and controller
parameters.
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Assumption 6.12 (Constrained two-player game).

(a) The systems (Ai, Bi), i = 1,2 are stabilizable, in whichAi = diag(A1i, A2i)
and Bi =

[
B1i
B2i

]
.

(b) The systems (Ai, Ci), i = 1,2 are detectable.

(c) The input penalties R1, R2 are positive definite, and the state penal-
ties Q1,Q2 are semidefinite.

(d) The systems (A1,Q1) and (A2,Q2) are detectable.

(e) The horizon is chosen sufficiently long to zero the unstable modes,
N ≥ maxi∈I1:2 n

u
i , in which nui is the number of unstable modes of Ai,

i.e., number of λ ∈ eig(Ai) such that |λ| ≥ 1.

Assumption (b) implies that we have Li such that (Ai−LiCi), i = 1,2
is stable. Note that the stabilizable and detectable conditions of As-
sumption 6.12 are automatically satisfied if we obtain the state space
models from a minimal realization of the input/output models for
(ui, yj), i, j = 1,2.

Unstable modes. To handle unstable systems, we add constraints to
zero the unstable modes at the end of the horizon. To set up this
constraint, consider the real Schur decomposition of Aij for i, j ∈ I1:2

Aij =
[
Ssij Suij

][Asij −
Auij

][
Ssij
′

Suij
′

]
(6.19)

in which Asij is upper triangular and stable, and Auij is upper triangular

with all unstable eigenvalues.3 Given the Schur decomposition (6.19),
we define the matrices

Ssi = diag(Ssi1, S
s
i2) Asi = diag(Asi1, A

s
i2) i ∈ I1:2

Sui = diag(Sui1, S
u
i2) Aui = diag(Aui1, A

u
i2) i ∈ I1:2

These matrices satisfy the Schur decompositions

Ai =
[
Ssi Sui

][Asi −
Aui

][
Ssi
′

Sui
′

]
i ∈ I1:2

We further define the matrices Σ1,Σ2 as the solutions to the Lyapunov
equations

As1
′Σ1As1 − Σ1 = −Ss1

′Q1Ss1 As2
′Σ2As2 − Σ2 = −Ss2

′Q2Ss2 (6.20)

3If Aij is stable, then there is no Auij and Suij .
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We then choose the terminal penalty for each subsystem to be the cost
to go under zero control

P1f = Ss1Σ1Ss1
′ P2f = Ss2Σ2Ss2

′

6.3.1 Uncoupled Input Constraints

We consider convex input constraints of the following form

Hu(k) ≤ h k = 0,1, . . . ,N

Defining convex set U

U = {u|Hu ≤ h}

we express the input constraints as

u(k) ∈ U k = 0,1, . . . ,N

We drop the time index and indicate the constraints are applied over
the entire input sequence using the notation u ∈ U. In the uncoupled
constraint case, the two players’ inputs must satisfy

u1 ∈ U1 u2 ∈ U2

in which U1 and U2 are convex subsets of Rm1 and Rm2 , respectively.
The constraints are termed uncoupled because there is no interaction
or coupling of the inputs in the constraint relation. Player one then
solves the following constrained optimization

min
u1
V(x1(0), x2(0),u1,u2)

s.t.

[
x1

x2

]+
=
[
A1 0
0 A2

][
x1

x2

]
+
[
B11

B21

]
u1 +

[
B12

B22

]
u2

u1 ∈ U1

Suj1
′xj1(N) = 0 j ∈ I1:2

|u1| ≤ d1(|x11(0)| + |x21(0)|) x11(0), x21(0) ∈ rB

in which we include the system’s hard input constraints, the stabil-
ity constraint on the unstable modes, and the Lyapunov stability con-
straints. Exercise 6.22 discusses how to write the constraint |u1| ≤
d1 |x1(0)| as a set of linear inequalities on u1. Similarly, player two
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solves

min
u2
V(x1(0), x2(0),u1,u2)

s.t.

[
x1

x2

]+
=
[
A1 0
0 A2

][
x1

x2

]
+
[
B11

B21

]
u1 +

[
B12

B22

]
u2

u2 ∈ U2

Suj2
′xj2(N) = 0 j ∈ I1:2

|u2| ≤ d2(|x21(0)| + |x22(0)|) x12(0), x22(0) ∈ rB

We denote the solutions to these problems as

u0
1(x1(0), x2(0),u2) u0

2(x1(0), x2(0),u1)

The feasible setXN for the unstable system is the set of states for which
the unstable modes can be brought to zero in N moves while satisfying
the input constraints.

Given an initial iterate, (up1 ,u
p
2 ), the next iterate is defined to be

(u1,u2)p+1 = w1(u0
1(x1(0), x2(0),u

p
2 ),u

p
2 )+

w2(u
p
1 ,u

0
2(x1(0), x2(0),u

p
1 ))

To reduce the notational burden we denote this as

(u1,u2)p+1 = w1(u0
1,u

p
2 )+w2(u

p
1 ,u

0
2)

and the functional dependencies of u0
1 and u0

2 should be kept in mind.
This procedure provides three important properties, which we es-

tablish next.

1. The iterates are feasible: (u1,u2)p ∈ (U1,U2) implies (u1,u2)p+1 ∈
(U1,U2). This follows from convexity of U1, U2 and the convex
combination of the feasible points (up1 ,u

p
2 ) and (u0

1,u
0
2) to make

(u1,u2)p+1.

2. The cost decreases on iteration: V(x1(0), x2(0), (u1,u2)p+1) ≤
V(x1(0), x2(0), (u1,u2)p) for all x1(0), x2(0), and for all feasible
(u1,u2)p ∈ (U1,U2). The systemwide cost satisfies the following
inequalities

V(x(0),up+1
1 ,up+1

2 ) = V
(
x(0),

(
w1(u0

1,u
p
2 )+w2(u

p
1 ,u

0
2)
))

≤ w1V(x(0), (u0
1,u

p
2 ))+w2V(x(0), (u

p
1 ,u

0
2))

≤ w1V(x(0), (u
p
1 ,u

p
2 ))+w2V(x(0), (u

p
1 ,u

p
2 ))

= V(x(0),up1 ,u
p
2 )
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The first equality follows from (6.14). The next inequality follows
from convexity of V . The next follows from optimality of u0

1 and
u0

2, and the last follows from w1 + w2 = 1. Because the cost is
bounded below, the cost iteration converges.

3. The converged solution of the cooperative problem is equal to
the optimal solution of the centralized problem. Establishing this
property is discussed in Exercise 6.26.

Exponential stability of the closed-loop system. We next consider
the closed-loop system. The two players’ warm starts at the next sam-
ple are as defined previously

ũ
+
1 = {u1(1),u1(2), . . . , u1(N − 1),0}

ũ
+
2 = {u2(1),u2(2), . . . , u2(N − 1),0}

We define again the functions gp1 , gp2 as the outcome of applying the
control iteration procedure p times

up1 = g
p
1 (x1, x2,u1,u2)

up2 = g
p
2 (x1, x2,u1,u2)

The important difference between the previous unconstrained and this
constrained case is that the functions gp1 , gp2 are nonlinear due to the
input constraints. The system evolution is then given by

x+1 = A1x1 + B11u1 + B12u2 x+2 = A2x2 + B21u1 + B22u2

u+1 = g
p
1 (x1, x2,u1,u2) u+2 = g

p
2 (x1, x2,u1,u2)

We have the following cost using the warm start at the next sample

V(x+1 , x
+
2 , ũ

+
1 , ũ

+
2 ) = V(x1, x2,u1,u2)− ρ1`1(x1, u1)− ρ2`2(x2, u2)

+(1/2)ρ1x1(N)′
[
A′1P1fA1 − P1f +Q1

]
x1(N)

+(1/2)ρ2x2(N)′
[
A′2P2fA2 − P2f +Q2

]
x2(N)

Using the Schur decomposition (6.19) and the constraints Suji
′xji(N) =

0 for i, j ∈ I1:2, the last two terms can be written as

(1/2)ρ1x1(N)′Ss1
[
As1
′Σ1As1 − Σ1 + Ss1

′Q1Ss1
]
Ss1
′x1(N)

+(1/2)ρ2x2(N)′Ss2
[
As2
′Σ2As2 − Σ2 + Ss2

′Q2Ss2
]
Ss2
′x2(N)
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These terms are zero because of (6.20). Using this result and applying
the iteration for the controllers gives

V(x+1 , x
+
2 ,u

+
1 ,u

+
2 ) ≤ V(x1, x2,u1,u2)− ρ1`1(x1, u1)− ρ2`2(x2, u2)

The Lyapunov stability constraints give (see also Exercise 6.28)

|(u1,u2)| ≤ 2 max(d1, d2) |(x1, x2)| (x1, x2) ∈ rB

Given the cost decrease and this constraint on the size of the input
sequence, we satisfy the conditions of Lemma 6.4, and conclude the
solution x(k) = 0 for all k is exponentially stable on all of XN if either
XN is compact or U is compact.

6.3.2 Coupled Input Constraints

By contrast, in the coupled constraint case, the constraints are of the
form

H1u1 +H2u2 ≤ h or (u1,u2) ∈ U (6.21)

These constraints represent the players sharing some common resource.
An example would be different subsystems in a chemical plant drawing
steam or some other utility from a single plantwide generation plant.
The total utility used by the different subsystems to meet their control
objectives is constrained by the generation capacity.

The players solve the same optimization problems as in the un-
coupled constraint case, with the exception that both players’ input
constraints are given by (6.21). This modified game provides only two
of the three properties established for the uncoupled constraint case.
These are

1. The iterates are feasible: (u1,u2)p ∈ U implies (u1,u2)p+1 ∈ U.
This follows from convexity of U and the convex combination of
the feasible points (up1 ,u

p
2 ) and (u0

1,u
0
2) to make (u1,u2)p+1.

2. The cost decreases on iteration: V(x1(0), x2(0), (u1,u2)p+1) ≤
V(x1(0), x2(0), (u1,u2)p) for all x1(0), x2(0), and for all feasible
(u1,u2)p ∈ U. The systemwide cost satisfies the same inequalities
established for the uncoupled constraint case giving

V(x(0),up+1
1 ,up+1

2 ) ≤ V(x(0),up1 ,u
p
2 )

Because the cost is bounded below, the cost iteration converges.
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u1

uce

u2

U

up cost decrease for player one

cost decrease for player two

Figure 6.6: Cooperative control stuck on the boundary of U under
coupled constraints; up+1 = up ≠ uce.

The converged solution of the cooperative problem is not equal to the
optimal solution of the centralized problem, however. We have lost
property 3 of the uncoupled case. To see how the convergence property
is lost, consider Figure 6.6. Region U is indicated by the triangle and its
interior. Consider point up on the boundary of U. Neither player one
nor player two can improve upon the current point up so the iteration
has converged. But the converged point is clearly not the optimal point,
uce.

Because of property 2, the nominal stability properties for the cou-
pled and uncoupled cases are identical. The differences arise when the
performance of cooperative control is compared to the benchmark of
centralized control. Improving the performance of cooperative con-
trol in the case of coupled constraints is therefore a topic of current
research. Current approaches include adding another player to the
game, whose sole objective is to parcel out the coupled resource to the
other players in a way that achieves optimality on iteration. This ap-
proach also makes sense from an engineering perspective because it
is commonplace to design a dedicated control system for managing a
shared resource such as steam or power among many plant units. The
design of this single unit’s control system is a reasonably narrow and
well defined task compared to the design of a centralized controller for
the entire plant.
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6.3.3 Exponential Stability with Estimate Error

Consider next the constrained system evolution with estimate errorx̂+u+

e+

 =
Ax̂ + B1u1 + B2u2 + Le

gp(x̂,u)
ALe

 (6.22)

The estimate error is globally exponentially stable so we know from
Lemma 6.6 that there exists a Lipschitz continuous Lyapunov function
J(·) such that for all e ∈ Rn

a |e| ≤ J(e) ≤ b |e|
J(e+)− J(e) ≤ −c |e|

in which b > 0, a > 0, and we can choose constant c > 0 as large
as desired. In the subsequent development, we require this Lyapunov
function to be based on the first power of the norm rather than the
usual square of the norm to align with Lipschitz continuity of the Lya-
punov function. From the stability of the solution x(k) = 0 for all k for
the nominal system, the cost function V(x̂,u) satisfies for all x̂ ∈ XN ,
u ∈ UN

ã |(x̂,u)|2 ≤ V(x̂,u) ≤ b̃ |(x̂,u)|2

V(Ax̂ + B1u1 + B2u2,u+)− V(x̂,u) ≤ −c̃ |x̂|2

|u| ≤ d |x̂| x̂ ∈ r̃B

in which ã, b̃, c̃, r̃ > 0. We propose W(x̂,u, e) = V(x̂,u) + J(e) as a
Lyapunov function candidate for the perturbed system. We next derive
the required properties ofW(·) to establish exponential stability of the
solution (x(k), e(k)) = 0. From the definition of W(·) we have for all
(x̂,u, e) ∈ XN × UN ×Rn

ã |(x̂,u)|2 + a |e| ≤ W(x̂,u, e) ≤ b̃ |(x̂,u)|2 + b |e|
a(|(x̂,u)|2 + |e|) ≤ W(x̂,u, e) ≤ b(|(x̂,u)|2 + |e|) (6.23)

in which a = min(ã, a) > 0, b = max(b̃, b). Next we compute the cost
change

W(x̂+,u+, e+)−W(x̂,u, e) = V(x̂+,u+)− V(x̂,u)+ J(e+)− J(e)

The Lyapunov function V is quadratic in (x,u) and therefore Lipschitz
continuous on bounded sets. Therefore, for all x̂, u1, u2,u+, e in some
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bounded set,∣∣∣V(Ax̂ + B1u1 + B2u2 + Le,u+)− V(Ax̂ + B1u1 + B2u2,u+)
∣∣∣ ≤ LV |Le|

in which LV is the Lipschitz constant for V with respect to its first
argument. Using the system evolution we have

V(x̂+,u+) ≤ V(Ax̂ + B1u1 + B2u2,u+)+ L′V |e|
in which L′V = LV |L|. Subtracting V(x̂,u) from both sides gives

V(x̂+,u+)− V(x̂,u) ≤ −c̃ |x̂|2 + L′V |e|
Substituting this result into the equation for the change in W gives

W(x̂+,u+, e+)−W(x̂,u, e) ≤ −c̃ |x̂|2 + L′V |e| − c |e|
≤ −c̃ |x̂|2 − (c − L′V ) |e|

W(x̂+,u+, e+)−W(x̂,u, e) ≤ −c(|x̂|2 + |e|) (6.24)

in which we choose c > L′V , which is possible because we may choose
c as large as we wish, and c = min(c̃, c − L′V ) > 0. Notice this step is
what motivated using the first power of the norm in J(·). Lastly, we
require the constraint

|u| ≤ d |x̂| x̂ ∈ r̃B (6.25)

Lemma 6.13 (Exponential stability of perturbed system). If either XN
or U is compact, the origin for the state plus estimate error (x, e) is ex-
ponentially stable for system (6.22) under cooperative distributed MPC.

The proof is based on the properties (6.23), (6.24) and (6.25) of func-
tion W(x̂,u, e) and is similar to the proof of Lemma 6.4. The region
of attraction is the set of states and initial estimate errors for which
the unstable modes of the two subsystems can be brought to zero in N
moves while satisfying the respective input constraints. If both subsys-
tems are stable, for example, the region of attraction is (x, e) ∈ XN×Rn.

6.3.4 Disturbance Models and Zero Offset

Integrating disturbance model. As discussed in Chapter 1, we model
the disturbance with an integrator to remove steady offset. The aug-
mented models for the local systems are[

xi
di

]+
=
[
Ai Bdi
0 I

][
xi
di

]
+
[
Bi1
0

]
u1 +

[
Bi2
0

]
u2

yi =
[
Ci Cdi

][xi
di

]
i = 1,2
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We wish to estimate both xi and di from measurements yi. To ensure
this goal is possible, we make the following restriction on the distur-
bance models

Assumption 6.14 (Disturbance models).

rank

[
I −Ai −Bdi
Ci Cdi

]
= ni + pi i = 1,2

It is always possible to satisfy this assumption by proper choice of
Bdi, Cdi. From Assumption 6.12 (b), (Ai, Ci) is detectable, which implies
that the first ni columns of the square (ni + pi) × (ni + pi) matrix in
Assumption 6.14 are linearly independent. Therefore the columns of[
−Bdi
Cdi

]
can be chosen so that the entire matrix has rank ni + pi. As-

sumption 6.14 is equivalent to detectability of the following augmented
system.

Lemma 6.15 (Detectability of distributed disturbance model). Consider
the augmented systems

Ãi =
[
Ai Bdi
0 I

]
C̃i =

[
Ci Cdi

]
i = 1,2

The augmented systems (Ãi, C̃i), i = 1,2 are detectable if and only if
Assumption 6.14 is satisfied.

Proving this lemma is discussed in Exercise 6.29. The detectabil-
ity assumption then establishes the existence of L̃i such that (Ãi −
L̃iC̃i), i = 1,2 are stable and the local integrating disturbances can be
estimated from the local measurements.

Centralized target problem. We can solve the target problem at the
plantwide level or as a distributed target problem at the subunit con-
troller level. Consider first the centralized target problem with the dis-
turbance model discussed in Chapter 1, (1.46)

min
xs ,us

1
2

∣∣us −usp
∣∣2
Rs +

1
2

∣∣∣Cxs + Cdd̂(k)−ysp

∣∣∣2

Qs

subject to: [
I −A −B
HC 0

][
xs
us

]
=
[

Bdd̂(k)
rsp −HCdd̂(k)

]
Eus ≤ e
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in which we have removed the state inequality constraints to be consis-
tent with the regulator problem. We denote the solution to this prob-
lem (xs(k),us(k)). Notice first that the solution of the target problem
depends only on the disturbance estimate, d̂(k), and not the solution
of the control problem. So we can analyze the behavior of the target
by considering only the exponential convergence of the estimator. We
restrict the plant disturbance d so that the target problem is feasible,
and denote the solution to the target problem for the plant disturbance,
d̂(k) = d, as (x∗s , u∗s ). Because the estimator is exponentially stable, we
know that d̂(k)→ d as k→∞. Because the target problem is a positive
definite QP, we know the solution is Lipschitz continuous on bounded
sets in the term d̂(k), which appears linearly in the objective function
and the right-hand side of the equality constraint. Therefore, if we also
restrict the initial disturbance estimate error so that the target problem
remains feasible for all time, we know (xs(k),us(k)) → (x∗s , u∗s ) and
the rate of convergence is exponential.

Distributed target problem. Consider next the cooperative approach,
in which we assume the input inequality constraints are uncoupled. In
the constrained case, we try to set things up so each player solves a
local target problem

min
x1s ,u1s

1
2

[
y1s −y1sp
y2s −y2sp

]′ [
Q1s

Q2s

][
y1s −y1sp
y2s −y2sp

]
+

1
2

[
u1s −u1sp
u2s −u2sp

]′ [
R1s

R2s

][
u1s −u1sp
u2s −u2sp

]

subject to


I −A1 −B11 −B12

I −A2 −B21 −B22

H1C1

H2C2



x1s
x2s
u1s
u2s

 =


Bd1d̂1(k)
Bd2d̂2(k)

r1sp −H1Cd1d̂1(k)
r2sp −H2Cd2d̂2(k)


E1u1s ≤ e1

in which

y1s = C1x1s + Cd1d̂1(k) y2s = C2x2s + Cd2d̂2(k) (6.27)

But here we run into several problems. First, the constraints to ensure
zero offset in both players’ controlled variables are not feasible with
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only the u1s decision variables. We require also u2s , which is not avail-
able to player one. We can consider deleting the zero offset condition
for player two’s controlled variables, the last equality constraint. But
if we do that for both players, then the two players have different and
coupled equality constraints. That is a path to instability as we have
seen in the noncooperative target problem. To resolve this issue, we
move the controlled variables to the objective function, and player one
solves instead the following

min
x1s ,u1s

1
2

[
H1y1s − r1sp
H2y2s − r2sp

]′ [
T1s

T2s

][
H1y1s − r1sp
H2y2s − r2sp

]

subject to (6.27) and

[
I −A1 −B11 −B12

I −A2 −B21 −B22

]
x1s
x2s
u1s
u2s

 =
[
Bd1d̂1(k)
Bd2d̂2(k)

]

E1u1s ≤ e1 (6.28)

The equality constraints for the two players appear coupled when writ-
ten in this form. Coupled constraints admit the potential for the op-
timization to become stuck on the boundary of the feasible region,
and not achieve the centralized target solution after iteration to con-
vergence. But Exercise 6.30 discusses how to show that the equality
constraints are, in fact, uncoupled. Also, the distributed target prob-
lem as expressed here may not have a unique solution when there are
more manipulated variables than controlled variables. In such cases,
a regularization term using the input setpoint can be added to the ob-
jective function. The controlled variable penalty can be converted to a
linear penalty with a large penalty weight to ensure exact satisfaction
of the controlled variable setpoint.

If the input inequality constraints are coupled, however, then the
distributed target problem may indeed become stuck on the boundary
of the feasible region and not eliminate offset in the controlled vari-
ables. If the input inequality constraints are coupled, we recommend
using the centralized approach to computing the steady-state target.
As discussed above, the centralized target problem eliminates offset in
the controlled variables as long as it remains feasible given the distur-
bance estimates.
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Zero offset. Finally we establish the zero offset property. As de-
scribed in Chapter 1, the regulator is posed in deviation variables

x̃(k) = x̂(k)− xs(k) ũ(k) = u(k)−us(k) ũ = u−us(k)

in which the notation u − us(k) means to subtract us(k) from each
element of the u sequence. Player one then solves

min
ũ1

V(x̃1(0), x̃2(0), ũ1, ũ2)

s.t.

[
x̃1

x̃2

]+
=
[
A1 0
0 A2

][
x̃1

x̃2

]
+
[
B11

B21

]
ũ1 +

[
B12

B22

]
ũ2

ũ1 ∈ U1 	us(k)
S′1ux̃1(N) = 0∣∣ũ1
∣∣ ≤ d1

∣∣x̃1(0)
∣∣

Notice that because the input constraint is shifted by the input tar-
get, we must retain feasibility of the regulation problem by restrict-
ing also the plant disturbance and its initial estimate error. If the two
players’ regulation problems remain feasible as the estimate error con-
verges to zero, we have exponential stability of the zero solution from
Lemma 6.13. Therefore we conclude

(x̃(k), ũ(k))→ (0,0) Lemma 6.13

=⇒ (x̂(k),u(k))→ (xs(k),us(k)) definition of deviation variables

=⇒ (x̂(k),u(k))→ (x∗s , u∗s ) target problem convergence

=⇒ x(k)→ x∗s estimator stability

=⇒ r(k)→ rsp target equality constraint

and we have zero offset in the plant controlled variable r = Hy . The
rate of convergence of r(k) to rsp is also exponential. As we saw here,
this convergence depends on maintaining feasibility in both the target
problem and the regulation problem at all times.

6.4 Constrained M-Player Game

We have set up the constrained two-player game so that the approach
generalizes naturally to the M-player game. We do not have a lot of
work left to do to address this general case. Recall I1:M denotes the set
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of integers {1,2, . . . ,M}. We define the following systemwide variables

x(0) =


x1(0)
x2(0)

...
xM(0)

 u =


u1

u2
...

uM

 Bi =


B1i
B2i

...
BMi

 Bi =


B1i
B2i

...
BMi

 i ∈ I1:M

V(x(0),u) =
∑
j∈I1:M

ρjVj(xj(0),u)

Each player solves a similar optimization, so for i ∈ I1:M

min
ui
V(x(0),u)

s.t. x+ = Ax +
∑
j∈I1:M

Bjuj

ui ∈ Ui

Suji
′xji(N) = 0 j ∈ I1:M

|ui| ≤ di
∑
j∈I1:M

∣∣∣xji(0)∣∣∣ if xji(0) ∈ rB, j ∈ I1:M

This optimization can be expressed as a quadratic program, whose con-
straints and linear cost term depend affinely on parameterx. The warm
start for each player at the next sample is generated from purely local
information

ũ
+
i = {ui(1),ui(2), . . . , ui(N − 1),0} i ∈ I1:M

The controller iteration is given by

up+1 =
∑
j∈I1:M

wj
(

up1 , . . . ,u
0
j , . . . ,u

p
M

)

in which u0
i = u0

i

(
x(0),upj∈I1:M ,j≠i

)
. The plantwide cost function then

satisfies for any p ≥ 0

V(x+,u+) ≤ V(x,u)−
∑
j∈I1:M

ρj`j(xj , uj)

|u| ≤ d |x| x ∈ rB

For the M-player game, we generalize Assumption 6.12 of the two-
player game to the following.

Assumption 6.16 (Constrained M-player game).
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(a) The systems (Ai, Bi), i ∈ I1:M are stabilizable, in whichAi = diag(A1i, A2i, · · · , AMi).

(b) The systems (Ai, Ci), i ∈ I1:M are detectable.

(c) The input penalties Ri, i ∈ I1:M are positive definite, and Qi, i ∈ I1:M
are semidefinite.

(d) The systems (Ai,Qi), i ∈ I1:M are detectable.

(e) The horizon is chosen sufficiently long to zero the unstable modes;
N ≥ maxi∈I1:M (n

u
i ), in which nui is the number of unstable modes of

Ai.

(f) Zero offset. For achieving zero offset, we augment the models with
integrating disturbances such that

rank

[
I −Ai −Bdi
Ci Cdi

]
= ni + pi i ∈ I1:M

Applying Theorem 6.4 then establishes exponential stability of the
solution x(k) = 0 for all k. The region of attraction is the set of states
for which the unstable modes of each subsystem can be brought to zero
in N moves while satisfying the respective input constraints. These
conclusions apply regardless of how many iterations of the players’
optimizations are used in the control calculation. Although the closed-
loop system is exponentially stable for both coupled and uncoupled
constraints, the converged distributed controller is equal to the cen-
tralized controller only for the case of uncoupled constraints.

The exponential stability of the regulator implies that the states and
inputs of the constrainedM-player system converge to the steady-state
target. The steady-state target can be calculated as a centralized or
distributed problem. We assume the centralized target has a feasible,
zero offset solution for the true plant disturbance. The initial state of
the plant and the estimate error must be small enough that feasibility
of the target is maintained under the nonzero estimate error.

6.5 Nonlinear Distributed MPC

In the nonlinear case, the usual model comes from physical principles
and conservation laws of mass, energy and momentum. The state has
a physical meaning and the measured outputs usually are a subset of
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the state. We assume the model is of the form

dx1

dt
= f1(x1, x2, u1, u2)

y1 = C1x1

dx2

dt
= f2(x1, x2, u1, u2)

y2 = C2x2

in which C1, C2 are matrices of zeros and ones selecting the part of the
state that is measured in subsystems one and two. We generally cannot
avoid state x2 dependence in the differential equation for x1. But often
it is only a small subset of the entire state x2 that appears in f1, and
vice versa. The reason in chemical process systems is that the two sub-
systems are generally coupled through a small set of process streams
transferring mass and energy between the systems. These connecting
streams isolate the coupling between the two systems and reduce the
influence to a small part of the entire state required to describe each
system.

Given these physical system models of the subsystems, the overall
plant model is

dx
dt
= f(x,u)

y = Cx

in which

x =
[
x1

x2

]
u =

[
u1

u2

]
f =

[
f1

f2

]
y =

[
y1

y2

]
C =

[
C1

C2

]

Nonconvexity. The basic difficulty in both the theory and application
of nonlinear MPC is the nonconvexity in the control objective function
caused by the nonlinear dynamic model. This difficulty applies even to
centralized nonlinear MPC as discussed in Section 2.8, and motivates
the development of suboptimal MPC. In the distributed case, noncon-
vexity causes even greater difficulties. As an illustration, consider the
simple two-player, nonconvex game depicted in Figure 6.7. The cost
function is

V(u1, u2) = e−2u1 − 2e−u1 + e−2u2 − 2e−u2

+ a exp(−β((u1 + 0.2)2 + (u2 + 0.2)2))
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Figure 6.7: Cost contours for a two-player, nonconvex game; cost
increases for the convex combination of the two players’
optimal points.

in which a = 1.1 and β = 0.4. Each player optimizes the cooperative
objective starting at À and produces the points, (u0

1, u
p
2 ), denoted Á

and (up1 , u
0
2), denoted Â. Consider taking a convex combination of the

two players’ optimal points for the next iterate

(up+1
1 , up+1

2 ) = w1(u0
1, u

p
2 )+w2(u

p
1 , u

0
2) w1+w2 = 1, w1,w2 ≥ 0

We see in Figure 6.7 that this iterate causes the objective function to
increase rather than decrease for most values ofw1,w2. Forw1 = w2 =
1/2, we see clearly from the contours that V at point Ã is greater than
V at point À. The values of the four points are given in the following
table

Point u1 u2 V(u)

À 0 0 −0.93
Á 2.62 0 −1.10
Â 0 2.62 −1.10
Ã 1.31 1.31 −0.76
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The possibility of a cost increase leads to the possibility of closed-
loop instability and precludes developing even a nominal control theory
for this situation. In the centralized MPC problem, this nonconvexity
issue can be addressed in the optimizer, which can move both inputs
simultaneously and always avoid a cost increase. In the distributed
case, the required information to avoid a cost increase is by design
unavailable to the players.

One can of course consider adding another player to the game who
has access to more systemwide information. This player takes the op-
timization results of the individual players and determines a search
direction and step length that achieve a cost decrease for the overall
system. This player is often known as a coordinator. The main chal-
lenge of this approach is that the design of the coordinator may not be
significantly simpler than the design of the centralized controller. This
issue remains a topic of current research.

6.6 Notes

At least three different fields have contributed substantially to the ma-
terial presented in this chapter. We attempt here to point out briefly
what each field has contributed, and indicate what literature the inter-
ested reader may wish to consult for further pursuing this and related
subjects.

Game theory. Game theory emerged in the mid-1900s to analyze situ-
ations in which multiple players follow a common set of rules but have
their own and different objectives that they try to optimize in com-
petition with each other. Von Neumann and Morgenstern introduced
the classic text on this subject, “Theory of Games and Economic Behav-
ior,” in 1944. A principle aim of game theory since its inception was to
model and understand human economic behavior, especially as it arises
in a capitalistic, free-market system. For that reason, much of the sub-
sequent game theory literature was published in economics journals
rather than systems theory journals. This field has contributed richly
to the ideas and vocabulary used in this chapter to describe distributed
control. For example, the game in which players have different objec-
tives is termed noncooperative. The equilibrium of a noncooperative
game is known as a Nash equilibrium (Nash, 1951). The Nash equilib-
rium is usually not Pareto optimal, which means that the outcomes for
all players can be improved simultaneously from the Nash solution. A
comprehensive overview of the game theory literature, especially the
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parts relevant to control theory, is provided by Başar and Olsder (1999,
Chapter 1), which is a highly recommended reference. Analyzing the
equilibria of a noncooperative game is usually more complex than the
cooperative game (optimal control problem). The closed-loop proper-
ties of a receding horizon implementation of any of these game theory
solutions is not addressed in game theory. That topic is addressed by
control theory.

Distributed optimization. The optimization community has exten-
sively studied the issue of solving large-scale optimization problems
using distributed optimization methods. The primary motivation in
this field is to exploit parallel computing hardware and distributed
data communication networks to solve large optimization problems
faster. Bertsekas and Tsitsiklis provide an excellent and comprehen-
sive overview of this field focusing on numerical algorithms for imple-
menting the distributed approaches. The important questions that are
addressed in designing a distributed optimization are: task allocation,
communication, and synchronization (Bertsekas and Tsitsiklis, 1997,
Chapter 1).

These basic concepts arise in distributed problems of all types, and
therefore also in the distributed MPC problem, which provides good
synergy between these fields. But one should also be aware of the struc-
tural distinctions between distributed optimization and distributed MPC.
The primary obstacle to implementing centralized MPC for large-scale
plants is not computational but organizational. The agents considered
in distributed MPC are usually existing MPC systems already built for
units or subsystems within an existing large-scale process. The plant
management often is seeking to improve the plant performance by bet-
ter coordinating the behavior of the different agents already in opera-
tion. Ignoring these structural constraints and treating the distributed
MPC problem purely as a form of distributed optimization, ignores as-
pects of the design that are critical for successful industrial applica-
tion (Rawlings and Stewart, 2008).

Control theory. Researchers have long studied the issue of how to dis-
tribute control tasks in a complex large-scale plant (Mesarovíc, Macko,
and Takahara, 1970; Sandell Jr., Varaiya, Athans, and Safonov, 1978).
The centralized controller and decentralized controller define two lim-
iting design extremes. Centralized control accounts for all possible
interactions, large and small, whereas decentralized control ignores
them completely. In decentralized control the local agents have no
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knowledge of each others’ actions. It is well known that the nominal
closed-loop system behavior under decentralized control can be arbi-
trarily poor (unstable) if the system interactions are not small. The
following reviews provide general discussion of this and other perfor-
mance issues involving decentralized control (Šiljak, 1991; Lunze, 1992;
Larsson and Skogestad, 2000; Cui and Jacobsen, 2002).

The next level up in design complexity from decentralized control is
noncooperative control. In this framework, the agents have interaction
models and communicate at each iteration (Jia and Krogh, 2002; Motee
and Sayyar-Rodsari, 2003; Dunbar and Murray, 2006). The advantage
of noncooperative control over decentralized control is that the agents
have accurate knowledge of the effects of all other agents on their local
objectives. The basic issue to analyze and understand in this setup is
the competition between the agents. Characterizing the noncoopera-
tive equilibrium is the subject of noncooperative game theory, and the
impact of using that solution for feedback control is the subject of con-
trol theory. For example, Dunbar (2007) shows closed-loop stability for
an extension of noncooperative MPC described in (Dunbar and Murray,
2006) that handles systems with interacting subsystem dynamics. The
key assumptions are the existence of a stabilizing decentralized feed-
back law valid near the origin, and an inequality condition limiting the
coupling between the agents.

Cooperative MPC was introduced by Venkat, Rawlings, and Wright
(2007). They show that a receding horizon implementation of a coop-
erative game with any number of iterates of the local MPC controllers
leads to closed-loop stability in the linear dynamics case. Venkat, Rawl-
ings, and Wright (2006a,b) show that state estimation errors (output
instead of state feedback) do not change the system closed-loop stabil-
ity if the estimators are also asymptotically stable. Most of the theo-
retical results on cooperative MPC given in this chapter are presented
in Venkat (2006) using an earlier, different notation. If implementable,
this form of distributed MPC clearly has the best control properties. Al-
though one can easily modify the agents’ objective functions in a single
large-scale process owned by a single company, this kind of modifica-
tion may not be possible in other situations in which competing inter-
ests share critical infrastructure. The requirements of the many differ-
ent classes of applications create exciting opportunities for continued
research in this field.
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6.7 Exercises

Exercise 6.1: Three looks at solving the LQ problem

In the following exercise, you will write three codes to solve the LQR using Octave or
MATLAB. The objective function is the LQR with mixed term

V = 1
2

N−1∑
k=0

(
x(k)′Qx(k)+u(k)′Ru(k)+ 2x(k)′Mu(k)

)
+ (1/2)x(N)′Pfx(N)

First, implement the method described in Section 6.1.1 in which you eliminate the
state and solve the problem for the decision variable

u = {u(0),u(1), . . . , u(N − 1)}

Second, implement the method described in Section 6.1.1 in which you do not elim-
inate the state and solve the problem for

z = {u(0), x(1),u(1), x(2), . . . , u(N − 1), x(N)}

Third, use backward dynamic programming (DP) and the Riccati iteration to com-
pute the closed-form solution for u(k) and x(k).

(a) Let

A =
[

4/3 −2/3
1 0

]
B =

[
1
0

]
C =

[
−2/3 1

]
x(0) =

[
1
1

]

Q = C′C + 0.001I Pf = Π R = 0.001 M = 0

in which the terminal penalty, Pf is set equal to Π, the steady-state cost to go.
Compare the three solutions for N = 5. Plot x(k), u(k) versus time for the
closed-loop system.

(b) Let N = 50 and repeat. Do any of the methods experience numerical problems
generating an accurate solution? Plot the condition number of the matrix that
is inverted in the first two methods versus N.

(c) Now consider the following unstable system

A =

27.8 −82.6 34.6
25.6 −76.8 32.4
40.6 −122.0 51.9

 B =

0.527 0.548
0.613 0.530
1.06 0.828

 x(0) =

1
1
1


Consider regulator tuning parameters and constraints

Q = I Pf = Π R = I M = 0

Repeat parts 6.1a and 6.1b for this system. Do you lose accuracy in any of the
solution methods? What happens to the condition number of H(N) and S(N)
as N becomes large? Which methods are still accurate for this case? Can you
explain what happened?
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Exercise 6.2: LQ as least squares

Consider the standard LQ problem

min
u
V = 1

2

N−1∑
k=0

(
x(k)′Qx(k)+u(k)′Ru(k)

)
+ (1/2)x(N)′Pfx(N)

subject to
x+ = Ax + Bu

(a) Set up the dense Hessian least squares problem for the LQ problem with a hori-
zon of three, N = 3. Eliminate the state equations and write out the objective
function in terms of only the decision variables u(0),u(1),u(2).

(b) What are the conditions for an optimum, i.e., what linear algebra problem do
you solve to compute u(0),u(1),u(2)?

Exercise 6.3: Lagrange multiplier method

Consider the general least squares problem

min
x
V(x) = 1

2
x′Hx + const

subject to
Dx = d

(a) What is the Lagrangian L for this problem? What is the dimension of the Lagrange
multiplier vector, λ?

(b) What are necessary and sufficient conditions for a solution to the optimization
problem?

(c) Apply this approach to the LQ problem of Exercise 6.2 using the equality con-
straints to represent the model equations. What are H,D,d for the LQ problem?

(d) Write out the linear algebra problem to be solved for the optimum.

(e) Contrast the two different linear algebra problems in these two approaches.
Which do you want to use when N is large and why?

Exercise 6.4: Reparameterizing an unstable system

Consider again the LQR problem with cross term

min
u
V = 1

2

N−1∑
k=0

(
x(k)′Qx(k)+u(k)′Ru(k)+ 2x(k)′Mu(k)

)
+ (1/2)x(N)′Pfx(N)

subject to
x+ = Ax + Bu

and the three approaches of Exercise 6.1:

1. The method described in Section 6.1.1 in which you eliminate the state and solve
the problem for the decision variable

u = {u(0),u(1), . . . , u(N − 1)}
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2. The method described in Section 6.1.1 in which you do not eliminate the state
and solve the problem for

z = {u(0), x(1),u(1), x(2), . . . , u(N − 1), x(N)}

3. The method of DP and the Riccati iteration to compute the closed-form solution
for u(k) and x(k).

(a) You found that unstable A causes numerical problems in the first method using
large horizons. So let’s consider a fourth method. Reparameterize the input in
terms of a state feedback gain via

u(k) = Kx(k)+ v(k)
in which K is chosen so that A+ BK is a stable matrix. Consider the matrices in
a transformed LQ problem

min
v
V = 1

2

N−1∑
k=0

(
x(k)′Q̃x(k)+ v(k)′R̃v(k)+ 2x(k)′M̃v(k)

)
+(1/2)x(N)′P̃fx(N)

subject to x+ = Ãx + B̃v .

What are the matrices Ã, B̃, Q̃, P̃f , R̃, M̃ such that the two problems give the same
solution (state trajectory)?

(b) Solve the following problem using the first method and the fourth method and
describe differences between the two solutions. Compare your results to the DP
approach. Plot x(k) and u(k) versus k.

A =

27.8 −82.6 34.6
25.6 −76.8 32.4
40.6 −122.0 51.9

 B =

0.527 0.548
0.613 0.530
1.06 0.828

 x(0) =

1
1
1


Consider regulator tuning parameters and constraints

Q = Pf = I R = I M = 0 N = 50

Exercise 6.5: Recursively summing quadratic functions

Consider generalizing Example 1.1 to an N-term sum. Let the N-term sum of quadratic
functions be defined as

V(N,x) = 1
2

N∑
i=1

(x − x(i))′Xi(x − x(i))

in which x,x(i) ∈ Rn are real n-vectors and Xi ∈ Rn×n are positive definite matrices.

(a) Show that V(N,x) can be found recursively

V(N,x) = (1/2)(x − v(N))′H(N)(x − v(N))+ constant

in which v(i) and H(i) satisfy the recursion

H(i+ 1) = Hi +Xi+1 v(i+ 1) = H−1(i+ 1)
(
Hivi +Xi+1x(i+ 1)

)
H1 = X1 v1 = x1

Notice the recursively defined v(m) and H(m) provide the solutions and the
Hessian matrices of the sequence of optimization problems

min
x
V(m,x) 1 ≤m ≤ N
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(b) Check your answer by solving the equivalent, but larger dimensional, constrained
least squares problem (see Exercise 1.16)

min
z
(z − z0)′H̃(z − z0)

subject to
Dz = 0

in which z, z0 ∈ RnN , H̃ ∈ RnN×nN is a block diagonal matrix, D ∈ Rn(N−1)×nN

z0 =


x(1)

...
x(N − 1)
x(N)

 H̃ =


X1

. . .
XN−1

XN

 D =


I −I

. . .
. . .
I −I



(c) Compare the size and number of matrix inverses required for the two approaches.

Exercise 6.6: Why call the Lyapunov stability nonuniform?

Consider the following linear system

w+ = Aw w(0) = Hx(0)
x = Cw

with solution w(k) = Akw(0) = AkHx(0), x(k) = CAkHx(0). Notice that x(0) com-
pletely determines both w(k) and x(k), k ≥ 0. Also note that zero is a solution, i.e.,
x(k) = 0, k ≥ 0 satisfies the model.

(a) Consider the following case

A = ρ
[

cosθ − sinθ
sinθ cosθ

]
H =

[
0
−1

]
C =

[
1 −1

]
ρ = 0.925 θ = π/4 x(0) = 1

Plot the solution x(k). Does x(k) converge to zero? Does x(k) achieve zero
exactly for finite k > 0?

(b) Is the zero solution x(k) = 0 Lyapunov stable? State your definition of Lyapunov
stability, and prove your answer. Discuss how your answer is consistent with
the special case considered above.

Exercise 6.7: Exponential stability of suboptimal MPC with unbounded fea-
sible set

Consider again Lemma 6.4 when both U and XN are unbounded. Show that the subop-
timal MPC controller is exponentially stable on the following sets.

(a) Any sublevel set of V(x,h(x))

(b) Any compact subset of XN
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Exercise 6.8: A refinement to the warm start

Consider the following refinement to the warm start in the suboptimal MPC strategy.
First add the requirement that the initialization strategy satisfies the following bound

h(x) ≤ d̄ |x| x ∈ XN

in which d̄ > 0. Notice that all initializations considered in the chapter satisfy this
requirement.

Then, at time k and state x, in addition to the shifted input sequence from time
k − 1, ũ, evaluate the initialization sequence applied to the current state, u = h(x).
Select whichever of these two input sequence has lower cost as the warm start for time
k. Notice also that this refinement makes the constraint

|u| ≤ d |x| x ∈ rB

redundant, and it can be removed from the MPC optimization.
Prove that this refined suboptimal strategy is exponentially stabilizing on the set

XN . Notice that with this refinement, we do not have to assume that XN is bounded
or that U is bounded.

Exercise 6.9: Exponential stability with mixed powers of the norm

Prove Lemma 6.5.
Hints: exponential convergence can be established as in standard exponential sta-

bility theorems. To establish Lyapunov stability, consider sublevel sets of the function
|x|σ + |e|γ

Lρ = {(x, e)| |x|σ + |e|γ ≤ ρ} ρ > 0

Choose the function ρ(R) to be the maximal ρ value such that Lρ(R) ⊂ BR . Similarly,
choose r(ρ) to be the maximal r value such that Br(ρ) ⊂ Lρ . Use ρ and r to establish
Lyapunov stability.

Exercise 6.10: Decentralized control of Examples 6.8–6.10

Apply decentralized control to the systems in Examples 6.8–6.10. Which of these sys-

tems are closed-loop unstable with decentralized control? Compare this result to the

result for noncooperative MPC.

Exercise 6.11: Cooperative control of Examples 6.8–6.10

Apply cooperative MPC to the systems in Examples 6.8–6.10. Are any of these systems

closed-loop unstable? Compare the closed-loop eigenvalues of converged cooperative

control to centralized MPC, and discuss any differences.

Exercise 6.12: Adding norms

Establish the following result used in the proof of Lemma 6.13. Given that w ∈ Rm,
e ∈ Rn

1√
2
(|w| + |e|) ≤ |(w, e)| ≤ |w| + |e| ∀w,e
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V(u) =constant

u2

u1

up

u∗

up+1

Figure 6.8: Optimizing a quadratic function in one set of variables at
a time.

Exercise 6.13: Padding matrices

Given a vector z and subvector u

z =



u(0)
x(1)
u(1)
x(2)

...
u(N − 1)
x(N)


u =


u(0)
u(1)

...
u(N − 1)

 x ∈ Rn u ∈ Rm

and quadratic function of u
(1/2)u′Hu+ h′u

Find the corresponding quadratic function of z so that

(1/2)z′Hzz+ h′zz = (1/2)u′Hu+ h′u ∀z,u

Hint: first find the padding matrix E such that u = Ez.

Exercise 6.14: A matrix inverse

Compute the four partitioned elements in the two-player feedback gain (I − L)−1K

u∞ = (I − L)−1Kx(0)
∣∣eig(L)

∣∣ < 1

in which

(I − L)−1K =
[
I −L1
−L2 I

]−1 [K1 0
0 K2

]
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Exercise 6.15: Optimizing one variable at a time

Consider the positive definite quadratic function partitioned into two sets of variables

V(u) = (1/2)u′Hu+ c′u+ d

V(u1, u2) = (1/2)
[
u′1 u′2

][H11 H12
H21 H22

][
u1
u2

]
+
[
c′1 c′2

][u1
u2

]
+ d

in which H > 0. Imagine we wish to optimize this function by first optimizing over the
u1 variables holding u2 fixed and then optimizing over the u2 variables holding u1
fixed as shown in Figure 6.8. Let’s see if this procedure, while not necessarily efficient,
is guaranteed to converge to the optimum.

(a) Given an initial point (up1 , u
p
2 ), show that the next iteration is

up+1
1 = −H−1

11

(
H12u

p
2 + c1

)
up+1

2 = −H−1
22

(
H21u

p
1 + c2

)
(6.29)

The procedure can be summarized as

up+1 = Aup + b (6.30)

in which the iteration matrix A and constant b are given by

A =
[

0 −H−1
11 H12

−H−1
22 H21 0

]
b =

[
−H−1

11 c1

−H−1
22 c2

]
(6.31)

(b) Establish that the optimization procedure converges by showing the iteration
matrix is stable ∣∣eig(A)

∣∣ < 1

(c) Given that the iteration converges, show that it produces the same solution as

u∗ = −H−1c

Exercise 6.16: Monotonically decreasing cost

Consider again the iteration defined in Exercise 6.15.

(a) Prove that the cost function is monotonically decreasing when optimizing one
variable at a time

V(up+1) < V(up) ∀up ≠ −H−1c

(b) Show that the following expression gives the size of the decrease

V(up+1)− V(up) = −(1/2)(up −u∗)′P(up −u∗)

in which

P = HD−1H̃D−1H H̃ = D −N D =
[
H11 0

0 H22

]
N =

[
0 H12
H21 0

]

and u∗ = −H−1c is the optimum.

Hint: to simplify the algebra, first change coordinates and move the origin of the coor-
dinate system to u∗.
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Exercise 6.17: One variable at a time with convex step

Consider Exercise 6.15 but with the convex step for the iterationup+1
1

up+1
2

 = w1

[
u0

1(u
p
2 )

up2

]
+w2

[
up1

u0
2(u

p
1 )

]
0 ≤ w1,w2 w1 +w2 = 1

(a) Show that the iteration for the convex step is also of the form

up+1 = Aup + b
and the A matrix and b vector for this case are

A =
[

w2I −w1H−1
11 H12

−w2H−1
22 H21 w1I

]
b =

[
−w1H−1

11
−w2H−1

22

][
c1
c2

]

(b) Show that A is stable.

(c) Show that this iteration also converges to u∗ = −H−1c.

Exercise 6.18: Monotonically decreasing cost with convex step

Consider again the problem of optimizing one variable at a time with the convex step
given in Exercise 6.17.

(a) Prove that the cost function is monotonically decreasing

V(up+1) < V(up) ∀up ≠ −H−1c

(b) Show that the following expression gives the size of the decrease

V(up+1)− V(up) = −(1/2)(up −u∗)′P(up −u∗)
in which

P = HD−1H̃D−1H H̃ = D −N

D =
[
w−1

1 H11 0
0 w−1

2 H22

]
N =

[
−w−1

1 w2H11 H12

H21 −w1w−1
2 H22

]
and u∗ = −H−1c is the optimum.

Hint: to simplify the algebra, first change coordinates and move the origin of the coor-
dinate system to u∗.

Exercise 6.19: Splitting more than once

Consider the generalization of Exercise 6.15 in which we repeatedly decompose a prob-
lem into one-variable-at-a-time optimizations. For a three-variable problem we have the
three optimizations

up+1
1 = arg min

u1
V(u1, u

p
2 , u

p
3 )

up+1
2 = arg min

u2
V(up1 , u2, u

p
3 ) up+1

3 = arg min
u3
V(up1 , u

p
2 , u3)

Is it true that
V(up+1

1 , up+1
2 , up+1

3 ) ≤ V(up1 , u
p
2 , u

p
3 )

Hint: you may wish to consider the following example, V(u) = (1/2)u′Hu + c′u, in
which

H =

2 1 1
1 1 1
1 1 2

 c =

0
1
1

 up =

1
0
1
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Exercise 6.20: Time-varying controller iterations

We let pk ≥ 0 be a time-varying integer-valued index representing the iterations applied
in the controller at time k.

x1(k+ 1) = A1x1(k)+ B11u1(0;k)+ B12u2(0;k)

x2(k+ 1) = A2x2(k)+ B21u1(0;k)+ B22u2(0;k)

u1(k+ 1) = gpk1 (x1(k), x2(k),u1(k),u2(k))

u2(k+ 1) = gpk2 (x1(k), x2(k),u1(k),u2(k))

Notice the system evolution is time-varying even though the models are time invariant
because we allow a time-varying sequence of controller iterations.

Show that cooperative MPC is exponentially stabilizing for any pk ≥ 0 sequence.

Exercise 6.21: Stable interaction models

In some industrial applications it is preferable to partition the plant so that there are
no unstable connections between subsystems. Any inputs uj that have unstable con-
nections to outputs yi should be included in the ith subsystem inputs. Allowing an
unstable connection between two subsystems may not be robust to faults and other
kinds of system failures.4 To implement this design idea in the two-player case, we
replace Assumption 6.12 (b) with the following

Assumption 6.12 (Constrained two-player game).

(b’) The interaction models Aij , i ≠ j are stable.

Prove that Assumption 6.12 (b’) implies Assumption 6.12 (b). It may be helpful to
first prove the following lemma.

Lemma 6.17 (Local detectability). Given partitioned system matrices

A =
[
A 0
0 As

]
C =

[
C Cs

]
in which As is stable, the system (A,C) is detectable if and only if the system (A,C) is
detectable.

Hint: use the Hautus lemma as the test for detectability.
Next show that this lemma and Assumption 6.12 (b’) establishes the distributed

detectability assumption 6.12 (b).

Exercise 6.22: Norm constraints as linear inequalities

Consider the quadratic program (QP) in decision variable u with parameter x

min
u
(1/2)u′Hu+ x′Du

s.t. Eu ≤ Fx

4We are not considering the common instability of base-level inventory management
in this discussion. It is assumed that level control in storage tanks (integrators) is
maintained at all times with simple, local level controllers. The internal unit flowrates
dedicated for inventory management are not considered available inputs in the MPC
problem.
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in which u ∈ Rm, x ∈ Rn, and H > 0. The parameter x appears linearly (affinely) in
the cost function and constraints. Assume that we wish to add a norm constraint of
the following form

|u|α ≤ c |x|α α = 2,∞

(a) If we use the infinity norm, show that this problem can be posed as an equivalent
QP with additional decision variables, and the cost function and constraints re-
main linear (affine) in parameterx. How many decision variables and constraints
are added to the problem?

(b) If we use the two norm, show that this problem can be approximated by a QP
whose solution does satisfy the constraints, but the solution may be suboptimal
compared to the original problem.

Exercise 6.23: Steady-state noncooperative game

Consider again the steady-state target problem for the system given in Example 6.11.

(a) Resolve the problem for the choice of convex step parameters w1 = 0.2, w2 =
0.8. Does the iteration for noncooperative control converge? Plot the iterations
for the noncooperative and cooperative cases.

(b) Repeat for the convex step w1 = 0.8,w2 = 0.2. Are the results identical to the
previous part? If not, discuss any differences.

(c) For what choices of w1,w2 does the target iteration converge using noncooper-
ative control for the target calculation?

Exercise 6.24: Optimality conditions for constrained optimization

Consider the convex quadratic optimization problem

min
u
V(u) subject to u ∈ U

in which V is a convex quadratic function and U is a convex set. Show that u∗ is an
optimal solution if and only if

〈z −u∗,−∇ V |u∗〉 ≤ 0 ∀z ∈ U (6.32)

Figure 6.9(a) depicts this condition for u ∈ R2. This condition motivates defining the
normal cone (Rockafellar, 1970) to U at u∗ as follows

N(U, u∗) = {y | 〈z −u∗, y −u∗〉 ≤ 0 ∀z ∈ U}
The optimality condition can be stated equivalently as u∗ is an optimal point if and
only if the negative gradient is in the normal cone to U at u∗

−∇ V |u∗ ∈ N(U, u∗)
This condition and the normal cone are depicted in Figure 6.9(b).

Exercise 6.25: Partitioned optimality conditions with constraints

Consider a partitioned version of the constrained optimization problem of Exercise 6.24
with uncoupled constraints

min
u1,u2

V(u1, u2) subject to u1 ∈ U1 u2 ∈ U2

in which V is a quadratic function and U1 and U2 are convex and nonempty.
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U

z

−∇V

u∗

V = c2 < c1

V = c1

θ

U

−∇V

u∗

N(U, u∗)

(b)(a)

Figure 6.9: (a) Optimality of u∗ means the angle between −∇V and
any point z in the feasible region must be greater than
90◦ and less than 270◦. (b) The same result restated:
u∗ is optimal if and only if the negative gradient is in
the normal cone to the feasible region at u∗, −∇V |u∗ ∈
N(U, u∗).

(a) Show that (u∗1 , u
∗
2 ) is an optimal solution if and only if

〈z1 −u∗1 ,−∇u1 V |(u∗1 ,u∗2 )〉 ≤ 0 ∀z1 ∈ U1

〈z2 −u∗2 ,−∇u2 V |(u∗1 ,u∗2 )〉 ≤ 0 ∀z2 ∈ U2 (6.33)

(b) Extend the optimality conditions to cover the case

min
u1,...,uM

V(u1, . . . , uM) subject to uj ∈ Uj j = 1, . . . ,M

in which V is a quadratic function and the Uj are convex and nonempty.

Exercise 6.26: Constrained optimization of M variables

Consider an optimization problem with M variables and uncoupled constraints

min
u1,u2,...,uM

V(u1, u2, . . . , uM) subject to ul ∈ Uj j = 1, . . . ,M

in which V is a strictly convex function. Assume that the feasible region is convex and
nonempty and denote the unique optimal solution as (u∗1 , u

∗
2 , . . . , u

∗
M) having cost

V∗ = V(u∗1 , . . . , u∗M). Denote the M one-variable-at-a-time optimization problems at
iteration k

zp+1
j = arg min

uj
V(up1 , . . . , uj , . . . , u

p
M) subject to uj ∈ Uj

Then define the next iterate to be the following convex combination of the previous
and new points

up+1
j = αpj z

p+1
j + (1−αpj )u

p
j j = 1, . . . ,M

ε ≤ αpj < 1 0 < ε j = 1, . . . ,M, p ≥ 1

M∑
j=1

αpj = 1, p ≥ 1

Prove the following results.
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(a) Starting with any feasible point, (u0
1, u

0
2, . . . , u

0
M), the iterations (up1 , u

p
2 , . . . , u

p
M)

are feasible for p ≥ 1.

(b) The objective function decreases monotonically from any feasible initial point

V(up+1
1 , . . . , up+1

M ) ≤ V(up1 , . . . , u
p
M) ∀u0

l ∈ Uj , j = 1, . . . ,M, p ≥ 1

(c) The cost sequence V(up1 , u
p
2 , . . . , u

p
M) converges to the optimal cost V∗ from

any feasible initial point.

(d) The sequence (up1 , u
p
2 , . . . , u

p
M) converges to the optimal solution (u∗1 , u

∗
2 , . . . , u

∗
M)

from any feasible initial point.

Exercise 6.27: The constrained two-variable special case

Consider the special case of Exercise 6.26 with M = 2

min
u1,u2

V(u1, u2) subject to u1 ∈ U1 u2 ∈ U2

in which V is a strictly positive quadratic function. Assume that the feasible region
is convex and nonempty and denote the unique optimal solution as (u∗1 , u

∗
2 ) having

cost V∗ = V(u∗1 , u∗2 ). Consider the two one-variable-at-a-time optimization problems
at iteration k

up+1
1 = arg min

u1
V(u1, u

p
2 ) up+1

2 = arg min
u2
V(up1 , u2)

subject to u1 ∈ U1 subject to u2 ∈ U2

We know from Exercise 6.15 that taking the full step in the unconstrained problem
with M = 2 achieves a cost decrease. We know from Exercise 6.19 that taking the full
step for an unconstrained problem with M ≥ 3 does not provide a cost decrease in
general. We know from Exercise 6.26 that taking a reduced step in the constrained
problem for all M achieves a cost decrease. That leaves open the case of a full step for
a constrained problem with M = 2.

Does the full step in the constrained case for M = 2 guarantee a cost decrease? If
so, prove it. If not, provide a counterexample.

Exercise 6.28: Subsystem stability constraints

Show that the following uncoupled subsystem constraints imply an overall system con-
straint of the same type. The first is suitable for asymptotic stability and the second
for exponential stability.

(a) Given r1, r2 > 0, and functions γ1 and γ2 of class K, assume the following
constraints are satisfied

|u1| ≤ γ1(|x1|) x1 ∈ r1B
|u2| ≤ γ2(|x2|) x2 ∈ r2B

Show that there exists r > 0 and function γ of classK such that

|(u1,u2)| ≤ γ(|(x1, x2)|) (x1, x2) ∈ rB (6.34)
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(b) Given r1, r2 > 0, and constants c1, c2, σ1, σ2 > 0, assume the following con-
straints are satisfied

|u1| ≤ c1 |x1|σ1 x1 ∈ r1B
|u2| ≤ c2 |x2|σ2 x2 ∈ r2B

Show that there exists r > 0 and function c,σ > 0 such that

|(u1,u2)| ≤ c |(x1, x2)|σ (x1, x2) ∈ rB (6.35)

Exercise 6.29: Distributed disturbance detectability

Prove Lemma 6.15.

Hint: use the Hautus lemma as the test for detectability.

Exercise 6.30: Distributed target problem and uncoupled constraints

Player one’s distributed target problem in the two-player game is given in (6.28)

min
x11s ,x21s ,u1s

(1/2)
[
H1y1s − z1sp
H2y2s − z2sp

]′ [T1s
T2s

][
H1y1s − z1sp
H2y2s − z2sp

]
subject to:

[
I −A1 −B11 −B12

I −A2 −B21 −B22

]
x1s
x2s
u1s
u2s

 =
[
B1dd̂1(k)
B2dd̂2(k)

]

E1u1s ≤ e1

Show that the constraints can be expressed so that the target problem constraints are
uncoupled.
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7
Explicit Control Laws for Constrained

Linear Systems

7.1 Introduction

In preceding chapters we show how model predictive control (MPC)
can be derived for a variety of control problems with constraints. It is
interesting to recall the major motivation for MPC; solution of a feed-
back optimal control problem yielding a stabilizing control law is of-
ten prohibitively difficult. MPC sidesteps the problem of determining
a stabilizing control law κ(·) by determining, instead, at each state x
encountered, a control action u = κ(x) by solving a mathematical pro-
gramming problem. This procedure, if repeated at every state x, yields
an implicit control law κ(·) that solves the original feedback problem.
In many cases, determining an explicit control law is impractical while
solving a mathematical programming problem online for a given state
is possible; this fact has led to the wide-scale adoption of MPC in the
chemical process industry.

Some of the control problems for which MPC has been extensively
used, however, have recently been shown to be amenable to analy-
sis. One such problem is control of linear systems with polytopic
constraints, for which determination of a stabilizing control law was
thought in the past to be prohibitively difficult. It has been shown that
it is possible, in principle, to determine a stabilizing control law for
some of these control problems. Some authors have referred to these
results as explicit MPC because they yield an explicit control law in
contrast to MPC that yields a control action for each encountered state,
thereby implicitly defining a control law. There are two objections to
this terminology. First, determination of control laws for a wide vari-
ety of control problems has been the prime concern of control theory
since its birth and certainly before the advent of MPC, an important tool
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in this endeavor being dynamic programming (DP). These new results
merely show that classical control-theoretic tools, such as DP, can be
successfully applied to a wider range of problems than was previously
thought possible. MPC is a useful method for implementing a control
law that can, in principle, be determined using control-theoretic tools.

Second, some authors using this terminology have, perhaps inadver-
tently, implied that these results can be employed in place of conven-
tional MPC. This is far from the truth, since only relatively simple prob-
lems, far simpler than those routinely solved in MPC applications, can
be solved. That said, the results may be useful in applications where
models with low state dimension, say six or less, are sufficiently accu-
rate and where it is important that the control be rapidly computed.
A previously determined control law generally yields the control ac-
tion more rapidly than solving an optimal control problem. Potential
applications include vehicle control.

In the next section we give a few simple examples of parametric
programming. In subsequent sections we show how the solutions to
parametric linear and quadratic programs may be obtained, and also
show how these solutions may be used to solve optimal control prob-
lems when the system is linear, the cost quadratic or affine, and the
constraints polyhedral.

7.2 Parametric Programming

A conventional optimization problem has the form V0 = minu{V(u) |
u ∈ U} where u is the “decision” variable, V(u) is the cost to be min-
imized, and U is the constraint set. The solution to a conventional
optimization is a point or set in U; the value V0 of the problem sat-
isfies V0 = V(u0) where u0 is the minimizer. A simple example of
such a problem is V0 = minu{a+ bu+ (1/2)cu2 | u ∈ [−1,1]} where
the solution is required for only one value of the parameters a,b and
c. The solution to this problem u0 = −b/c if |b/c| ≤ 1, u0 = −1 if
b/c ≥ 1 and u0 = 1 if b/c ≤ −1. This may be written more compactly
as u0 = −sat(b/c) where sat(·) is the saturation function. The corre-
sponding value is V0 = a − b2/2c if |b/c| ≤ 1, V0 = a − b + c2/2 if
b/c ≥ 1 and V0 = a+ b + c2/2 if b/c ≤ −1.

A parametric programming problem P(x) on the other hand, takes
the form V0(x) = minu{V(x,u) | u ∈ U(x)} where x is a parame-
ter so that the optimization problem, and its solution, depend on the
value of the parameter. Hence, the solution to a parametric program-
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ming problem P(x) is not a point or set but a function x , u0(x)
that may be set valued; similarly the value of the problem is a function
x , V0(x). At each x, the minimizer u0(x) may be a point or a set.
Optimal control problems often take this form, with x being the state,
and u, in open-loop discrete time optimal control, being a control se-
quence; u0(x), the optimal control sequence, is a function of the initial
state. In state feedback optimal control, necessary when uncertainty is
present, DP is employed yielding a sequence of parametric optimiza-
tion problems in each of which x is the state and u a control action;
see Chapter 2. The programming problem in the first paragraph of this
section may be regarded as a parametric programming problem with
the parameter x := (a, b, c), V(x,u) := (x1 +x2u+ (1/2)x3u2/2) and
U(x) := [−1,1]; U(x), in this example, does not depend on x. The
solution to this problem yields the functions u0(·) and V0(·) defined
by u0(x) = −sat(x2/x3) and V0(x) = V(x,u0(x)) = x1 + x2u0(x) +
(x3/2)(u0(x))2.

Because the minimizer and value of a parametric programming prob-
lem are functions rather than points or sets, we would not, in gen-
eral, expect to be able to compute a solution. Surprisingly, parametric
programs are relatively easily solved when the cost function V(·) is
affine (V(x,u) = a+ b′x + c′u) or quadratic (V(x,u) = (1/2)x′Qx +
x′Su+ (1/2)u′Ru) and U(x) is defined by a set of linear inequalities:
U(x) = {u | Mu ≤ Nx + p}. The parametric constraint u ∈ U(x)
may be conveniently expressed as (x,u) ∈ Z where Z is a subset of
(x,u)-space which we will take to be Rn ×Rm; for each x

U(x) = {u | (x,u) ∈ Z}

We assume that x ∈ Rn and u ∈ Rm. Let X ⊂ Rn be defined by

X := {x | ∃u such that (x,u) ∈ Z} = {x | U(x) ≠∅}

The setX is the domain of V0(·) andu0(·) and is thus the set of points
x for which a feasible solution of P(x) exists; it is the projection of Z
(which is a set in (x,u)-space) onto x-space. See Figure 7.1, which
illustrates Z and U(x) for the case when U(x) = {u | Mu ≤ Nx + p};
the set Z is thus defined by Z := {(x,u) | Mu ≤ Nx + p}. In this case,
both Z and U(x) are polyhedral.

Before proceeding to consider parametric linear and quadratic pro-
gramming, some simple examples may help the reader to appreciate
the underlying ideas. Consider first a very simple parametric linear
program minu{V(x,u) | (x,u) ∈ Z} where V(x,u) := x + u and



486 Explicit Control Laws for Constrained Linear Systems

U(x)
Z

u

x
X

Figure 7.1: The sets Z, X and U(x).

u0(x) Z

constraint

0 x

u

Figure 7.2: Parametric linear program.

Z := {(x,u) | u+ x ≥ 0, u− x ≥ 0} so that U(x) = {u ≥ −x, u ≥ x}.
The problem is illustrated in Figure 7.2. The set Z is the region lying
above the two solid lines u = −x and u = x, and is convex. The
gradient ∇uV(x,u) = 1 everywhere, so the solution, at each x, to
the parametric program is the smallest u in U(x), i.e., the smallest
u lying above the two lines u = −x and u = x. Hence u0(x) = −x
if x ≤ 0 and u0(x) = x if x ≥ 0, i.e., u0(x) = |x|; the graph of
u0(·) is the dashed line in Figure 7.2. Both u0(·) and V0(·), where
V0(x) = x+u0(x), are piecewise affine, being affine in each of the two
regions X1 := {x | x ≤ 0} and X2 := {x | x ≥ 0}.

Next we consider an unconstrained parametric quadratic program
minu V(x,u) where V(x,u) := (1/2)(x − u)2 + u2/2. The problem is
illustrated in Figure 7.3. For each x ∈ R, ∇uV(x,u) = −x + 2u and
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u0(x)
u

x

Figure 7.3: Unconstrained parametric quadratic program.

u Z
u0(x)

constraint

x

u0
uc(x)

Figure 7.4: Parametric quadratic program.

∇uuV(x,u) = 2 so that u0(x) = x/2 and V0(x) = x2/4. Hence u0(·)
is linear and V0(·) is quadratic in R.

We now add the constraint set Z := {(x,u) | u ≥ 1, u + x/2 ≥
2, u+x ≥ 2}; see Figure 7.4. The solution is defined on three regions,
X1 := (−∞,0], X2 := [0,2], and X3 := [2,∞). From the preceding exam-
ple, the unconstrained minimum is achieved at u0

uc(x) = x/2 shown
by the solid straight line in Figure 7.4. Since ∇uV(x,u) = −x + 2u,
∇uV(x,u) > 0 for all u > u0

uc(x) = x/2. Hence, in X1, u0(x) lies
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on the boundary of Z and satisfies u0(x) = 2 − x. Similarly, in X2,
u0(x) lies on the boundary of Z and satisfies u0(x) = 2 − x/2. Fi-
nally, in X3, u0(x) = u0

uc(x) = x/2, the unconstrained minimizer, and
lies in the interior of Z for x > 1. The third constraint u ≥ 2 − x is
active in X1, the second constraint u ≥ 2 − x/2 is active in X2, while
no constraints are active in X3. Hence the minimizer u0(·) is piece-
wise affine, being affine in each of the regions X1, X2 and X3. Since
V0(x) = (1/2)|x − u0(x)|2 + u0(x)2/2, the value function V0(·) is
piecewise quadratic, being quadratic in each of the regions X1, X2 and
X3.

We require, in the sequel, the following definitions:

Definition 7.1 (Polytopic (polyhedral) partition). A set P = {Zi | i ∈ I},
for some index set I , is called a polytopic (polyhedral) partition of the
polytopic (polyhedral) set Z if Z = ∪i∈IZi and the sets Zi, i ∈ I , are
polytopes (polyhedrons) with nonempty interiors (relative to Z)1 that
are nonintersecting: int(Zi)∩ int(Zj) = ∅ if i ≠ j.

Definition 7.2 (Piecewise affine function). A function f : Z → Rm is
said to be piecewise affine on a polytopic (polyhedral) partition P =
{Zi | i ∈ I} if it satisfies, for some Ki, ki, i ∈ I , f(x) = Kix + ki for all
x ∈ Zi, all i ∈ I . Similarly, a function f : Z → R is said to be piecewise
quadratic on a polytopic (polyhedral) partition P = {Zi | i ∈ I} if it
satisfies, for some Qi, ri, and si, i ∈ I , f(x) = (1/2)x′Qix + r ′ix + si
for all x ∈ Zi, all i ∈ I .

Note the piecewise affine and piecewise quadratic functions defined
this way are not necessarily continuous and may, therefore, be set val-
ued at the intersection of the defining polyhedrons. An example is the
piecewise affine function f(·) defined by

f(x) := −x − 1 x ∈ (−∞,0]
:= x + 1 x ∈ [0,∞)

This function is set valued at x = 0 where it has the value f(0) =
{−1,1}. We shall mainly be concerned with continuous piecewise affine
and piecewise quadratic functions.

We now generalize the points illustrated by our example above and
consider, in turn, parametric quadratic programming and parametric

1The interior of a set S ⊆ Z relative to the set Z is the set {z ∈ S | ε(z)B∩ aff(Z) ⊆
Z for some ε > 0} where aff(Z) is the intersection of all affine sets containing Z.
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linear programming and their application to optimal control problems.
We deal with parametric quadratic programming first because it is more
widely used and because, with reasonable assumptions, the minimizer
is unique making the underlying ideas somewhat simpler to follow.

7.3 Parametric Quadratic Programming

7.3.1 Preliminaries

The parametric quadratic program P(x) is defined by

V0(x) =min
u
{V(x,u)|(x,u) ∈ Z}

where x ∈ Rn and u ∈ Rm. The cost function V(·) is defined by

V(x,u) := (1/2)x′Qx +u′Sx + (1/2)u′Ru+ q′x + r ′u+ c

and the polyhedral constraint set Z is defined by

Z := {(x,u) | Mx ≤ Nu+ p}

where M ∈ Rr×n, N ∈ Rr×m and p ∈ Rr ; thus Z is defined by r affine
inequalities. Let u0(x) denote the solution of P(x) if it exists, i.e., if
x ∈ X, the domain of V0(·); thus

u0(x) := arg min
u
{V(x,u) | (x,u) ∈ Z}

The solution u0(x) is unique if V(·) is strictly convex in u; this is the
case if R is positive definite. Let the matrix Q be defined by

Q :=
[
Q S′

S R

]
For simplicity we assume, in the sequel:

Assumption 7.3 (Strict convexity). The matrix Q is positive definite.

Assumption 7.3 implies that both R andQ are positive definite. The
cost function V(·) may be written in the form

V(x,u) = (1/2)(x,u)′Q(x,u)+ q′x + r ′u+ c

where, as usual, the vector (x,u) is regarded as a column vector (x′, u′)′

in algebraic expressions. The parametric quadratic program may also
be expressed as

V0(x) :=min
u
{V(x,u) | u ∈ U(x)}
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where the parametric constraint set U(x) is defined by

U(x) := {u | (x,u) ∈ Z} = {u ∈ Rm | Mu ≤ Nx + p}

For each x the set U(x) is polyhedral. The domain X of V0(·) and
u0(·) is defined by

X := {x | ∃u ∈ Rm such that (x,u) ∈ Z} = {x | U(x) ≠∅}

For all (x,u) ∈ Z, let the index set I(x,u) specify the constraints that
are active at (x,u), i.e.,

I(x,u) := {i ∈ I1:r | Miu = Nix + pi}

where Mi, Ni and pi denote, respectively, the ith row of M , N and p.
Similarly, for any matrix or vector A and any index set I, AI denotes
the matrix or vector with rows Ai, i ∈ I. For any x ∈ X, the indices set
I0(x) specifies the constraints that are active at (x,u0(x)), i.e.,

I0(x) := I(x,u0(x)) = {i ∈ I1:r | Miu0(x) = Nix + pi}

Since u0(x) is unique, I0(x) is well defined. Thus u0(x) satisfies the
equation

M0
xu = N0

xx + p0
x

where
M0
x := MI0(x), N0

x := NI0(x), p0
x := pI0(x) (7.1)

7.3.2 Preview

We show in the sequel that V0(·) is piecewise quadratic andu0(·) piece-
wise affine on a polyhedral partition of X, the domain of both these
functions. To do this, we take an arbitrary point x in X, and show
that u0(x) is the solution of an equality constrained quadratic pro-
gram P(x) : minu{V(x,u) | M0

xu = N0
xx + p0

x} in which the equality
constraint isM0

xu = N0
xx+p0

x . We then show that there is a polyhedral
region R0

x ⊂ X in which x lies and such that, for all w ∈ R0
x , u0(w)

is the solution of the equality constrained quadratic program P(w) :
minu{V(w,u) | M0

xu = N0
xw + p0

x} in which the equality constraints
are the same as those for P(x). It follows that u0(·) is affine and V0(·)
is quadratic in R0

x . We then show that there are only a finite number
of such polyhedral regions so that u0(·) is piecewise affine, and V0(·)
piecewise quadratic, on a polyhedral partition of X. To carry out this
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program, we require a suitable characterization of optimality. We de-
velop this in the next subsection. Some readers may prefer to jump to
Proposition 7.8, which gives the optimality condition we employ in the
sequel.

7.3.3 Optimality Condition for a Convex Program

Necessary and sufficient conditions for nonlinear optimization prob-
lems are developed in Section C.2 of Appendix C. Since we are con-
cerned here with a relatively simple optimization problem where the
cost is convex and the constraint set polyhedral, we give a self-contained
exposition that uses the concept of a polar cone:

Definition 7.4 (Polar cone). The polar cone of a cone C ⊆ Rn is the cone
C∗ defined by

C∗ := {g ∈ Rn | 〈g,h〉 ≤ 0 ∀h ∈ C}

We recall that a set C ⊆ Rn is a cone if 0 ∈ C and that h ∈ C implies
λh ∈ C for all λ > 0. A cone C is said to be generated by {ai | i ∈ I}
where I is an index set if C =

∑
i∈I{µiai | µi ≥ 0, i ∈ I} in which case

we write C = cone{ai | i ∈ I}. We need the following result:

Proposition 7.5 (Farkas’s Lemma). Suppose C is a polyhedral cone de-
fined by

C := {h | Ah ≤ 0} = {h | 〈ai, h〉 ≤ 0 | i ∈ I1:m}

where, for each i, ai is the ith row of A. Then

C∗ = cone{ai | i ∈ I1:m}

A proof of this result is given in Section C.2 of Appendix C; that
g ∈ cone{ai | i ∈ I1:m} implies 〈g,h〉 ≤ 0 for all h ∈ C is easily shown.
An illustration of Proposition 7.5 is given in Figure 7.5.

Next we make use of a standard necessary and sufficient condition
of optimality for optimization problems in which the cost is convex
and differentiable and the constraint set is convex:

Proposition 7.6 (Optimality conditions for convex set). Suppose, for
each x ∈ X, u , V(x,u) is convex and differentiable and U(x) is
convex. Then u is optimal for minu{V(x,u) | u ∈ U(x)} if and only if

u ∈ U(x) and 〈∇uV(x,u), v −u〉 ≥ 0 ∀v ∈ U(x)
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Figure 7.5: Polar cone.

Proof. This Proposition appears as Proposition C.9 in Appendix C where
a proof is given. �

In our case U(x), x ∈ X, is polyhedral and is defined by

U(x) := {v ∈ Rm | Mv ≤ Nx + p} (7.2)

so v ∈ U(x) if and only if, for all u ∈ U(x), v − u ∈ U(x) − {u} :=
{v −u | v ∈ U(x)}. With h := v −u

U(x)−{u} =
{
h ∈ Rm

∣∣∣∣∣ Mih ≤ 0, i ∈ I(x,u)
Mjh < Njx + pj −Mju, j ∈ I1:r \ I(x,u)

}
since Miu = Nix + pi for all i ∈ I(x,u). For each z = (x,u) ∈ Z, let
C(x,u) denote the cone of first-order feasible variations of u; C(x,u)
is defined by

C(x,u) := {h ∈ Rm | Mih ≤ 0, i ∈ I(x,u)}

Clearly

U(x)−{u} = C(x,u)∩{h ∈ Rm | Mih < Nix+pi−Miu, i ∈ I1:r\I(x,u)}

so that U(x) − {u} ⊆ C(x,u); for any (x,u) ∈ Z, any h ∈ C(x,u),
there exists an α > 0 such that u+αh ∈ U(x). Proposition 7.6 may be
expressed as: u is optimal for minu{V(x,u) | u ∈ U(x)} if and only if

u ∈ U(x) and 〈∇uV(x,u),h〉 ≥ 0 ∀h ∈ U(x)− {u}

We may now state a modified form of Proposition 7.6:
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Proposition 7.7 (Optimality conditions in terms of polar cone). Suppose
for each x ∈ X, u , V(x, ·) is convex and differentiable, and U(x) is
defined by (7.2). Then u is optimal for minu{V(x,u) | u ∈ U(x)} if
and only if

u ∈ U(x) and 〈∇uV(x,u),h〉 ≥ 0 ∀h ∈ C(x,u)

Proof. We show that the condition 〈∇uV(x,u),h〉 ≥ 0 for all h ∈
C(x,u) is equivalent to the condition 〈∇uV(x,u),h〉 ≥ 0 for all h ∈
U(x)−{u} employed in Proposition 7.6. (i) SinceU(x)−{u} ⊆ C(x,u),
〈∇uV(x,u),h〉 ≥ 0 for all h ∈ C(x,u) implies 〈∇uV(x,u),h〉 ≥ 0 for
all h ∈ U(x) − {u}. (ii) 〈∇uV(x,u),h〉 ≥ 0 for all h ∈ U(x) − {u}
implies 〈∇uV(x,u),αh〉 ≥ 0 for all h ∈ U(x)−{u}, all α > 0. But, for
any h∗ ∈ C(x,u), there exists an α ≥ 1 such that h∗ = αh where h :=
(1/α)h∗ ∈ U(x)−{u}. Hence 〈∇uV(x,u),h∗〉 = 〈∇uV(x,u),αh〉 ≥ 0
for all h∗ ∈ C(x,u). �

We now make use of Proposition 7.7 to obtain the optimality condi-
tion in the form we use in the sequel. For all (x,u) ∈ Z, let C∗(x,u)
denote the polar cone to C(x,u).

Proposition 7.8 (Optimality conditions for linear inequalities). Sup-
pose, for each x ∈ X, u , V(x,u) is convex and differentiable, and
U(x) is defined by (7.2). Then u is optimal for minu{V(x,u) | u ∈
U(x)} if and only if

u ∈ U(x) and −∇uV(x,u) ∈ C∗(x,u) = cone{M′i | i ∈ I(x,u)}

Proof. The desired result follows from a direct application of Proposi-
tion 7.5 to Proposition 7.7. �

Note that C(x,u) and C∗(x,u) are both cones so that each set con-
tains the origin. In particular, C∗(x,u) is generated by the gradients
of the constraints active at z = (x,u), and may be defined by a set of
affine inequalities: for each z ∈ Z, there exists a matrix Lz such that

C∗(x,u) = C∗(z) = {g ∈ Rm | Lzg ≤ 0}

The importance of this result for us lies in the fact that the necessary
and sufficient condition for optimality is satisfaction of two polyhedral
constraints, u ∈ U(x) and −∇uV(x,u) ∈ C∗(x,u). Proposition 7.8
may also be obtained by direct application of Proposition C.12 of Ap-
pendix C; C∗(x,u)may be recognized asNU(x)(u), the regular normal
cone to the set U(x) at u.
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7.3.4 Solution of the Parametric Quadratic Program

For the parametric programming problem P(x), the parametric cost
function is

V(x,u) := (1/2)x′Qx +u′Sx + (1/2)u′Ru+ q′x + r ′u+ c

and the parametric constraint set is

U(x) := {u | Mu ≤ Nx + p}

Hence, the cost gradient is

∇uV(x,u) = Ru+ Sx + r

where, because of Assumption 7.3, R is positive definite. Hence, the
necessary and sufficient condition for the optimality of u for the para-
metric quadratic program P(x) is

Mu ≤ Nx + p
− (Ru+ Sx + r) ∈ C∗(x,u)

where C∗(x,u) = cone{M′i | i ∈ I(x,u)}, the cone generated by the
gradients of the active constraints, is polyhedral. We cannot use this
characterization of optimality directly to solve the parametric program-
ming problem since I(x,u) and, hence, C∗(x,u), varies with (x,u).
Given any x ∈ X, however, there exists the possibility of a region con-
taining x such that I0(x) ⊆ I0(w) for allw in this region. We make use
of this observation as follows. It follows from the definition of I0(x)
that the unique solution u0(x) of P(x) satisfies the equation

Miu = Nix + pi, i ∈ I0(x), i.e.,

M0
xu = N0

xx + p0
x

where M0
x , N0

x and p0
x are defined in (7.1). Hence u0(x) is the solution

of the equality constrained problem

V0(x) =min
u
{V(x,u) | M0

xu = N0
xx + p0

x}

If the active constraint set remains constant near the point x or, more
precisely, if I0(x) ⊆ I0(w) for all w in some region in Rn containing
x, then, for all w in this region, u0(w) satisfies the equality constraint
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M0
xu = N0

xw + p0
x . This motivates us to consider the simple equality

constrained problem Px(w) defined by

V0
x(w) =min

u
{V(w,u) | M0

xu = N0
xw + p0

x}

u0
x(w) = arg min

u
{V(w,u) | M0

xu = N0
xw + p0

x}

The subscriptx indicates that the equality constraints inPx(w) depend
on x. Problem Px(w) is an optimization problem with a quadratic cost
function and linear equality constraints and is, therefore, easily solved;
see the exercises at the end of this chapter. Its solution is

V0
x(w) = (1/2)w′Qxw + r ′xw + sx (7.3)

u0
x(w) = Kxw + kx (7.4)

for all w such that I0(w) = I0(x) where Qx ∈ Rn×n, rx ∈ Rn, sx ∈ R,
Kx ∈ Rm×n and kx ∈ Rm are easily determined. Clearly, u0

x(x) =
u0(x); but, is u0

x(w), the optimal solution to Px(w), the optimal so-
lution u0(w) to P(w) in some region containing x and, if it is, what
is the region? Our optimality condition answers this question. For all
x ∈ X, let the region R0

x be defined by

R0
x :=

{
w
∣∣∣ u0

x(w) ∈ U(w)
−∇uV(w,u0

x(w)) ∈ C∗(x,u0(x))

}
(7.5)

Because of the equality constraintM0
xu = N0

xw+p0
x in problem Px(w),

it follows that I(w,u0
x(w)) ⊇ I(x,u0(x)), and that C(w,u0

x(w)) ⊆
C(x,u0(x)) and C∗(w,u0

x(w)) ⊇ C∗(x,u0(x)) for all w ∈ R0
x . Hence

w ∈ R0
x impliesu0

x(w) ∈ U(w) and−∇uV(w,u0
x(w)) ∈ C∗(w,u0

x(w))
for all w ∈ R0

x which, by Proposition 7.8, is a necessary and sufficient
condition for u0

x(w) to be optimal for P(w). In fact, I(w,u0
x(w)) =

I(x,u0(x)) so that C∗(w,u0
x(w)) = C∗(x,u0(x)) for all w in the in-

terior of R0
x . The obvious conclusion of this discussion is

Proposition 7.9 (Solution of P(w), w ∈ R0
x). For any x ∈ X, u0

x(w) is
optimal for P(w) for all w ∈ R0

x .

The constraint u0
x(w) ∈ U(w) may be expressed as

M(Kxw + kx) ≤ Nw + p

which is a linear inequality in w. Similarly, since ∇uV(w,u) = Ru +
Sw + r and since C∗(x,u0(x)) = {g | L0

xg ≤ 0} where L0
x = L(x,u0(x)),

the constraint −∇uV(x,u0
x(w)) ∈ C(x,u0(x)) may be expressed as

−L0
x(R(Kxw + kx)+ Sw + r) ≤ 0
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which is also an affine inequality in the variable w. Thus, for each x,
there exists a matrix Fx and vector fx such that

R0
x = {w | Fxw ≤ fx}

so that R0
x is polyhedral. Since u0

x(x) = u0(x), it follows that u0
x(x) ∈

U(x) and −∇uV(x,u0
x(x)) ∈ C∗(x,u0(x)) so that x ∈ R0

x .
Our next task is to bound the number of distinct regions R0

x that
exist as we permit x to range over X. We note, from its definition,
that R0

x is determined, through the constraint M0
xu = N0

xw + p0
x in

Px(w), through u0
x(·) and through C∗(x,u0(x)), by I0(x) so that

R0
x1

≠ R0
x2

implies that I0(x1) ≠ I0(x2). Since the number of subsets
of {1,2, . . . , p} is finite, the number of distinct regions R0

x as x ranges
over X is finite. Because each x ∈ X lies in the set R0

x , there exists a
discrete set of points X ⊂ X such that X = ∪{R0

x | x ∈ X}. We have
proved:

Proposition 7.10 (Piecewise quadratic (affine) cost (solution)).

(a) There exists a set X of a finite number of points in X such that X =
∪{R0

x | x ∈ X} and {R0
x | x ∈ X} is a polyhedral partition of X.

(b) The value function V0(·) of the parametric piecewise quadratic pro-
gram P is piecewise quadratic in X, being quadratic and equal to V0

x(·),
defined in (7.3) in each polyhedron Rx , x ∈ X. Similarly, the minimizer
u0(·) is piecewise affine in X, being affine and equal to u0

x(·) defined
in (7.4) in each polyhedron R0

x , x ∈ X.

Example 7.11: Parametric QP

Consider the example in Section 7.2. This may be expressed as

V0(x) =min
u
V(x,u), V(x,u) := {(1/2)x2−ux+u2 | Mu ≤ Nx+p}

where

M =

−1
−1
−1

 , N =

 0
1/2

1

 , p =

−1
−2
−2


At x = 1, u0(x) = 3/2 and I0(x) = {2}. The equality constrained
optimization problem Px(w) is

V0
x(w) =min

u
{(1/2)w2 −uw +u2 | −u = (1/2)w − 2}
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so that u0(w) = 2−w/2. Hence

R0
x :=

{
w
∣∣∣ Mu0

x(w) ≤ Nw + p(w)
−∇uV(w,u0

x(w)) ∈ C∗(x,u0(x))

}

Since M2 = −1, C∗(x) = cone{M′i | i ∈ I0(x)} = cone{M′2} = {h ∈ R |
h ≤ 0}; also

∇uV(w,u0
x(w)) = −w + 2u0(w) = −w + 2(2−w/2) = −2w + 4

so that R0
x is defined by the following inequalities:

(1/2)w − 2 ≤ −1 or w ≤ 2

(1/2)w − 2 ≤ (1/2)w − 2 or w ∈ R

(1/2)w − 2 ≤ w − 2 or w ≥ 0

2w − 4 ≤ 0 or w ≤ 2

which reduces to w ∈ [0,2] so R0
x = [0,2] when x = 1; [0,2] is the set

X2 determined in Section 7.2. �

Example 7.12: Explicit optimal control

We return to the MPC problem presented in Example 2.5 of Chapter 2

V0(x,u) =min
u
{V(x,u) | u ∈ U}

V(x,u) := (3/2)x2 + [2x,x]u+ (1/2)u′Hu

H :=
[

3 1
1 2

]
U := {u | Mu ≤ p}

where

M :=


1 0
−1 0
0 1
0 −1

 , p :=


1
1
1
1


It follows from the solution to Example 2.5 that

u0(2) =
[
−1

−(1/2)

]

and I0(x) = {2}. The equality constrained optimization problem at
x = 2 is

V0
x(w) =min

u
{(3/2)w2 + 2wu1 +wu2 + (1/2)u′Hu | u1 = −1}



498 Explicit Control Laws for Constrained Linear Systems

so that

u0
x(w) =

[
−1

(1/2)− (1/2)w

]
Hence u0

x(2) = [−1,−1/2]′ = u0(2) as expected. Since M0
x = M2 =

[−1,0], C∗(x,u0(x)) = {g ∈ R2 | g1 ≤ 0}. Also

∇uV(w,u) =
[

2w + 3u1 +u2

w +u1 + 2u2

]

so that

∇uV(w,u0
x(w)) =

[
(3/2)w − (5/2)

0

]
Hence R0

x , x = 2 is the set of w satisfying the following inequalities

(1/2)− (1/2)w ≤ 1 or w ≥ −1

(1/2)− (1/2)w ≥ −1 or w ≤ 3

−(3/2)w + (5/2) ≤ 0 or w ≥ (5/3)

which reduces to w ∈ [5/3,3]; hence R0
x = [5/3,3] when x = 2 as

shown in Example 2.5. �

7.3.5 Continuity of V0(·) and u0(·)

Continuity ofV0(·) andu0(·) follows from Theorem C.34 in Appendix C.
We present here a simpler proof, however, based on the above analysis.
We use the fact that the parametric quadratic problem is strictly convex,
i.e., for each x ∈ X, u, V(x,u) is strictly convex andU(x) is convex,
so that the minimizer u0(x) is unique as shown in Proposition C.8 of
Appendix C.

Let X = {xi | i ∈ I1:I} denote the set defined in Proposition 7.10(a).
For each i ∈ Ii:I , let Ri := R0

xi , Vi(·) := V0
xi(·) and ui(·) := u0

xi(·).
From Proposition 7.10, u0(x) = ui(x) for each x ∈ Ri, each i ∈ I1:I
so that u0(·) is affine and hence continuous in the interior of each
Ri, and also continuous at any point x on the boundary of X such
that x lies in a single region Ri. Consider now a point x lying in the
intersection of several regions, x ∈ ∩i∈JRi, where J is a subset of
I1:I . Then, by Proposition 7.10, ui(x) = u0(x) for all x ∈ ∩i∈JRi,
all i ∈ J. Each ui(·) is affine and, therefore, continuous, so that u0(·)
is continuous in ∩i∈JRi. Hence u0(·) is continuous in X. Because
V(·) is continuous and u0(·) is continuous in X, the value function
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V0(·) defined by V0(x) = V(x,u0(x)) is also continuous in X. Let
S denote any bounded subset of X. Then, since V0(x) = Vi(x) =
(1/2)x′Qix + r ′ix + si for all x ∈ Ri, all i ∈ I1:I where Qi := Qxi ,
ri := rxi and si := sxi , it follows that V0(·) is Lipschitz continuous in
each set Ri ∩ S and, hence, Lipschitz continuous in X ∩ S. We have
proved the following.

Proposition 7.13 (Continuity of cost and solution). The value function
V0(·) and the minimizeru0(·) are continuous inX. Moreover, the value
function and the minimizer are Lipschitz continuous on bounded sets.

7.4 Constrained Linear Quadratic Control

We now show how parametric quadratic programming may be used to
solve the optimal receding horizon control problem when the system
is linear, the constraints polyhedral, and the cost is quadratic. The
system is described, as before, by

x+ = Ax + Bu (7.6)

and the constraints are, as before,

x ∈ X, u ∈ U (7.7)

where X is a polyhedron containing the origin in its interior and U is
a polytope also containing the origin in its interior. There may be a
terminal constraint of the form

x(N) ∈ Xf (7.8)

where Xf is a polyhedron containing the origin in its interior. The cost
is

VN(x,u) =
N−1∑
i=0

`(x(i),u(i))

+ Vf (x(N)) (7.9)

in which, for all i, x(i) = φ(i;x,u), the solution of (7.6) at time i
if the initial state at time 0 is x and the control sequence is u :=
{u(0),u(1), . . . , u(N −1)}. The functions `(·) and Vf (·) are quadratic

`(x,u) := (1/2)x′Qx + (1/2)u′Ru, Vf (x) := (1/2)x′Qfx (7.10)

The state and control constraints (7.7) induce, via the difference equa-
tion (7.6), an implicit constraint (x,u) ∈ Z where

Z := {(x,u) | x(i) ∈ X, u(i) ∈ U, i ∈ I0:N−1, x(N) ∈ Xf } (7.11)
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Figure 7.6: Regions Rx , x ∈ X for a second-order example.

where, for all i, x(i) = φ(i;x,u). It is easily seen that Z is polyhedral
since, for each i, x(i) = Aix +Miu for some matrix Mi in Rn×Nm; here

u is regarded as the column vector
[
u(0)′ u(1)′ · · · u(N − 1)′

]′
.

Clearly x(i) = φ(i;x,u) is linear in (x,u). The constrained linear op-
timal control problem may now be defined by

V0
N(x) =min

u
{VN(x,u) | (x,u) ∈ Z}

Using the fact that for each i, x(i) = Aix +Miu, it is possible to deter-
mine matrices Q ∈ Rn×n, R ∈ RNm×Nm, and S ∈ RNm×n such that

VN(x,u) = (1/2)x′Qx′ + (1/2)u′Ru+ u′Sx (7.12)

Similarly, as shown above, there exist matrices M, N and a vector p such
that

Z = {(x,u) | Mu ≤ Nx + p} (7.13)

This is precisely the parametric problem studied in Section 7.3, so that
the solution u0(x) to P(x) is piecewise affine on a polytopic partition
P = {Rx | x ∈ X} of X the projection of Z ⊂ Rn ×RNm onto Rn, being
affine in each of the constituent polytopes of P. The receding horizon
control law is x , u0(0;x), the first element of u0(x). Two examples
are shown in Figures 7.6 and 7.7.
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Figure 7.7: Regions Rx , x ∈ X for a second-order example.

7.5 Parametric Piecewise Quadratic Programming

The parametric quadratic program P(x) is defined, as before, by

V0(x) =min
u
{V(x,u) | (x,u) ∈ Z} (7.14)

where x ∈ X ⊂ Rn and u ∈ Rm, but now the cost function V(·) is
assumed to be continuous, strictly convex, and piecewise quadratic on
a polytopic partition P = {Zi | i ∈ I} of the set Z so that

V(z) = Vi(z) = (1/2)z′Qiz + s′iz + ci

for all z ∈ Zi, all i ∈ I where I is an index set. In (7.14), the matrix Qi
and the vector si have the structure

Qi =
[
Qi S′i
Si Ri

]
si =

[
qi
ri

]

so that for all i ∈ I ,

Vi(x,u) = (1/2)x′Qix +u′Six + (1/2)u′Riu+ q′ix + r ′iu+ c

For each x, the function u , Vi(x,u) is quadratic and depends on x.
The constraint set Z is defined, as above, by

Z := {(x,u) | Mu ≤ Nx + p}
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Let u0(x) denote the solution of P(x), i.e.,

u0(x) = arg min
u
{V(x,u) | (x,u) ∈ Z}

The solution u0(x) is unique if V(·) is strictly convex in u at each x;
this is the case if each Ri is positive definite. The parametric piecewise
quadratic program may also be expressed, as before, as

V0(x) =min
u
{V(x,u) | u ∈ U(x)}

u0(x) = arg min
u
{V(x,u) | u ∈ U(x)}

where the parametric constraint set U(x) is defined by

U(x) := {u | (x,u) ∈ Z} = {u | Mu ≤ Nx + p}

Let X ⊂ Rn be defined by

X := {x | ∃u such that (x,u) ∈ Z} = {x | U(x) ≠∅}

The set X is the domain of V0(·) and of u0(·) and is thus the set of
points x for which a feasible solution of P(x) exists; it is the projection
of Z, which is a set in (x,u)-space, onto x-space as shown in Figure 7.1.
We make the following assumption in the sequel.

Assumption 7.14 (Continuous, piecewise quadratic function). The func-
tion V(·) is continuous, strictly convex, and piecewise quadratic on the
polytopic partition P = {Zi | i ∈ I := I1:q} of the polytope Z in Rn×Rm;
V(x,u) = Vi(x,u) where Vi(·) is a positive definite quadratic function
of (x,u) for all (x,u) ∈ Zi, all i ∈ I , and q is the number of constituent
polytopes in P.

The assumption of continuity places restrictions on the quadratic
functions Vi(·), i ∈ I . For example, we must have Vi(z) = Vj(z) for
all z ∈ Zi ∩ Zj . Assumption 7.14 implies that the piecewise quadratic
programming problem P(x) satisfies the hypotheses of Theorem C.34
so that the value function V0(·) is continuous. It follows from Assump-
tion 7.14 and Theorem C.34 that V0(·) is strictly convex and continuous
and that the minimizer u0(·) is continuous. Assumption 7.14 implies
that Qi is positive definite for all i ∈ I . For each x, let the setU(x) be
defined by

U(x) := {u | (x,u) ∈ Z}
ThusU(x) is the set of admissible u at x, and P(x) may be expressed
in the form V0(x) =minu{V(x,u) | u ∈ U(x)}.
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For each i ∈ I , we define an “artificial” problem Pi(x) as follows

V0
i (x) :=min

u
{Vi(x,u) | (x,u) ∈ Zi}

u0
i (x) := arg min

u
{Vi(x,u) | (x,u) ∈ Zi}

The cost Vi(x,u) in the above equations may be replaced by V(x,u)
since V(x,u) = Vi(x,u) in Zi. The problem is artificial because it in-
cludes constraints (the boundaries of Zi) that are not necessarily con-
straints of the original problem. We introduce this problem because it
helps us to understand the solution of the original problem. For each
i ∈ I1:p, let the set Ui(x) be defined as follows

Ui(x) := {u | (x,u) ∈ Zi}

Thus the set Ui(x) is the set of admissible u at x, and problem Pi(x)
may be expressed as V0

i (x) := minu{Vi(x,u) | u ∈ Ui(x)}; the set
Ui(x) is polytopic. For each i, problem Pi(x) may be recognized as a
standard parametric quadratic program discussed in Section 7.4. Be-
cause of the piecewise nature of V(·), we require another definition.

Definition 7.15 (Active polytope (polyhedron)). A polytope (polyhe-
dron) Zi in a polytopic (polyhedral) partition P = {Zi | i ∈ I} of a
polytope (polyhedron) Z is said to be active at z ∈ Z if z = (x,u) ∈ Zi.
The index set specifying the polytopes active at z ∈ Z is

S(z) := {i ∈ I | z ∈ Zi}

A polytope Zi in a polytopic partition P = {Zi | i ∈ I} of a polytope Z
is said to be active for problem P(x)) if (x,u0(x)) ∈ Zi. The index set
specifying polytopes active at (x,u0(x)) is S0(x) defined by

S0(x) := S(x,u0(x)) = {i ∈ I | (x,u0(x)) ∈ Zi}

Because we know how to solve the “artificial” problems Pi(x), i ∈ I
that are parametric quadratic programs, it is natural to ask if we can
recover the solution of the original problem P(x) from the solutions
to these simpler problems. This question is answered by the following
proposition.

Proposition 7.16 (Solving P using Pi). For any x ∈ X, u is optimal for
P(x) if and only if u is optimal for Pi(x) for all i ∈ S(x,u).
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Proof. (i) Suppose u is optimal for P(x) but, contrary to what we wish
to prove, there exists an i ∈ S(x,u) = S0(x) such that u is not op-
timal for Pi(x). Hence there exists a v ∈ Rm such that (x,v) ∈ Zi
and V(x,v) = Vi(x,v) < Vi(x,u) = V(x,u) = V0(x), a contradic-
tion of the optimality of u for P(x). (ii) Suppose u is optimal for
Pi(x) for all i ∈ S(x,u) but, contrary to what we wish to prove, u
is not optimal for P(x). Hence V0(x) = V(x,u0(x)) < V(x,u). If
u0(x) ∈ Z(x,u) := ∪i∈S(x,u)Zi, we have a contradiction of the optimality
of u in Z(x,u). Assume then that u0(x) ∈ Zj , j ∉ S(x,u); for simplic-
ity, assume further that Zj is adjacent to Z(x,u). Then, there exists a
λ ∈ (0,1] such thatuλ := u+λ(u0(x)−u) ∈ Z(x,u); if not, j ∈ S(x,u), a
contradiction. Since V(·) is strictly convex, V(x,uλ) < V(x,u), which
contradicts the optimality of u in Z(x,u). The case when Zj is not adja-
cent to Z(x,u) may be treated similarly. �

To obtain a parametric solution, we proceed as before. We select a
point x ∈ X and obtain the solution u0(x) to P(x) using a standard
algorithm for convex programs. The solution u0(x) satisfies an equal-
ity constraint Exu = Fxx + gx , which we employ to define, for any
w ∈ X near x an easily solved equality constrained optimization prob-
lem Px(w) that is derived from the problems Pi(x), i ∈ S0(x). Finally,
we show that the solution to this simple problem is also a solution to
the original problem P(w) at all w in a polytope Rx ⊂ X in which x
lies.

For each i ∈ I , Zi is defined by

Zi := {(x,u) | Miu ≤ Nix + pi}

Let Mij , N
i
j and qij denote, respectively, the jth row of Mi, Ni and qi,

and let Ii(x,u) and I0i (x), defined by

Ii(x,u) := {j | Miju = Nijx + pij}, I0i (x) := Ii(x,u0
i (x))

denote, respectively, the active constraint set at (x,u) ∈ Zi and the ac-
tive constraint set for Pi(x). Because we now use subscript i to specify
Zi, we change our notation slightly and now let Ci(x,u) denote the
cone of first-order feasible variations for Pi(x) at u ∈ Ui(x), i.e.,

Ci(x,u) := {h ∈ Rm | Mijh ≤ 0 ∀j ∈ Ii(x,u)}

Similarly, we define the polar cone C∗i (x,u) of the cone Ci(x,u) at
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h = 0 by

C∗i (x,u) := {v ∈ Rm | v′h ≤ 0 ∀h ∈ Ci(x,u)}

=

 ∑
j∈Ii(x,u)

(Mij)
′λj

∣∣∣ λj ≥ 0, j ∈ Ii(x,u)


As shown in Proposition 7.7, a necessary and sufficient condition for
the optimality of u for problem Pi(x) is

−∇uVi(x,u) ∈ C∗i (x,u), u ∈ Ui(x) (7.15)

If u lies in the interior of Ui(x) so that I0i (x) = ∅, condition (7.15)
reduces to ∇uVi(x,u) = 0. For any x ∈ X, the solution u0(x) of the
piecewise parametric program P(x) satisfies

Miju = Nijx + pij , ∀j ∈ I0i (x), ∀i ∈ S0(x) (7.16)

To simplify our notation, we rewrite the equality constraint (7.16) as

Exu = Fxx + gx

where the subscriptx denotes the fact that the constraints are precisely
those constraints that are active for the problems Pi(x), i ∈ S0(x). The
fact that u0(x) satisfies these constraints and is, therefore, the unique
solution of the optimization problem

V0(x) =min
u
{V(x,u) | Exu = Fxx + gx}

motivates us to define the equality constrained problem Px(w) forw ∈
X near x by

V0
x(w) =min

u
{Vx(w,u) | Exu = Fxw + gx}

where Vx(w,u) := Vi(w,u) for all i ∈ S0(x) and is, therefore, a posi-
tive definite quadratic function of (x,u). The notation V0

x(w) denotes
the fact that the parameter in the parametric problem Px(w) is now
w but the data for the problem, namely (Ex, Fx, gx), is derived from
the solution u0(x) of P(x) and is, therefore, x-dependent. Problem
Px(w) is a simple equality constrained problem in which the cost Vx(·)
is quadratic and the constraints Exu = Fxw +gx are linear. Let V0

x(w)
denote the value of Px(w) and u0

x(w) its solution. Then

V0
x(w) = (1/2)w′Qxw + r ′xw + sx
u0
x(w) = Kxw + kx (7.17)
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whereQx , rx , sx , Kx and kx are easily determined. It is easily seen that
u0
x(x) = u0(x) so that u0

x(x) is optimal for P(x). Our hope is that
u0
x(w) is optimal for P(w) for all w in some neighborhood Rx of x.

We now show this is the case.

Proposition 7.17 (Optimality of u0
x(w) in Rx). Let x be an arbitrary

point in X. Then,

(a) u0(w) = u0
x(w) and V0(w) = V0

x(w) for all w in the set Rx defined
by

Rx :=
{
w ∈ Rn

∣∣∣ u0
x(w) ∈ Ui(w) ∀i ∈ S0(x)

−∇uVi(w,u0
x(w)) ∈ C∗i (x,u0(x)) ∀i ∈ S0(x)

}

(b) Rx is a polytope

(c) x ∈ Rx

Proof.

(a) Because of the equality constraint 7.16 it follows that Ii(w,ux(w)) ⊇
Ii(x,u0(x)) and that S(w,u0

x(w)) ⊇ S(x,u0(x)) for all i ∈ S(x,u0(x)) =
S0(x), all w ∈ Rx . Hence Ci(w,u0

x(w)) ⊆ Ci(x,u0(x)), which implies
C∗i (w,u

0
x(w)) ⊇ C∗i (x,u0(x)) for all i ∈ S(x,u0(x)) ⊆ S(w,u0

x(w)).
It follows from the definition of Rx that u0

x(w) ∈ Ui(w) and that
−∇uVi(w,u0

x(w)) ∈ C∗i (w,u0
x(w)) for all i ∈ S(w,u0

x(w)). Hence
u = u0

x(w) satisfies necessary and sufficient for optimality for Pi(w)
for all i ∈ S(w,u), all w ∈ Rx and, by Proposition 7.16, necessary
and sufficient conditions of optimality for P(w) for all w ∈ Rx . Hence
u0
x(w) = u0(w) and V0

x(w) = V0(w) for all w ∈ Rx .

(b) That Rx is a polytope follows from the facts that the functions
w , u0

x(w) and w , ∇uVi(w,u0
x(w)) are affine, the sets Zi are poly-

topic and the sets C0
i (x,u

0(x)) are polyhedral; hence (w,u0
x(w)) ∈ Zi

is a polytopic constraint and−∇uVi(w,u0
x(w)) ∈ C∗i (x,u0(x)) a poly-

hedral constraint on w.

(c) Thatx ∈ Rx follows from Proposition 7.16 and the fact thatu0
x(x) =

u0(x). �

Reasoning as in the proof of Proposition 7.10, we obtain:

Proposition 7.18 (Piecewise quadratic (affine) solution). There exists a
finite set of points X in X such that {Rx | x ∈ X} is a polytopic par-
tition of X. The value function V0(·) for P(x) is strictly convex and
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piecewise quadratic and the minimizer u0(·) is piecewise affine in X
being equal, respectively, to the quadratic function V0

x(·) and the affine
function u0

x(·) in each region Rx , x ∈ X.

7.6 DP Solution of the Constrained LQ Control Problem

A disadvantage in the procedure described in Section 7.4 for determin-
ing the piecewise affine receding horizon control law is the dimension
Nm of the decision variable u. It seems natural to inquire whether or
not DP, which replaces a multistage decision problem by a sequence
of relatively simple single-stage problems, provides a simpler solution.
We answer this question by showing how DP may be used to solve the
constrained linear quadratic (LQ) problem discussed in Section 7.4. For
all j ∈ I1:N , let V0

j (·), the optimal value function at time-to-go j, be de-
fined by

V0
j (x) :=min

u
{Vj(x,u) | (x,u) ∈ Zj}

Vj(x,u) :=
j−1∑
i=0

`(x(i),u(i))+ Vf (x(j))

Zj := {(x,u) | x(i) ∈ X, u(i) ∈ U, i ∈ I0:j−1, x(j) ∈ Xf }

with x(i) := φ(i;x,u); V0
j (·) is the value function for Pj(x). As shown

in Chapter 2, the constrained DP recursion is

V0
j+1(x) =min

u
{`(x,u)+ V0

j (f (x,u)) | u ∈ U, f (x,u) ∈ Xj} (7.18)

Xj+1 = {x ∈ X | ∃ u ∈ U such that f(x,u) ∈ Xj} (7.19)

where f(x,u) := Ax + Bu with boundary condition

V0
0 (·) = Vf (·), X0 = Xf

The minimizer of (7.18) is κj+1(x). In the equations, the subscript j
denotes time to go, so that current time i = N − j. For each j, Xj is
the domain of the value function V0

j (·) and of the control law κj(·),
and is the set of states that can be steered to the terminal set Xf in
j steps or less by an admissible control that satisfies the state and
control constraints. The time-invariant receding horizon control law
for horizon j is κj(·) whereas the optimal policy for problem Pj(x) is
{κj(·), κj−1(·), . . . , κ1(·)}. The data of the problem are identical to the
data in Section 7.4.
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We know from Section 7.4 that V0
j (·) is continuous, strictly convex

and piecewise quadratic, and that κj(·) is continuous and piecewise
affine on a polytopic partition PXj of Xj . Hence the function (x,u) ,
V(x,u) := `(x,u) + V0

j (Ax + Bu) is continuous, strictly convex and
piecewise quadratic on a polytopic partition PZj+1 of the polytope Zj+1

defined by

Zj+1 := {(x,u) | x ∈ X, u ∈ U, Ax + Bu ∈ Xj}

The polytopic partition PZj+1 of Zj+1 may be computed as follows: if
X is a constituent polytope of Xj , then, from (7.19), the corresponding
constituent polytope of PZj+1 is the polytope Z defined by

Z := {z = (x,u) | x ∈ X, u ∈ U, Ax + Bu ∈ X}

ThusZ is defined by a set of linear inequalities; also `(x,u)+V0
j (f (x,u))

is quadratic on Z . Thus the techniques of Section 7.5 can be employed
for its solution, yielding the piecewise quadratic value function V0

j+1(·),
the piecewise affine control law κj+1(·), and the polytopic partition
PXj+1 on which V0

j+1(·) and κj+1(·) are defined. Each problem (7.18) is
much simpler than the problem considered in Section 7.4 sincem, the
dimension of u, is much less than Nm, the dimension of u. Thus, the
DP solution is preferable to the direct method described in Section 7.4.

7.7 Parametric Linear Programming

7.7.1 Preliminaries

The parametric linear program P(x) is

V0(x) =min
u
{V(x,u) | (x,u) ∈ Z}

where x ∈ X ⊂ Rn and u ∈ Rm, the cost function V(·) is defined by

V(x,u) = q′x + r ′u

and the constraint set Z is defined by

Z := {(x,u) | Mu ≤ Nx + p}

Let u0(x) denote the solution of P(x), i.e.,

u0(x) = arg min
u
{V(x,u) | (x,u) ∈ Z}
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The solution u0(x) may be set valued. The parametric linear program
may also be expressed as

V0(x) =min
u
{V(x,u) | u ∈ U(x)}

where, as before, the parametric constraint set U(x) is defined by

U(x) := {u | (x,u) ∈ Z} = {u | Mu ≤ Nx + p}

Also, as before, the domain of V0(·) and u0(·), i.e., the set of points x
for which a feasible solution of P(x) exists, is the set X defined by

X := {x | ∃u such that (x,u) ∈ Z} = {x | U(x) ≠∅}

The set X is the projection of Z (which is a set in (x,u)-space) onto
x-space; see Figure 7.1. We assume in the sequel that the problem is
well posed, i.e., for each x ∈ X, V0(x) > −∞. This excludes problems
like V0(x) = infu{x+u | −x ≤ 1, x ≤ 1} for which V0(x) = −∞ for all
x ∈ X = [−1,1].

Let I1:p denote, as usual, the index set {1,2, . . . , p}. For all (x,u) ∈
Z, let I(x,u) denote the set of active constraints at (x,u), i.e.,

I(x,u) := {i ∈ I1:p | Miu = Nix + pi}

where Ai denotes the ith row of any matrix (or vector) A. Similarly, for
any matrix A and any index set I, AI denotes the matrix with rows Ai,
i ∈ I. If, for any x ∈ X, u0(x) is unique, the set I0(x) of constraints
active at (x,u0(x)) is defined by

I0(x) := I(x,u0(x))

When u0(x) is unique, it is a vertex (a face of dimension zero) of
the polyhedron U(x) and is the unique solution of

M0
xu = N0

xx + p0
x

where
M0
x := MI0(x), N0

x := NI0(x), p0
x := pI0(x)

In this case, the matrix M0
x has rank m.

Any face F ofU(x)with dimensiond ∈ {1,2, . . . ,m} satisfiesMiu =
Nix+pi for all i ∈ IF , all u ∈ F for some index set IF ⊆ I1:p. The matrix
MIF with rows Mi, i ∈ IF , has rank m− d, and the face F is defined by

F := {u | Miu = Nix + pi, i ∈ IF} ∩U(x)
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When u0(x) is not unique, it is a face of dimension d ≥ 1 and the set
I0(x) of active constraints is defined by

I0(x) := {i | Miu = Nix+pi∀u ∈ u0(x)} = {i | i ∈ I(x,u)∀u ∈ u0(x)}

The set {u | Miu = Nix+pi, i ∈ I0(x)} is an affine hyperplane in which
u0(x) lies. See Figure 7.8 where u0(x1) is unique, a vertex of U(x1),
and I0(x1) = {2,3}. If, in Figure 7.8, r = −e1, then u0(x1) = F2(x1),
a face of dimension 1; u0(x1) is, therefore, set valued. Since u ∈ Rm

wherem = 2, u0(x1) is a facet, i.e., a face of dimensionm−1 = 1. Thus
u0(x1) is a set defined by u0(x1) = {u | M1u ≤ N1x1 + p1, M2u =
N2x1 + p2, M3u ≤ N3x1 + p3}.

At each z = (x,u) ∈ Z, i.e., for each (x,u) such that x ∈ X and
u ∈ U(x), the cone C(z) = C(x,u) of first-order feasible variations is
defined, as before, by

C(z) := {h ∈ Rm | Mih ≤ 0, i ∈ I(z)} = {h ∈ Rm | MI(z)h ≤ 0}

If I(z) = I(x,u) = ∅ (no constraints are active), C(z) = Rm (all varia-
tions are feasible).

Since u, V(x, ·) is convex and differentiable, andU(x) is polyhe-
dral for all x, the parametric linear program P(x) satisfies the assump-
tions of Proposition 7.8. Hence, repeating Proposition 7.8 for conve-
nience, we have

Proposition 7.19 (Optimality conditions for parametric linear program).
A necessary and sufficient condition foru to be a minimizer for the para-
metric linear program P(x) is

u ∈ U(x) and −∇uV(x,u) ∈ C∗(x,u)

where ∇uV(x,u) = r and C∗(x,u) is the polar cone of C(x,u).

An important difference between this result and that for the para-
metric quadratic program is that ∇uV(x,u) = r and, therefore, does
not vary withx oru. We now use this result to show that bothV0(·) and
u0(·) are piecewise affine. We consider the simple case when u0(x) is
unique for all x ∈ X.

7.7.2 Minimizer u0(x) Is Unique for all x ∈ X

Before proceeding to obtain the solution to a parametric linear program
when the minimizer u0(x) is unique for each x ∈ X, we look first at
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Figure 7.8: Solution to a parametric linear program.

the simple example illustrated in Figure 7.8, which shows the constraint
setU(x) for various values of the parameter x in the interval [x1, x3].
The setU(x1) has six faces: F1(x1), F2(x1), F3(x1), F4(x1), F5(x1) and
F6(x1). Face F1(x) lies in the hyperplane H1(x) that varies linearly
with x; each face Fi(x), i = 2, . . . ,6, lies in the hyperplane Hi that
does not vary with x. All the faces vary with x as shown so thatU(x2)
has four faces: F1(x2), F3(x2), F4(x2) and F5(x2); andU(x3) has three
faces: F1(x3), F4(x3) and F5(x3). The face F1(x) is shown for three
values of x: x = x1 (the bold line), and x = x2 and x = x3 (dotted
lines). It is apparent that for x ∈ [x1, x2], u0(x) = u2,3 in which u2,3 is
the intersection ofH2 andH3, and u0(x3) = u3,4, in which u3,4 is the
intersection ofH3 andH4. It can also be seen that u0(x) is unique for
all x ∈ X.

We now return to the general case. Suppose, for some ∈ X, u0(x)
is the unique solution of P(x); u0(x) is the unique solution of

M0
xu = N0

xx + p0
x

It follows that u0(x) is the trivial solution of the simple equality con-
strained problem defined by

V0(x) =min
u
{V(x,u) | M0

xu = N0
xx + p0

x} (7.20)
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The solution u0(x) of this equality constrained problem is trivial be-
cause it is determined entirely by the equality constraints; the cost
plays no part.

The optimization problem (7.20) motivates us, as in parametric quad-
ratic programming, to consider, for any parameter w “close” to x, the
simpler equality constrained problem Px(w) defined by

V0
x(w) =min

u
{V(w,u) | M0

xu = N0
xw + p0

x}

u0
x(w) = arg min

u
{V(w,u) | M0

xu = N0
xw + p0

x}

Let u0
x(w) denote the solution of Px(w). Because, for each x ∈ X,

the matrix M0
x has full rank m, there exists an index set Ix such that

MIx ∈ Rm×m is invertible. Hence, for each w, u0
x(w) is the unique

solution of

MIxu = NIxw + pIx
so that for all x ∈ X, all w ∈ Rm

u0
x(w) = Kxw + kx (7.21)

where Kx := (MIx)−1NIx and kx := (MIx)−1pIx . In particular, u0(x) =
u0
x(x) = Kxx + kx . Since V0

x(x) = Vx(x,u0
x(w)) = q′x + r ′u0

x(w), it
follows that

V0
x(x) = (q′ + r ′Kx)x + r ′kx

for all x ∈ X, all w ∈ Rm. Both V0
x(·) and u0

x(·) are affine in x.
It follows from Proposition 7.19 that−r ∈ C∗(x,u0(x)) = cone{M′i |

i ∈ I0(x) = I(x,u0(x))} = cone{M′i | i ∈ Ix}. Since Px(w) satisfies
the conditions of Proposition 7.8, we may proceed as in Section 7.3.4
and define, for each x ∈ X, the set R0

x as in (7.5)

R0
x :=

{
w ∈ Rn

∣∣∣ u0
x(w) ∈ U(w)

−∇uV(w,u0
x(w)) ∈ C∗(x,u0(x))

}

It then follows, as shown in Proposition 7.9, that for any x ∈ X, u0
x(w)

is optimal for P(w) for all w ∈ R0
x . Because P(w) is a paramet-

ric linear program, however, rather than a parametric quadratic pro-
gram, it is possible to simplify the definition of R0

x . We note that
∇uV(w,u0

x(w)) = r for all x ∈ X, all w ∈ Rm. Also, it follows from
Proposition 7.8, sinceu0(x) is optimal forP(x), that−∇uV(x,u0(x)) =
−r ∈ C∗(x) so that the second condition in the definition above for
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R0
x is automatically satisfied. Hence we may simplify our definition for
R0
x ; for the parametric linear program, R0

x may be defined by

R0
x := {w ∈ Rn | u0

x(w) ∈ U(w)} (7.22)

Because u0
x(·) is affine, it follows from the definition of U(w) that

R0
x is polyhedral. The next result follows from the discussion in Sec-

tion 7.3.4:

Proposition 7.20 (Solution of P). For any x ∈ X, u0
x(w) is optimal for

P(w) for all w in the set R0
x defined in (7.22).

Finally, the next result characterizes the solution of the parametric
linear program P(x) when the minimizer is unique.

Proposition 7.21 (Piecewise affine cost and solution).

(a) There exists a finite set of points X in X such that {R0
x | x ∈ X} is a

polyhedral partition of X.

(b) The value function V0(·) for P(x) and the minimizeru0(·) are piece-
wise affine in X being equal, respectively, to the affine functions V0

x(·)
and u0

x(·) in each region Rx , x ∈ X.

(c) The value function V0(·) and the minimizer u0(·) are continuous in
X.

Proof. The proof of parts (a) and (b) follows, apart from minor changes,
the proof of Proposition 7.10. The proof of part (c) uses the fact that
u0(x) is unique, by assumption, for all x ∈ X and is similar to the
proof of Proposition 7.13. �

7.8 Constrained Linear Control

The previous results on parametric linear programming may be applied
to obtain the optimal receding horizon control law when the system is
linear, the constraints polyhedral, and the cost linear as is done in a
similar fashion in Section 7.4 where the cost is quadratic. The optimal
control problem is therefore defined as in Section 7.4, except that the
stage cost `(·) and the terminal cost Vf (·) are now defined by

`(x,u) := q′x + r ′u, Vf (x) := q′fx

As in Section 7.4, the optimal control problem PN(x)may be expressed
as

V0
N(x) =min

u
{VN(x,u) | Mu ≤ Nx + p}
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where, now

VN(x,u) = q′x + r′u

Hence the problem has the same form as that discussed in Section 7.7
and may be solved as shown there.

It is possible, using a simple transcription, to use the solution of
PN(x) to solve the optimal control problem when the stage cost and
terminal cost are defined by

`(x,u) := |Qx|p + |Ru|p, Vf (x) := |Qfx|p

where | · |p denotes the p-norm and p is either 1 or ∞.

7.9 Computation

Our main purpose above was to establish the structure of the solution
of parametric linear or quadratic programs and, hence, of the solu-
tions of constrained linear optimal control problems when the cost is
quadratic or linear and we have not presented algorithms for solving
these problems. A naive approach to computation would be to gener-
ate points x in X randomly and to compute the corresponding polyhe-
dral sets Rx using the formula given previously. But, due to numerical
errors, these regions would either overlap or leave gaps or both, ren-
dering the solution useless. Methods for low-dimensional problems
are described in the survey paper by Alessio and Bemporad (2008).
The preferred methods generate new regions adjacent to a set of re-
gions already determined. In this class is the lexicographic perturba-
tion algorithm described by Jones, Kerrigan, and Maciejowski (2007) for
parametric linear programs and by Jones and Morari (2006) for para-
metric linear complementarity problems and for quadratic programs.
The toolboxes (Bemporad, 2004) and (Kvasnica, Grieder, and Baotíc,
2006) provide tools for the determination of feedback control laws for
relatively simple linear systems with polyhedral constraints.

7.10 Notes

Early work on parametric programming, e.g. (Dantzig, Folkman, and
Shapiro, 1967) and (Bank, Guddat, Klatte, Kummer, and Tanner, 1983),
was concerned with the sensitivity of optimal solutions to parameter
variations. Solutions to the parametric linear programming problem
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were obtained relatively early (Gass and Saaty, 1955) and (Gal and Ne-
doma, 1972). Solutions to parametric quadratic programs were ob-
tained in (Seron, De Doná, and Goodwin, 2000) and (Bemporad, Morari,
Dua, and Pistikopoulos, 2002) and applied to the determination of opti-
mal control laws for linear systems with polyhedral constraints. Since
then a large number of papers on this topic have appeared, many of
which are reviewed in (Alessio and Bemporad, 2008). Most papers em-
ploy the Kuhn-Tucker conditions of optimality in deriving the regions
Rx , x ∈ X. Use of the polar cone condition was advocated in (Mayne
and Rakovíc, 2002) in order to focus on the geometric properties of the
parametric optimization problem and avoid degeneracy problems. Sec-
tion 7.5, on parametric piecewise quadratic programming, is based on
(Mayne, Rakovíc, and Kerrigan, 2007). The examples in Section 7.4 were
computed by Rakovíc. That uniqueness of the minimizer can be em-
ployed, instead of maximum theorems, to establish, as in Section 7.3.5,
continuity of u0(·) and, hence, of V0(·), was pointed out by Bemporad
et al. (2002) and Borrelli (2003, p. 37).
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7.11 Exercises

Exercise 7.1: Quadratic program with equality constraints

Obtain the solution u0 and the value V0 of the equality constrained optimization

problem V0 = minu{V(u) | h(u) = 0} where V(u) = (1/2)u′Ru + r ′u + c and

h(u) := Mu− p.

Exercise 7.2: Parametric quadratic program with equality constraints

Show that the solutionu0(x) and the value V0(x) of the parametric optimization prob-

lem V0(x) = minu{V(x,u) | h(x,u) = 0} where V(x,u) := (1/2)x′Qx + u′Sx +
(1/2)u′Ru+q′x+r ′u+c and h(x,u) := Mu−Nx−p have the form u0(x) = Kx+k
and V0(x) = (1/2)x′Q̄x + q̄′x + s. Determine Q̄, q̄, s, K and k.

Exercise 7.3: State and input trajectories in constrained LQ problem

For the constrained linear quadratic problem defined in Section 7.4, show that u :=
{u(0),u(1), . . . , u(N−1)} and x := {x(0), x(1), . . . , x(N)}, where x(0) = x and x(i) =
φ(i;x,u), i = 0,1, . . . ,N, satisfy:

x = Fx +Gu

and determine the matrices F and G; in this equation u and x are column vectors.
Hence show that VN(x,u) and Z, defined respectively in (7.9) and (7.11), satisfy (7.12)
and (7.13), and determine Q , R, M, N and p.

Exercise 7.4: The parametric linear program with unique minimizer

For the example of Figure 7.8, determine u0(x), V0(x), I0(x) and C∗(x) for all x in

the interval [x1, x3]. Show that −r lies in C∗(x) for all x in [x1, x3].

Exercise 7.5: Cost function and constraints in constrained LQ control prob-
lem

For the constrained linear control problem considered in Section 7.8, determine the

matrices M, N and p that define the constraint set Z, and the vectors q and r that define

the cost VN(·).

Exercise 7.6: Cost function in constrained linear control problem

Show that |x|p , p = 1 and p = ∞, may be expressed as maxj{s′jx | j ∈ J} and
determine si, i ∈ I for the two cases p = 1 and p = ∞. Hence show that the optimal
control problem in Section 7.8 may be expressed as

V0
N(x) =min

v
{VN(x,v) | Mv ≤ Nx + p}

where, now, v is a column vector whose components are u(0),u(1), . . . , u(N − 1),
`x(0), `x(1), . . . , `x(N), `u(0), `u(1), . . . , `u(N − 1) and f ; the cost VN(x,v) is now
defined by

VN(x,v) =
N−1∑
i=0

(`x(i)+ `u(i))+ f
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Finally, Mv ≤ Nx + p now specifies the constraints u(i) ∈ U and x(i) ∈ X, |Ru(i)|p ≤
`u(i), |Qx(i)|p ≤ `x(i), i = 0,1, . . . ,N − 1, x(N) ∈ Xf , and |Qfx(N)| ≤ f . As before,
x+ = Fx+Gu.

Exercise 7.7: Is QP constraint qualification relevant to MPC?

Continuity properties of the MPC control law are often used to establish robustness
properties of MPC such as robust asymptotic stability. In early work on continuity
properties of linear model MPC, Scokaert, Rawlings, and Meadows (1997) used results
on continuity of QPs with respect to parameters to establish MPC stability under per-
turbations. For example, Hager (1979) considered the following quadratic program

min
u
(1/2)u′Hu+ h′u+ c

subject to
Du ≤ d

and established that the QP solution u0 and cost V0 are Lipschitz continuous in the
data of the QP, namely the parameters H,h,D,d. To establish this result Hager (1979)
made the following assumptions.

• The solution is unique for all H,h,D,d in a chosen set of interest.

• The rows ofD corresponding to the constraints active at the solution are linearly
independent. The assumption of linear independence of active constraints is a
form of constraint qualification.

(a) First we show that some form of constraint qualification is required to establish
continuity of the QP solution with respect to matrix D. Consider the following
QP example that does not satisfy Hager’s constraint qualification assumption.

H =
[

1 0
0 1

]
D =

[
1 1
−1 −1

]
d =

[
1
−1

]
h =

[
−1
−1

]
c = 1

Find the solution u0 for this problem.

Next perturb the D matrix to

D =
[

1 1
−1+ ε −1

]
in which ε > 0 is a small perturbation. Find the solution to the perturbed prob-
lem. Are V0 and u0 continuous in parameter D for this QP? Draw a sketch of
the feasible region and cost contours for the original and perturbed problems.
What happens to the feasible set when D is perturbed?

(b) Next consider MPC control of the following system with state inequality con-
straint and no input constraints

A =
[
−1/4 1
−1 1/2

]
B =

[
1 1
−1 −1

]
x(k) ≤

[
1
1

]
k ∈ I0:N

Using a horizon N = 1, eliminate the state x(1) and write out the MPC QP for
the input u(0) in the form given above for Q = R = I and zero terminal penalty.
Find an initial condition x0 such that the MPC constraint matrix D and vector d
are identical to those given in the previous part. Is this x0 ∈ XN?

Are the rows of the matrix of active constraints linearly independent in this MPC
QP on the set XN? Are the MPC control law κN(x) and optimal value function
V0
N(x) Lipschitz continuous on the set XN for this system? Explain the reason

if these two answers differ.
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A
Mathematical Background

A.1 Introduction

In this appendix we give a brief review of some concepts that we need.
It is assumed that the reader has had at least a first course on lin-
ear systems and has some familiarity with linear algebra and analy-
sis. The appendices of Polak (1997); Nocedal and Wright (1999); Boyd
and Vandenberghe (2004) provide useful summaries of the results we
require. The material presented in Sections A.2–A.14 follows closely
Polak (1997) and earlier lecture notes of Professor Polak.

A.2 Vector Spaces

The Euclidean space Rn is an example of a vector space that satisfies a
set of axioms the most significant being: if x and z are two elements
of a vector space V , then αx + βz is also an element of V for all
α,β ∈ R. This definition presumes addition of two elements of V and
multiplication of any element of V by a scalar are defined. Similarly,
S ⊂ V is a linear subspace1 of V if any two elements of x and z of S
satisfy αx+βz ∈ S for all α,β ∈ R. Thus, in R3, the origin, a line or a
plane passing through the origin, the whole set R3, and even the empty
set are all subspaces.

A.3 Range and Nullspace of Matrices

Suppose A ∈ Rm×n. Then R(A), the range of A, is the set {Ax | x ∈
Rn}; R(A) is a subspace of Rm and its dimension, i.e., the number
of linearly independent vectors that span R(A), is the rank of A. For

1All of the subspaces used in this text are linear subspaces, so we often omit the
adjective linear.
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example, if A is the column vector
[

1
1

]
, then R(A) is the subspace

spanned by the vector
[

1
1

]
and the rank of A is 1. The nullspaceN (A)

is the set of vectors in Rn that are mapped to zero byA so thatN (A) =
{x | Ax = 0}. The nullspace N (A) is a subspace of Rn. For the
example above, N (A) is the subspace spanned by the vector

[
1
−1

]
. It

is an important fact that R(A′) ⊕ N (A) = Rn or, equivalently, that
N (A) = (R(A′))⊥ where A′ ∈ Rn×m is the transpose of A and S⊥

denotes the orthogonal complement of any subspace S; a consequence
is that the sum of the dimensions R(A) andN (A) is n. If A is square
and invertible, then n = m and the dimension of R(A) is n so that
the dimension of N (A) is 0, i.e., the nullspace contains only the zero
vector,N (A) = {0}.

A.4 Linear Equations — Existence and Uniqueness

Let A ∈ Rm×n be a real-valued matrix withm rows and n columns. We
are often interested in solving linear equations of the type

Ax = b

in which b ∈ Rm is given, and x ∈ Rn is the unknown. The fundamen-
tal theorem of linear algebra gives a complete characterization of the
existence and uniqueness of solutions to Ax = b (Strang, 1980, pp.87–
88). Every matrix A decomposes the spaces Rn and Rm into the four
fundamental subspaces depicted in Figure A.1. A solution to Ax = b
exists for every b if and only if the rows ofA are linearly independent. A
solution to Ax = b is unique if and only if the columns of A are linearly
independent.

A.5 Pseudo-Inverse

The solution of Ax = y when A is invertible is x = A−1y where A−1 is
the inverse of A. Often an approximate inverse of y = Ax is required
when A is not invertible. This is yielded by the pseudo-inverse A† of A;
if A ∈ Rm×n, then A† ∈ Rn×m. The properties of the pseudo-inverse
are illustrated in Figure A.2 for the case when A ∈ R2×2 where both
R(A) and N (A) have dimension 1. Suppose we require a solution to
the equation Ax = y . Since every x ∈ R2 is mapped into R(A), we
see that a solution may only be obtained if y ∈ R(A). Suppose this is
not the case, as in Figure A.2. Then the closest point, in the Euclidean
sense, to y inR(A) is the point y∗ which is the orthogonal projection
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N (A)
n− r

N (A′)
m− r

R(A)R(A′)

r r

A′ A

RmRn
Ax = b

0 0

Figure A.1: The four fundamental subspaces of matrix A (after
(Strang, 1980, p.88)). The dimension of the range of
A and A′ is r , the rank of matrix A. The nullspace of A
and range of A′ are orthogonal as are the nullspace of A′

and range of A. Solutions to Ax = b exist for all b if and
only if m = r (rows independent). A solution to Ax = b
is unique if and only if n = r (columns independent).

of y onto R(A), i.e., y −y∗ is orthogonal to R(A). Since y∗ ∈ R(A),
there exists a point in R2 that A maps into y∗. Now A maps any point
of the form x + h where h ∈ N (A) into A(x + h) = Ax + Ah = Ax
so that there must exist a point x∗ ∈ (N (A))⊥ = R(A′) such that
Ax∗ = y∗, as shown in Figure A.2. All points of the form x = x∗ + h
where h ∈ N (A) are also mapped into y∗; x∗ is the point of least
norm that satisfies Ax∗ = y∗ where y∗ is that point in R(A) closest,
in the Euclidean sense, to y .

The pseudo-inverse A† of a matrix A ∈ Rm×n is a matrix in Rn×m

that maps every y ∈ Rm to that point x ∈ R(A′) of least Euclidean
norm that minimizes |y − Ax|2. The operation of A† is illustrated in
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R(A)N (A)

A
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Figure A.2: Matrix A maps into R(A).

Figure A.3. Hence AA† projects any point y ∈ Rm orthogonally onto
R(A), i.e., AA†y = y∗, and A†A projects any x ∈ Rn orthogonally
onto R(A′), i.e., A†Ax = x∗.
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x∗

x y

y∗

N (A)

R(A′)

R(A)

A†

A†

Figure A.3: Pseudo-inverse of A maps into R(A′).

If A ∈ Rm×n where m < n has maximal rank m, then AA′ ∈ Rm×m

is invertible and A† = A′(AA′)−1; in this case, R(A) = Rm and every
y ∈ Rm lies in R(A). Similarly, if n < m and A has maximal rank
n, then A′A ∈ Rn×n is invertible and A† = (A′A)−1A′; in this case,
R(A′) = Rn and every x ∈ Rn lies in R(A′). More generally, if A ∈
Rm×n has rank r , then A has the singular-value decomposition A =
UΣV ′ where U ∈ Rm×r and V ∈ Rr×n are orthogonal matrices, i.e.,
U ′U = Ir and V ′V = Ir , and Σ = diag(σ1, σ2, . . . , σr ) ∈ Rr×r where
σ1 > σ2. . . . > σr > 0. The pseudo-inverse of A is then

A† = VΣ−1U ′
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A.6 Partitioned Matrix Inversion Theorem

Let matrix Z be partitioned into

Z =
[
B C
D E

]

and assume Z−1, B−1 and E−1 exist. Performing row elimination gives

Z−1 =
[
B−1 + B−1C(E −DB−1C)−1DB−1 −B−1C(E −DB−1C)−1

−(E −DB−1C)−1DB−1 (E −DB−1C)−1

]

Note that this result is still valid if E is singular. Performing column
elimination gives

Z−1 =
[

(B − CE−1D)−1 −(B − CE−1D)−1CE−1

−E−1D(B − CE−1D)−1 E−1 + E−1D(B − CE−1D)−1CE−1

]

Note that this result is still valid if B is singular. A host of other useful
control-related inversion formulas follow from these results. Equating
the (1,1) or (2,2) entries of Z−1 gives the identity

(A+ BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1

A useful special case of this result is

(I +X−1)−1 = I − (I +X)−1

Equating the (1,2) or (2,1) entries of Z−1 gives the identity

(A+ BCD)−1BC = A−1B(DA−1B + C−1)−1

Determinants. We require some results on determinants of partitioned
matrices when using normal distributions in the discussion of proba-
bility. If E is nonsingular

det(A) = det(E)det(B − CE−1D)

If B is nonsingular

det(A) = det(B)det(E −DB−1C)
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A.7 Quadratic Forms

Positive definite and positive semidefinite matrices show up often in
LQ problems. Here are some basic facts about them. In the following
Q is real and symmetric and R is real.

The matrix Q is positive definite (Q > 0), if

x′Qx > 0, ∀ nonzero x ∈ Rn

The matrix Q is positive semidefinite (Q ≥ 0), if

x′Qx ≥ 0, ∀x ∈ Rn

You should be able to prove the following facts.

1. Q > 0 if and only if λ(Q) > 0, λ ∈ eig(Q).

2. Q ≥ 0 if and only if λ(Q) ≥ 0, λ ∈ eig(Q).

3. Q ≥ 0⇒ R′QR ≥ 0 ∀R.

4. Q > 0 and R nonsingular ⇒ R′QR > 0.

5. Q > 0 and R full column rank ⇒ R′QR > 0.

6. Q1 > 0,Q2 ≥ 0⇒ Q = Q1 +Q2 > 0.

7. Q > 0⇒ z∗Qz > 0 ∀ nonzero z ∈ Cn.

8. Given Q ≥ 0, x′Qx = 0 if and only if Qx = 0.

You may want to use the Schur decomposition (Schur, 1909) of a matrix
in establishing some of these eigenvalue results. Golub and Van Loan
(1996, p.313) provide the following theorem

Theorem A.1 (Schur decomposition). If A ∈ Cn×n then there exists a
unitary Q ∈ Cn×n such that

Q∗AQ = T

in which T is upper triangular.

Note that because T is upper triangular, its diagonal elements are
the eigenvalues of A. Even if A is a real matrix, T can be complex be-
cause the eigenvalues of a real matrix may come in complex conjugate
pairs. Recall a matrix Q is unitary if Q∗Q = I. You should also be able
to prove the following facts (Horn and Johnson, 1985).
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1. If A ∈ Cn×n and BA = I for some B ∈ Cn×n, then

(a) A is nonsingular

(b) B is unique

(c) AB = I

2. The matrix Q is unitary if and only if

(a) Q is nonsingular and Q∗ = Q−1

(b) QQ∗ = I

(c) Q∗ is unitary

(d) The rows of Q form an orthonormal set

(e) The columns of Q form an orthonormal set

3. IfA is real and symmetric, then T is real and diagonal andQ can be
chosen real and orthogonal. It does not matter if the eigenvalues
of A are repeated.

For real, but not necessarily symmetric, A you can restrict yourself
to real matrices, by using the real Schur decomposition (Golub and
Van Loan, 1996, p.341), but the price you pay is that you can achieve
only block upper triangular T , rather than strictly upper triangular T .

Theorem A.2 (Real Schur decomposition). If A ∈ Rn×n then there exists
an orthogonal Q ∈ Rn×n such that

Q′AQ =


R11 R12 · · · R1m
0 R22 · · · R2m
...

...
. . .

...
0 0 · · · Rmm


in which each Rii is either a real scalar or a 2×2 real matrix having com-
plex conjugate eigenvalues; the eigenvalues of Rii are the eigenvalues
of A.

If the eigenvalues of Rii are disjoint (i.e., the eigenvalues are not re-
peated), then R can be taken block diagonal instead of block triangular
(Golub and Van Loan, 1996, p.366).
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A.8 Norms in Rn

A norm in Rn is a function |·| : Rn → R≥0 such that

(a) |x| = 0 if and only if x = 0;

(b) |λx| = |λ| |x|, for all λ ∈ R, x ∈ Rn;

(c) |x +y| ≤ |x| + |y|, for all x,y ∈ Rn.

Let B := {x | |x| ≤ 1} denote the closed ball of radius 1 centered at
the origin. For any x ∈ Rn and ρ > 0, we denote by x ⊕ ρB or B(x,ρ)
the closed ball {z | |z − x| ≤ ρ} of radius ρ centered at x. Similarly
{x | |x| < 1} denotes the open ball of radius 1 centered at the origin
and {z | |z − x| < ρ} the open ball of radius ρ centered at x; closed
and open sets are defined below.

A.9 Sets in Rn

The complement of S ⊂ Rn in Rn, is the set Sc := {x ∈ Rn | x 6∈ S}. A
set X ⊂ Rn is said to be open, if for every x ∈ X, there exists a ρ > 0
such that B(x,ρ) ⊆ X. A set X ⊂ Rn is said to be closed if Xc , its
complement in Rn, is open.

A setX ⊂ Rn is said to be bounded if there exists anM <∞ such that
|x| ≤ M for all x ∈ X. A set X ⊂ Rn is said to be compact if X is closed
and bounded. An element x ∈ S ⊆ Rn is an interior point of the set S if
there exists a ρ > 0 such that z ∈ S, for all |z − x| < ρ. The interior of a
set S ⊂ Rn, int(S), is the set of all interior points of S; int(S) is an open
set, the largest2 open subset of S. For example, if S = [a, b] ⊂ R, then
int(S) = (a, b); as another example, int(B(x, ρ)) = {z | |z − x| < ρ}.
The closure of a set S ⊂ Rn, denoted S̄, is the smallest3 closed set
containing S. For example, if S = (a, b] ⊂ R, then S̄ = [a, b]. The
boundary of S ⊂ Rn, is the set δS := S̄\int(S) = {s ∈ S̄| s ∉ int(S)}. For
example, if S = (a, b] ⊂ R, then int(S) = (a, b), S̄ = [a, b], ∂S = {a,b}.

An affine set S ⊂ Rn is a set that can be expressed in the form
S = {x} ⊕V := {x + v | v ∈ V} for some x ∈ Rn and some subspace
V of Rn. An example is a line in Rn not passing through the origin.
The affine hull of a set S ⊂ Rn, denoted aff(S), is the smallest4 affine
set that contains S. That is equivalent to the intersection of all affine
sets containing S.

2Largest in the sense that every open subset of S is a subset of int(S).
3Smallest in the sense that S̄ is a subset of any closed set containing S.
4In the sense that aff(S) is a subset of any other affine set containing S.
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Some sets S, such as a line in Rn, n ≥ 2, do not have an interior,
but do have an interior relative to the smallest affine set in which S
lies, which is aff(S) defined above. The relative interior of S is the set
{x ∈ S | ∃ρ > 0 such that int(B(x, ρ)) ∩ aff(S) ⊂ S}. Thus the line
segment, S := {x ⊂ R2|x = λ

[
1
0

]
+ (1 − λ)

[
0
1

]
, λ ∈ [0,1]} does not

have an interior, but does have an interior relative to the line containing
it, aff(S). The relative interior of S is the open line segment {x ∈
R2|x = λ

[
1
0

]
+ (1− λ)

[
0
1

]
, λ ∈ (0,1)}.

A.10 Sequences

Let the set of nonnegative integers be denoted by I≥0. A sequence is
a function from I≥0 into Rn. We denote a sequence by the set of its
values, {xi | i ∈ I≥0}. A subsequence of {xi | i ∈ I≥0} is a sequence of
the form {xi | i ∈ K}, where K is an infinite subset of I≥0.

A sequence {xi | i ∈ I≥0} in Rn is said to converge to a point x̂ if
limi→∞ |xi − x̂| = 0, i.e., if, for all δ > 0, there exists an integer k such
that |xi − x̂| ≤ δ for all i ≥ k; we write xi → x̂ as i → ∞ to denote the
fact that the sequence {xi} converges to x̂. The point x̂ is called a limit
of the sequence {xi}. A point x∗ is said to be an accumulation point of
a sequence {xi | i ∈ I≥0} in Rn, if there exists an infinite subset K ⊂ I≥0

such that xi → x∗ as i→∞, i ∈ K in which case we say xi
K→ x∗.5

Let {xi} be a bounded infinite sequence in R and let the S be the set
of all accumulation points of {xi}. Then S is compact and lim supxi is
the largest and lim infxi the smallest accumulation point of {xi}:

lim sup
i→∞

xi :=max{x | x ∈ S}, and

lim inf
i→∞

xi :=min{x | x ∈ S}

Theorem A.3 (Bolzano-Weierstrass). Suppose X ⊂ Rn is compact and
{xi | i ∈ I≥0} ⊆ X. Then {xi | i ∈ I≥0} must have at least one accumu-
lation point.

From Exercise A.7, it follows that the accumulation point postulated
by Theorem A.3 lies in X. In proving asymptotic stability we need the
following property of monotone sequences.

5Be aware of inconsistent usage of the term limit point. Some authors use limit point
as synonymous with limit. Others use limit point as synonymous with accumulation
point. For this reason we avoid the term limit point.
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Proposition A.4 (Convergence of monotone sequences). Suppose that
{xi | i ∈ I≥0} is a sequence in R such that x0 ≥ x1 ≥ x2 ≥ . . ., i.e.,
suppose the sequence is monotone nonincreasing. If {xi} has an accu-
mulation point x∗, then xi → x∗ as i→∞, i.e., x∗ is a limit.

Proof. For the sake of contradiction, suppose that {xi | i ∈ I≥0} does
not converge to x∗. Then, for some ρ > 0, there exists a subsequence
{xi | i ∈ K} such that xi 6∈ B(x∗, ρ) for all i ∈ K, i.e., |xi −x∗| > ρ for
all i ∈ K. Since x∗ is an accumulation point, there exists a subsequence

{xi | i ∈ K∗} such that xi
K∗→ x∗. Hence there is an i1 ∈ K∗ such that

|xi − x∗| ≤ ρ/2, for all i ≥ i1, i ∈ K∗. Let i2 ∈ K be such that i2 > i1.
Then we must have that xi2 ≤ xi1 and |xi2−x∗| > ρ, which leads to the
conclusion thatxi2 < x∗−ρ. Now let i3 ∈ K∗ be such that i3 > i2. Then
we must have that xi3 ≤ xi2 and hence that xi3 < x∗−ρ which implies
that |xi3 −x∗| > ρ. But this contradicts the fact that |xi3 −x∗| ≤ ρ/2,
and hence we conclude that xi → x∗ as i→∞. �

It follows from Proposition A.4 that if {xi | i ∈ I≥0} is a monotone
decreasing sequence in R bounded below by b, then the sequence {xi |
i ∈ I≥0} converges to some x∗ ∈ R where x∗ ≥ b.

A.11 Continuity

We now summarize some essential properties of continuous functions.

1. A function f : Rn → Rm is said to be continuous at a point x ∈ Rn,
if for every δ > 0 there exists a ρ > 0 such that

|f(x′)− f(x)| < δ ∀x′ ∈ int(B(x, ρ))

A function f : Rn → Rm is said to be continuous if it is continuous
at all x ∈ Rn.

2. Let X be a closed subset of Rn. A function f : X → Rm is said to
be continuous at a point x in X if for every δ > 0 there exists a
ρ > 0 such that

|f(x′)− f(x)| < δ ∀x′ ∈ int(B(x, ρ))∩X

A function f : Rn → Rm is said to be continuous on X if it is
continuous at all x in X.
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3. A function f : Rn → Rm is said to be upper semicontinuous at a
point x ∈ Rn, if for every δ > 0 there exists a ρ > 0 such that

f(x′)− f(x) < δ ∀x′ ∈ int(B(x, ρ))

A function f : Rn → Rm is said to be upper semicontinuous if it is
upper semicontinuous at all x ∈ Rn.

4. A function f : Rn → Rm is said to be lower semicontinuous at a
point x ∈ Rn, if for every δ > 0 there exists a ρ > 0 such that

f(x′)− f(x) > −δ ∀x′ ∈ int(B(x, ρ))

A function f : Rn → Rm is said to be lower semicontinuous if it is
continuous at all x ∈ Rn.

5. A function f : Rn → Rm is said to be uniformly continuous on a
subset X ⊂ Rn if for any δ > 0 there exists a ρ > 0 such that for
any x′, x′′ ∈ X satisfying |x′ − x′′| < ρ,

|f(x′)− f(x′′)| < δ

Proposition A.5 (Uniform continuity). Suppose that f : Rn → Rm is
continuous and that X ⊂ Rn is compact. Then f is uniformly continuous
on X.

Proof. For the sake of contradiction, suppose that f is not uniformly
continuous onX. Then, for someδ > 0, there exist sequences {x′i}, {x′′i }
in X such that

|x′i − x′′i | < (1/i), for all i ∈ I≥0

but
|f(x′i)− f(x′′i )| > δ, for all i ∈ I≥0 (A.1)

Since X is compact, there must exist a subsequence {x′i}i∈K such that

x′i
K→ x∗ ∈ X as i → ∞. Furthermore, because of (A.1), x′′i

K→ x∗ also

holds. Hence, since f(·) is continuous, we must have f(x′i)
K→ f(x∗)

and f(x′′i )
K→ f(x∗). Therefore, there exists a i0 ∈ K such that for all

i ∈ K, i ≥ i0

|f(x′i)− f(x′′i )| ≤ |f(x′i)− f(x∗)| + |f(x∗)− f(x′′i )| < δ/2

contradicting (A.1). This completes our proof. �
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Proposition A.6 (Compactness of continuous functions of compact sets).
Suppose that X ⊂ Rn is compact and that f : Rn → Rm is continuous.
Then the set

f(X) := {f(x) | x ∈ X}

is compact.

Proof.

(a) First we show that f(X) is closed. Thus, let {f(xi) | i ∈ I≥0}, with
xi ∈ X, be any sequence in f(X) such that f(xi) → y as i → ∞. Since
{xi} is in a compact set X, there exists a subsequence {xi | i ∈ K} such

that xi
K→ x∗ ∈ X as i → ∞. Since f(·) is continuous, f(xi)

K→ f(x∗)
as i → ∞. But y is the limit of {f(xi) | i ∈ I≥0} and hence it is the
limit of any subsequence of {f(xi)}. We conclude that y = f(x∗) and
hence that y ∈ f(X), i.e., f(X) is closed.

(b) Next, we prove that f(X) is bounded. Suppose f(X) is not bounded.
Then there exists a sequence {xi} such that |f(xi)| ≥ i for all i ∈ I≥0.
Now, since {xi} is in a compact set, there exists a subsequence {xi | i ∈
K} such that xi

K→ x∗ with x∗ ∈ X, and f(xi)
K→ f(x∗) by continuity

of f(·). Hence there exists an i0 such that for any j > i > i0, j, i ∈ K

|f(xj)− f(xi)| ≤ |f(xj)− f(x∗)| + |f(xi)− f(x∗)| < 1/2 (A.2)

Let i ≥ i0 be given. By hypothesis there exists a j ∈ K, j ≥ i such that
|f(xj)| ≥ j ≥ |f(xi)| + 1. Hence

|f(xj)− f(xi)| ≥ | |f(xj)| − |f(xi)| | ≥ 1

which contradicts (A.2). Thus f(X)must be bounded, which completes
the proof. �

Let Y ⊂ R. Then inf(Y), the infimum of Y , is defined to be the
greatest lower bound6 of Y . If inf(Y) ∈ Y , then min(Y) := min{y |
y ∈ Y}, the minimum of the set Y , exists and is equal to inf(Y). The
infimum of a set Y always exists if Y is not empty and is bounded from
below, in which case there always exist sequences {yi} ∈ Y such that
yi ↘ β := inf(Y) as i → ∞. Note that β := inf(Y) does not necessarily
lie in the set Y .

6The value α ∈ R is the greatest lower bound of Y if y ≥ α for all y ∈ Y , and β > α
implies that β is not a lower bound for Y .
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Proposition A.7 (Weierstrass). Suppose that f : Rn → R is continuous
and that X ⊂ Rn is compact. Then there exists an x̂ ∈ X such that

f(x̂) = inf
x∈X

f(x)

i.e., minx∈X f(x) is well defined.

Proof. Since X is compact, f(X) is bounded. Hence infx∈X f(x) = α
is finite. Let {xi} be an infinite sequence in X such that f(xi) ↘ α
as i → ∞. Since X is compact, there exists a converging subsequence

{xi | i ∈ K} such that xi
K→ x̂ ∈ X. By continuity, f(xi)

K→ f(x̂) as
i → ∞. Because {f(xi)} is a monotone nonincreasing sequence that
has an accumulation point f(x̂), it follows from Proposition A.4 that
f(xi) → f(x̂) as i → ∞. Since the limit of the sequence {f(xi)} is
unique, we conclude that f(x̂) = α. �

A.12 Derivatives

We first define some notation. If f : Rn → R, then (∂/∂x)f(x) is a row
vector defined by

(∂/∂x)f(x) := [(∂/∂x1)f (x), . . . , (∂/∂xn)f (x)]

provided the partial derivatives (∂/∂xi)f (x), i = 1,2, . . . , n exist. Sim-
ilarly, if f : Rn → Rm, (∂/∂x)f(x) is defined to be the matrix

(∂/∂x)f(x) :=


(∂/∂x1)f1(x) (∂/∂x2)f1(x) . . . (∂/∂xn)f1(x)
(∂/∂x1)f2(x) (∂/∂x2)f2(x) . . . (∂/∂xn)f2(x)

...
...

...
...

(∂/∂x1)fm(x) (∂/∂x2)fm(x) . . . (∂/∂xn)fm(x)


where xi and fi denote, respectively, the ith component of the vectors
x and f . We sometimes use fx(x) in place of (∂/∂x)f(x). If f : Rn →
R, then its gradient ∇f(x) is a column vector defined by

∇f(x) :=


(∂/∂x1)f (x)
(∂/∂x2)f (x)

...
(∂/∂xn)f (x)
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and its Hessian is ∇2f(x) = (∂2/∂x2)f (x) = fxx(x) defined by

∇2f(x) :=


(∂2/∂x2

1)f (x) (∂2/∂x1∂x2)f (x) . . . (∂2/∂x1∂xn)f (x)
(∂2/∂x2∂x1)f (x) (∂x2

2)f (x) . . . (∂2/∂x2∂xn)f (x)
...

...
. . .

...
(∂2/∂xn∂x1)f (x) (∂2/∂xn∂x2)f (x) . . . (∂2/∂x2

n)f (x)


We note that ∇f(x) = [(∂/∂x)f(x)]′ = f ′x(x).

We now define what we mean by the derivative of f(·). Let f : Rn →
Rm be a continuous function with domain Rn. We say that f(·) is
differentiable at x̂ if there exists a matrixDf(x̂) ∈ Rm×n (the Jacobian)
such that

lim
h→0

|f(x̂ + h)− f(x̂)−Df(x̂)h|
|h| = 0

in which case Df(·) is called the derivative of f(·) at x̂. When f(·) is
differentiable at all x ∈ Rn, we say that f is differentiable.

We note that the affine function h, f(x̂)+Df(x̂)h is a first order
approximation of f(x̂+h). The Jacobian can be expressed in terms of
the partial derivatives of f(·).

Proposition A.8 (Derivative and partial derivative). Suppose that the
function f : Rn → Rm is differentiable at x̂. Then its derivative Df(x̂)
satisfies

Df(x̂) = fx(x̂) := ∂f(x̂)/∂x

Proof. From the definition ofDf(x̂)we deduce that for each i ∈ {1,2, . . . ,m}

lim
h→0

|fi(x̂ + h)− fi(x̂)−Dfi(x̂)h|
|h| = 0

where fi is the ith element of f and (Df)i the ith row of Df . Set
h = tej , where ej is the j-th unit vector in Rn so that |h| = t. Then
(Df)i(x̂)h = t(Df)i(x̂)ej = (Df)ij(x̂), the ijth element of the matrix
Df(x̂). It then follows that

lim
t↘0

|f i(x̂ + tej)− f(x̂)− t(Df)ij(x̂)|
t

= 0

which shows that (Df)ij(x̂) = ∂fi(x̂)/∂xj . �

A function f : Rn → Rm is locally Lipschitz continuous at x̂ if there
exist L ∈ [0,∞), ρ̂ > 0 such that

|f(x)− f(x′)| ≤ L|x − x′|, for all x,x′ ∈ B(x̂, ρ̂)
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The function f is globally Lipschitz continuous if the inequality holds
for all x,x′ ∈ Rn. The constant L is called the Lipschitz constant of
f . It should be noted that the existence of partial derivatives of f(·)
does not ensure the existence of the derivative Df(·) of f(·); see e.g.
Apostol (1974, p.103). Thus consider the function

f(x,y) = x +y if x = 0 or y = 0

f(x,y) = 1 otherwise

In this case

∂f(0,0)
∂x

= lim
t→0

f(t,0)− f(0,0)
t

= 1

∂f(0,0)
∂y

= lim
t→0

f(0, t)− f(0,0)
t

= 1

but the function is not even continuous at (0,0). In view of this, the
following result is relevant.

Proposition A.9 (Continuous partial derivatives). Consider a function
f : Rn → Rm such that the partial derivatives ∂f i(x)/dxj exist in a
neighborhood of x̂, for i = 1,2, . . . , n, j = 1,2, . . . ,m. If these partial
derivatives are continuous at x̂, then the derivative Df(x̂) exists and is
equal to fx(x̂).

The following chain rule holds.

Proposition A.10 (Chain rule). Suppose that f : Rn → Rm is defined by
f(x) = h(g(x)) with both h : Rl → Rm and g : Rn → Rl differentiable.
Then

∂f(x̂)
∂x

= ∂h(g(x̂))
∂y

∂g(x̂)
∂x

The following result Dieudonne (1960), replaces, inter alia, the mean
value theorem for functions f : Rn → Rm when m > 1.

Proposition A.11 (Mean value theorem for vector functions).

(a) Suppose that f : Rn → Rm has continuous partial derivatives at each
point x of Rn. Then for any x,y ∈ Rn,

f(y) = f(x)+
∫ 1

0
fx(x + s(y − x))(y − x)ds
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(b) Suppose that f : Rn → Rm has continuous partial derivatives of order
two at each point x of Rn. Then for any x,y ∈ Rn,

f(y) = f(x)+fx(x)(y−x)+
∫ 1

0
(1−s)(y−x)′fxx(x+s(y−x))(y−x)ds

Proof.

(a) Consider the function g(s) = f(x + s(y − x)) where f : Rn → Rm.
Then g(1) = f(y), g(0) = f(x) and

g(1)− g(0) =
∫ 1

0
g′(s)ds

=
∫ 1

0
Df(x + s(y − x))(y − x)ds

which completes the proof for p = 1.

(b) Consider the function g(s) = f(x + s(y − x)) where f : Rn → R.
Then

d
ds
[g′(s)(1− s)+ g(s)] = g′′(s)(1− s)

Integrating from 0 to 1 yields

g(1)− g(0)− g′(0) =
∫ 1

0
(1− s)g′′(s)ds

But g′′(s) = (y−x)′fxx(x+s(y−x))(y−x) so that the last equation
yields

f(y)−f(x) = fx(x)(y−x)+
∫ 1

0
(1−s)(y−x)′fxx(x+s(y−x))(y−x)ds

when g(s) is replaced by f(x + s(y − x)).
�

Finally, we define directional derivatives which may exist even when
a function fails to have a derivative. Let f : Rn → Rm. We define the
directional derivative of f at a point x̂ ∈ Rn in the directionh ∈ Rn(h 6=
0) by

df(x̂;h) := lim
t↘0

f(x̂ + th)− f(x̂)
t

if this limit exists (note that t > 0 is required). The directional deriva-
tive is positively homogeneous, i.e., df(x;λh) = λdf(x;h) for all
λ > 0.
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Not all the functions we discuss are differentiable everywhere. Ex-
amples include the max functionψ(·) defined byψ(x) :=maxi{f i(x) |
i ∈ I} where each function f i : Rn → R is continuously differentiable
everywhere. The functionψ(·) is not differentiable at thosex for which
the active set I0(x) := {i ∈ I | f i(x) = ψ(x)} has more than one
element. The directional derivative d(x;h) exists for all x,h in Rn,
however, and is given by

dψ(x;h) =max
i
{dfi(x;h) | i ∈ I0(x)} =max

i
{〈∇fi(x),h〉 | i ∈ I0(x)}

When, as in this example, the directional derivative exists for all x,h in
Rn we can define a generalization, called the subgradient, of the con-
ventional gradient. Suppose that f : Rn → R has a directional derivative
for all x,h in Rn. The f(·) has a subgradient ∂f(·) defined by

∂ψ(x) := {g ∈ Rn | df(x;h) ≥ 〈g,h〉 ∀h ∈ Rn}

The subgradient at a point x is, unlike the ordinary gradient, a set.
For our max example (f(x) = ψ(x) = maxi{fi(x) | i ∈ I}) we have
dψ(x;h) = maxi{〈∇f i(x),h〉 | i ∈ I0(x)}. In this case, it can be
shown that

∂ψ(x) = co{∇f i(x) | i ∈ I0(x)}

If the directional derivative h, df(x;h) is convex, then the subgradi-
ent ∂f(x) is nonempty and the directional derivative df(x;h) may be
expressed as

df(x;h) =max
g
{〈g,h〉 | g ∈ ∂f(x)}

Figure A.4 illustrates this for the case whenψ(x) :=max{f1(x), f2(x)}
and I0(x) = {1,2}.

x

∂ψ(x)
∇f1(x) ∇f2(x)

f2(x) = ψ(x)f1(x) = ψ(x)

Figure A.4: Subgradient.
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A.13 Convex Sets and Functions

Convexity is an enormous subject. We collect here only a few essential
results that we will need in our study of optimization; for further details
see Rockafellar (1970). We begin with convex sets.

A.13.1 Convex Sets

Definition A.12 (Convex set). A set S ∈ Rn is said to be convex if, for
any x′, x′′ ∈ S and λ ∈ [0,1], (λx′ + (1− λ)x′′) ∈ S.

Let S be a subset of Rn. We say that co(S) is the convex hull of S if
it is the smallest7 convex set containing S.

Theorem A.13 (Caratheodory). Let S be a subset of Rn. If x̄ ∈ co(S),
then it may be expressed as a convex combination of no more than n+1
points in S, i.e., there exist m ≤ n+ 1 distinct points, {xi}mi=1, in S such
that x̄ =

∑m
i=1 µixi, µi > 0,

∑m
i=1 µi = 1.

Proof. Consider the set

Cs := {x | x =
kx∑
i=1

µixi, xi ∈ S, µi ≥ 0,
kx∑
i=1

µi = 1, kx ∈ I≥0}

First, it is clear that S ⊂ Cs . Next, since for any x′, x′′ ∈ Cs , λx′ +
(1 − λx′′) ∈ Cs , for λ ∈ [0,1], it follows that Cs is convex. Hence
we must have that co(S) ⊂ Cs . Because Cs consists of all the convex
combinations of points in S, however, we must also have that Cs ⊂
co(S). Hence Cs = co(S). Now suppose that

x̄ =
k̄∑
i=1

µ̄ixi

with µ̄i ≥ 0, i = 1,2, . . . , k̄,
∑k̄
i=1 µ̄i = 1. Then the following system of

equations is satisfied
k̄∑
i=1

µ̄i
[
xi
1

]
=
[
x̄
1

]
(A.3)

with µ̄i ≥ 0. Suppose that k̄ > n + 1. Then there exist coefficients
αj , j = 1,2, . . . , k̄, not all zero, such that

k̄∑
i=1

αi
[
xi
1

]
= 0 (A.4)

7Smallest in the sense that any other convex set containing S also contains co(S).
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Adding (A.4) multiplied by θ to (A.3) we get

k̄∑
i=1

(µ̄i + θαi)
[
xi
1

]
=
[
x̄
1

]

Suppose, without loss of generality, that at least oneαi < 0. Then there
exists a θ̄ > 0 such that µ̄j + θ̄αj = 0 for some j while µ̄i + θ̄αi ≥ 0
for all other i. Thus we have succeeded in expressing x̄ as a convex
combination of k̄− 1 vectors in S. Clearly, these reductions can go on
as long as x̄ is expressed in terms of more than (n + 1) vectors in S.
This completes the proof. �

Let S1, S2 be any two sets in Rn. We say that the hyperplane

H = {x ∈ Rn | 〈x,v〉 = α}

separates S1 and S2 if

〈x,v〉 ≥ α for all x ∈ S1〈
y,v

〉
≤ α for all y ∈ S2

The separation is said to be strong if there exists an ε > 0 such that

〈x,v〉 ≥ α+ ε for all x ∈ S1〈
y,v

〉
≤ α− ε for all y ∈ S2

S1

S2

H
v

Figure A.5: Separating hyperplane.

Theorem A.14 (Separation of convex sets). Let S1, S2 be two convex
sets in Rn such that S1 ∩ S2 = ∅. Then there exists a hyperplane which
separates S1 and S2. Furthermore, if S1 and S2 are closed and either S1

or S2 is compact, then the separation can be made strict.
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Theorem A.15 (Separation of convex set from zero). Suppose that S ⊂
Rn is closed and convex and 0 6∈ S. Let

x̂ = arg min{|x|2 | x ∈ S}

Then
H = {x | 〈x̂, x〉 = |x̂|2}

separates S from 0, i.e., 〈x̂, x〉 ≥ |x̂|2 for all x ∈ S.

Proof. Letx ∈ S be arbitrary. Then, since S is convex, [x̂+λ(x−x̂)] ∈ S
for all λ ∈ [0,1]. By definition of x̂, we must have

0 < |x̂|2 ≤ |x̂ + λ(x − x̂)|2

= |x̂|2 + 2λ〈x̂, x − x̂〉 + λ2|x − x̂|2

Hence, for all λ ∈ (0,1],

0 ≤ 2 〈x̂, x − x̂〉 + λ|x − x̂|2

Letting λ→ 0 we get the desired result. �

Theorem A.15 can be used to prove the following special case of
Theorem A.14:

Corollary A.16 (Existence of separating hyperplane). Let S1, S2 be two
compact convex sets in Rn such that S1 ∩ S2 = ∅. Then there exists a
hyperplane which separates S1 and S2.

Proof. Let C = S1−S2 := {x1−x2 | x1 ∈ S1, x2 ∈ S2}. Then C is convex
and compact and 0 6∈ C . Let x̂ = (x̂1 − x̂2) = arg min{|x|2 | x ∈ C},
where x̂1 ∈ S1 and x̂2 ∈ S2. Then, by Theorem A.15

〈x − x̂, x̂〉 ≥ 0, for all x ∈ C (A.5)

Let x = x1 − x̂2, with x1 ∈ S1. Then (A.5) leads to

〈x1 − x̂2, x̂〉 ≥ |x̂|2 (A.6)

for all x1 ∈ S1. Similarly, letting x = x̂1 − x2, in (A.5) yields

〈x̂1 − x2, x̂〉 ≥ |x̂|2 (A.7)

for all x2 ∈ S2. The inequality in (A.7) implies that

〈x̂1 − x̂2 + x̂2 − x2, x̂〉 ≥ |x̂|2
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Since x̂1 − x̂2 = x̂, we obtain

〈x2 − x̂2, x̂〉 ≤ 0 (A.8)

for all x2 ∈ S2. The desired result follows from (A.6) and (A.8), the
separating hyperplane H being {x ∈ Rn | 〈x̂, x − x̂2〉 = 0}. �

Definition A.17 (Support hyperplane). Suppose S ⊂ Rn is convex. We
say that H = {x | 〈x − x̄, v〉 = 0} is a support hyperplane to S through
x̄ with inward (outward) normal v if x̄ ∈ (S) and

〈x − x̄, v〉 ≥ 0 (≤ 0) for all x ∈ S

Theorem A.18 (Convex set and halfspaces). A closed convex set is equal
to the intersection of the halfspaces which contain it.

Proof. Let C be a closed convex set and A the intersection of halfspaces
containing C . Then clearly C ⊂ A. Now suppose x̄ 6∈ C . Then there
exists a support hyperplane H which separates strictly x̄ and C so that
x̄ does not belong to one halfspace containing C . It follows that x̄ 6∈ A.
Hence Cc ⊂ Ac which leads to the conclusion that A ⊂ C . �

An important example of a convex set is a convex cone.

Definition A.19 (Convex cone). A subset C of Rn, C ≠ ∅, is called a
cone if x ∈ C implies λx ∈ C for all λ ≥ 0. A cone C is pointed if
C ∩−C = {0}. A convex cone is a cone that is convex.

An example of a cone is a halfspaces with a boundary that is a hy-
perplane passing through the origin; an example of a pointed cone is
the positive orthant. A polyhedron C defined by C := {x | 〈ai, x〉 ≤
0, i ∈ I} is a convex cone that is pointed

Definition A.20 (Polar cone). Given a cone C ⊂ Rn, the cone C∗ defined
by

C∗ := {h | 〈h,x〉 ≤ 0 ∀x ∈ C}

is called the polar cone of C .

An illustration of this definition when C is a polyhedron containing
the origin is given in Figure A.6. In this figure, H is the hyperplane with
normal h passing through the origin.
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H

C

C∗h

0

Figure A.6: Polar cone.

Definition A.21 (Cone generator). A cone K is said to be generated by
a set {ai | i ∈ I} where I is an index set if

K =

∑
i∈I
µiai | µi ≥ 0, i ∈ I


in which case we write K = cone{ai | i ∈ I}.

We make use of the following result:

Proposition A.22 (Cone and polar cone generator).

(a) Suppose C is a convex cone containing the origin and defined by

C := {x ∈ Rn | 〈ai, x〉 ≤ 0, i ∈ I}

Then
C∗ = cone{ai | i ∈ I}

(b) If C is a closed convex cone, then (C∗)∗ = C .

(c) If C1 ⊂ C2, then C∗2 ⊂ C∗1 .

Proof.

(a) Let the convex set K be defined by

K := cone{ai | i ∈ I}

We wish to prove C∗ = K. To prove K ⊂ C∗, suppose h is an arbitrary
point in K := cone{ai | i ∈ I}. Then h =

∑
i∈I µiai where µi ≥ 0 for all

i ∈ I . Let x be an arbitrary point in C so that 〈ai, x〉 ≤ 0 for all i ∈ I .
Hence

〈h,x〉 = 〈
∑
i∈I
µiai, x〉 =

∑
i∈I
µi〈ai, x〉 ≤ 0
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so thath ∈ C∗. This proves thatK ⊂ C∗. To prove thatC∗ ⊂ K, assume
that h ∈ C∗ but that, contrary to what we wish to prove, h 6∈ K. Hence
h =

∑
i∈I µiai+ h̃ where either µj > 0 for at least one j ∈ I , or h̃, which

is orthogonal to ai, i ∈ I , is not zero, or both. If µj < 0, let x ∈ C be

such that 〈ai, x〉 = 0 for all i ∈ I, i ≠ j and 〈aj , x〉 < 0; if h̃ ≠ 0, let

x ∈ C be such that 〈h̃, x〉 > 0 (both conditions can be satisfied). Then

〈h,x〉 = 〈µjaj , x〉 + 〈h̃, x〉 = µj〈aj , x〉 + 〈h̃, x〉 > 0

since either both µj and 〈aj , x〉 are strictly negative or h̃ ≠ 0 or both.
This contradicts the fact that x ∈ C and h ∈ C∗ (so that 〈h,x〉 ≤ 0).
Hence h ∈ K so that C∗ ⊂ K. It follows that C∗ = cone{ai | i ∈ I}.

(b) That (C∗)∗ = C when C is a closed convex cone is given in Rock-
afellar and Wets (1998), Corollary 6.21.

(c) This result follows directly from the definition of a polar cone.

�

A.13.2 Convex Functions

Next we turn to convex functions. For an example see Figure A.7.

f(x)

x y

f(y)

Figure A.7: A convex function.

A function f : Rn → R is said to be convex if for any x′, x′′ ∈ Rn

and λ ∈ [0,1],

f(λx′ + (1− λ)x′′) ≤ λf(x′)+ (1− λ)f(x′′)
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A function f : Rn → R is said to be concave if −f is convex.
The epigraph of a function f : Rn → R is defined by

epi(f ) := {(x,y) ∈ Rn ×R | y ≥ f(x)}

Theorem A.23 (Convexity implies continuity). Suppose f : Rn → R is
convex. Then f is continuous in the interior of it domain.

The following property is illustrated in Figure A.7.

Theorem A.24 (Differentiability and convexity). Suppose f : Rn → R is
differentiable. Then f is convex if and only if

f(y)− f(x) ≥
〈
∇f(x),y − x

〉
for all x,y ∈ Rn (A.9)

Proof. ⇒ Suppose f is convex. Then for any x,y ∈ Rn, and λ ∈ [0,1]

f (x + λ(y − x)) ≤ (1− λ)f(x)+ λf(y) (A.10)

Rearranging (A.10) we get

f(x + λ(y − x))− f(x)
λ

≤ f(y)− f(x) for all λ ∈ [0,1]

Taking the limit as λ→ 0 we get (A.9).
⇐ Suppose (A.9) holds. Let x and y be arbitrary points in Rn and

let λ be an arbitrary point in [0,1]. Let z = λx + (1− λ)y . Then

f(x) ≥ f(z)+ f ′(z)(x − z), and

f(y) ≥ f(z)+ f ′(z)(y − z)

Multiplying the first equation by λ and the second by (1 − λ), adding
the resultant equations, and using the fact that z = λx+(1−λ)y yields

λf(x)+ (1− λ)f(y) ≥ f(z) = f(λx + (1− λ)y)

Since x and y in Rn and λ in [0,1] are all arbitrary, the convexity of
f(·) is established. �

Theorem A.25 (Second derivative and convexity). Suppose that f :
Rn → R is twice continuously differentiable. Then f is convex if and only
if the Hessian (second derivative) matrix ∂2f(x)/∂x2 is positive semidef-
inite for all x ∈ Rn, i.e.,

〈
y, ∂2f(x)/∂x2y

〉
≥ 0 for all x,y ∈ Rn.
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Proof. ⇒ Suppose f is convex. Then for any x,y ∈ Rn, because of
Theorem A.24 and Proposition A.11

0 ≤ f(y)− f(x)−
〈
∇f(x),y − x

〉
=
∫ 1

0
(1− s)

〈
y − x, ∂

2f(x + s(y − x))
∂x2

(y − x)
〉
ds (A.11)

Hence, dividing by |y−x|2 and lettingy → x, we obtain that ∂2f(x)/∂x2

is positive semidefinite.
⇐ Suppose that ∂2f(x)/∂x2 is positive semidefinite for all x ∈ R.

Then it follows directly from the equality in (A.11) and Theorem A.24
that f is convex. �

Definition A.26 (Level set). Suppose f : Rn → R. A level set of f is a
set of the form {x | f(x) = α}, α ∈ R.

Definition A.27 (Sublevel set). Suppose f : Rn → R. A sublevel set X
of f is a set of the form X = {x | f(x) ≤ α}, α ∈ R. We also write the
sublevel set as X = levαf .

Definition A.28 (Support function). Suppose Q ⊂ Rn. The support
function σQ : Rn → Re = R∪ {+∞} is defined by:

σQ(p) = sup
x
{
〈
p,x

〉
| x ∈ Q}

σQ(p) measures how far Q extends in direction p.

Proposition A.29 (Set membership and support function). SupposeQ ⊂
Rn is a closed and convex set. Then x ∈ Q if and only if σQ(p) ≥

〈
p,x

〉
for all p ∈ Rn

Proposition A.30 (Lipschitz continuity of support function). Suppose
Q ⊂ Rn is bounded. Then σQ is bounded and Lipschitz continuous
|σQ(p)−σQ(q)| ≤ K|p − q| for all p,q ∈ Rn, where K := sup{|x| |x ∈
Q} <∞.

A.14 Differential Equations

Although difference equation models are employed extensively in this
book, the systems being controlled are most often described by differ-
ential equations. Thus, if the system being controlled is described by
the differential equation ẋ = fc(x,u), as is often the case, and if it
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is decided to control the system using piecewise constant control with
period ∆, then, at sampling instants k∆ where k ∈ I, the system is
described by the difference equation

x+ = f(x,u)

then f(·) may be derived from fc(·) as follows

f(x,u) = x +
∫ ∆

0
fc(φc(s;x,u),u)ds

where φc(s;x,u) is the solution of ẋ = fc(x,u) at time s if its initial
state at time 0 is x and the control has a constant valueu in the interval
[0,∆]. Thus x in the difference equation is the state at time k, say, u
is the control in the interval [0,∆], and x+ is the state at time k+ 1.

Because the discrete time system is most often obtained by a contin-
uous time system, we must be concerned with conditions which guaran-
tee the existence and uniqueness of solutions of the differential equa-
tion describing the continuous time system. For excellent expositions
of the theory of ordinary differential equations see the books by Hale
(1980), McShane (1944), Hartman (1964), and Coddington and Levinson
(1955).

Consider, first, the unforced system described by

(d/dt)x(t) = f(x(t), t) or ẋ = f(x, t) (A.12)

with initial condition
x(t0) = x0 (A.13)

Suppose f : D → Rn, where D is an open set in Rn ×R, is continuous.
A function x : T → Rn, where T is an interval in R, is said to be a
(conventional) solution of (A.12) with initial condition (A.13) (or passing
through (x0, t0)) if:

(a) x is continuously differentiable and x satisfies (A.12) on T ,

(b) x(t0) = x0,

and (x(t), t) ∈ D for all t in T . It is easily shown, when f is continuous,
that x satisfies (A.12) and (A.13) if and only if:

x(t) = x0 +
t∫
t0

f(x(s), s)ds (A.14)
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Peano’s existence theorem states that if f is continuous on D, then,
for all (x0, t0) ∈ D there exists at least one solution of (A.12)) passing
through (x0, t0). The solution is not necessarily unique - a counter
example being ẋ = √x for x ≥ 0. To proceed we need to be able to
deal with systems for which f(·) is not necessarily continuous for the
following reason. If the system is described by ẋ = f(x,u, t) where
f : Rn × Rm → Rn is continuous, and the control u : R → Rm is
continuous, then, for given u(·), the function fu : Rn×R→ Rn defined
by:

fu(x, t) := f(x,u(t), t)

is continuous in t. We often encounter controls that are not continuous,
however, in which case fu(·) is also not continuous. We need a richer
class of controls. A suitable class is the class of measurable functions
which, for the purpose of this book, we may take to be a class rich
enough to include all controls, such as those that are merely piecewise
continuous, that we may encounter. If the control u(·) is measurable
and f(·) is continuous, then fu(·), defined above, is continuous in x
but measurable in t, so we are forced to study such functions. Suppose,
as above, D is an open set in Rn × R. The function f : D → Rn is said
to satisfy the Caratheodory conditions in D if:

(a) f is measurable in t for each fixed x,

(b) f is continuous in x for each fixed t,

(c) for each compact set F in D there exists a measurable function
t ,mF(t) such that∣∣f(x, t)∣∣ ≤mF(t)

for all (x, t) ∈ F . We now make use of the fact that if t , h(t) is mea-

surable, its integral t , H(t)
∆= ∫ tt0 h(s)ds is absolutely continuous and,

therefore, has a derivative almost everywhere. Where H(·) is differen-
tiable, its derivative is equal to h(·). Consequently, if f(·) satisfies the
Caratheodory conditions, then the solution of (A.14), i.e., a function
φ(·) satisfying (A.14) everywhere does not satisfy (A.12) everywhere
but only almost everywhere, at the points where φ(·) is differentiable.
In view of this, we may speak either of a solution of (A.14) or of a
solution of (A.12) provided we interpret the latter as an absolutely con-
tinuous function which satisfies (A.12)) almost everywhere. The ap-
propriate generalization of Peano’s existence theorem is the following
result due to Caratheodory:
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Theorem A.31 (Existence of solution to differential equations). If D is
an open set in Rn×R and f(·) satisfies the Caratheodory conditions on
D, then, for any (x0, t0) in D, there exists a solution of (A.14) or (A.12)
passing through (x0, t0).

Two other classical theorems on ordinary differential equations that
are relevant are:

Theorem A.32 (Maximal interval of existence). If D is an open set in
Rn × R, f(·) satisfies the Caratheodory conditions on D, and φ(·) is a
solution of (A.10) on some interval, then there is a continuation φ′(·) of
φ(·) to a maximal interval (ta, tb) of existence. The solution φ′(·), the
continuation of φ(·), tends to the boundary of D as t ↘ ta and t ↗ tb.

Theorem A.33 (Continuity of solution to differential equation). Sup-
pose D is an open set in Rn ×R, f satisfies the Caratheodory condition
and, for each compact set U in D, there exists an integrable function
t , ku(t) such that

|f(x, t)− f(y, t)| ≤ ku(t)|x −y|

for all (x, t), (y, t) in U . Then, for any (x0, t0) in U there exists a unique
solution φ(·;x0, t0) passing through (x0, t0). The function (t, x0, t0) ,
φ(t;x0, t0) : R × Rn × R → Rn is continuous in its domain E which is
open.

Note that D is often Rn×R, in which case Theorem A.32 states that
a solution x(·) of (A.14) escapes, i.e., |x(t)| → ∞ as t ↘ ta or t ↗ tb
if ta and tb are finite; ta and tb are the escape times. An example of
a differential equation with finite escape time is ẋ = x2 which has, if
x0 > 0, t0 = 0, a solution x(t) = x0[1− (t − t0)x0]−1 and the maximal
interval of existence is (ta, tb) = (−∞, t0 + 1/x0).

These results, apart from absence of a control u which is trivially
corrected, do not go far enough. We require solutions on an interval
[t0, tf ] given a priori. Further assumptions are needed for this. A
useful tool in developing the required results is the Bellman-Gronwall
Lemma:

Theorem A.34 (Bellman-Gronwall). Suppose that c ∈ (0,∞) and that
α : [0,1]→ R+ is a bounded, integrable function, and that the integrable
function y : [0,1]→ R satisfies the inequality

y(t) ≤ c +
∫ t

0
α(s)y(s)ds (A.15)
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for all t ∈ [0,1]. Then

y(t) ≤ ce
∫ t
0 α(s)ds (A.16)

for all t ∈ [0,1].

Note that, if the inequality in (A.15) were replaced by an equality,
(A.15) could be integrated to yield (A.16).

Proof. Let the function Y : [0,1]→ R be defined by

Y(t) =
∫ t

0
α(s)y(s)ds (A.17)

so that Ẏ (t) = α(t)y(t) almost everywhere on [0,1]. It follows from
(A.15) and (A.17) that:

y(t) ≤ c + Y(t) ∀t ∈ [0,1]

Hence

(d/dt)[e−
∫ t
0 α(s)dsY(t)] = e−

∫ t
0 α(s)ds(Ẏ (t)−α(t)Y(t))

= (e−
∫ t
0 α(s)ds)α(t)(y(t)− Y(t))

≤ c(e−
∫ t
0 α(s)ds)α(t) (A.18)

almost everywhere on [0,1]. Integrating both sides of (A.18) from 0 to
t yields

e−
∫ t
0 α(s)dsY(t) ≤ c[1− e−

∫ t
0 α(s)ds]

for all t ∈ [0,1]. Hence

Y(t) ≤ c[e
∫ t
0 α(s)ds − 1]

and
y(t) ≤ ce

∫ t
0 α(s)ds

for all t ∈ [0,1]. �

The interval [0,1] may, of course, be replaced by [t0, tf ] for arbi-
trary t0, tf ∈ (−∞,∞). Consider now the forced system described by

ẋ(t) = f(x(t),u(t), t) a.e (A.19)

with initial condition
x(0) = 0
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The period of interest is now T := [0,1] and “a.e.” denotes “almost
everywhere on T .” Admissible controlsu(·) are measurable and satisfy
the control constraint

u(t) ∈ Ω a.e.

where Ω ⊂ Rm is compact. For convenience, we denote the set of
admissible controls by

U := {u : T → Rm | u(·) is measurable, u(t) ∈ Ω a.e.}

Clearly U is a subset of L∞. For simplicity we assume, in the sequel,
that f is continuous; this is not restrictive. For each u in U, x in IRn,
the function t , fu(x, t) := f(x,u(t), t) is measurable so that fu sat-
isfies the Caratheodory conditions and our previous results, Theorems
A.31–A.33, apply. Our concern now is to show that, with additional
assumptions, for each u inU, a solution to (A.12) or (A.13) exists on T ,
rather than on some maximal interval that may be a subset of T , and
that this solution is unique and bounded.

Theorem A.35 (Existence of solutions to forced systems). Suppose:

(a) f is continuous and

(b) there exists a positive constant c such that

|f(x′, u, t)− f(x,u, t)| ≤ c|x′ − x|

for all (x,u, t) ∈ Rn × Ω × T . Then, for each u in U, there exists a
unique, absolutely continuous solution xu : T → Rn of (A.19) on the
interval T passing through (x0,0). Moreover, there exists a constant K
such that

|xu(t)| ≤ K
for all t ∈ T , all u ∈ U.

Proof. A direct consequence of (b) is the existence of a constant which,
without loss of generality, we take to be c, satisfying

(c) |f(x,u, t)| ≤ c(1+ |x|) for all (x,u, t) ∈ Rn ×Ω × T .

Assumptions (a) and (b) and their corollary (c), a growth condition on
f(·), ensure that fu(·) satisfies the Caratheodory conditions stated
earlier. Hence, our previous results apply, and there exists an interval
[0, tb] on which a unique solution xu(·) exists; moreover |xu(t)| → ∞
as t ↗ tb. Since xu(·) satisfies

xu(t) = x0 +
∫ t

0
f(xu(s),u(s), s)ds
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it follows from the growth condition that

|xu(t)| ≤ |x0| +
∫ t

0
|f(xu(s),u(s), s)|ds

≤ |x0| + c
∫ t

0
(1+ |xu(s)|)ds

≤ (|x0| + c)+ c
∫ t

0
|xu(s)|ds

Applying the Bellman-Gronwall Lemma yields

|xu(t)| ≤ (c + |x0|)ect

for all t ∈ [0, tb),u ∈ U. If follows that the escape time tb cannot be
finite, so that, for allu inU, there exists a unique absolutely continuous
solution xu(·) on T passing through (x0, (0)). Moreover, for all u in
U, all t ∈ T

|xu(t)| ≤ K

where K := (c + |x0|)ec . �

A.15 Random Variables and the Probability Density

Let ξ be a random variable taking values in the field of real numbers
and the function Fξ(x) denote the probability distribution function
of the random variable so that

Fξ(x) = Pr(ξ ≤ x)

i.e., Fξ(x) is the probability that the random variable ξ takes on a value
less than or equal to x. Fξ is obviously a nonnegative, nondecreasing
function and has the following properties due to the axioms of proba-
bility

Fξ(x1) ≤ Fξ(x2) if x1 < x2

lim
x→−∞

Fξ(x) = 0

lim
x→∞

Fξ(x) = 1

We next define the probability density function, denoted pξ(x),
such that

Fξ(x) =
∫ x
−∞
pξ(s)ds, −∞ < x <∞ (A.20)
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We can allow discontinuous Fξ if we are willing to accept generalized
functions (delta functions and the like) for pξ . Also, we can define the
density function for discrete as well as continuous random variables if
we allow delta functions. Alternatively, we can replace the integral in
(A.20) with a sum over a discrete density function. The random variable
may be a coin toss or a dice game, which takes on values from a discrete
set contrasted to a temperature or concentration measurement, which
takes on a values from a continuous set. The density function has the
following properties

pξ(x) ≥ 0

∫∞
−∞
pξ(x)dx = 1

and the interpretation in terms of probability

Pr(x1 ≤ ξ ≤ x2) =
∫ x2

x1

pξ(x)dx

The mean or expectation of a random variable ξ is defined as

E(ξ) =
∫∞
−∞
xpξ(x)dx

The moments of a random variable are defined by

E(ξn) =
∫∞
−∞
xnpξ(x)dx

and it is clear that the mean is the zeroth moment. Moments of ξ about
the mean are defined by

E((ξ −E(ξ))n) =
∫∞
−∞
(x −E(ξ))npξ(x)dx

and the variance is defined as the second moment about the mean

var(ξ) = E((ξ −E(ξ))2) = E(ξ2)−E2(ξ)

The standard deviation is the square root of the variance

σ(ξ) = (var(ξ))1/2
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Normal distribution. The normal or Gaussian distribution is ubiqui-
tous in applications. It is characterized by its mean, m and variance,
σ 2, and is given by

pξ(x) =
1√

2πσ 2
exp

(
−1

2
(x −m)2
σ 2

)
(A.21)

We proceed to check that the mean of this distribution is indeedm and
the variance is σ 2 as claimed and that the density is normalized so that
its integral is one. We require the definite integral formulas∫∞

−∞
e−x

2
dx =

√
π∫∞

0
x1/2e−xdx = Γ(3/2) =

√
π
2

The first formula may also be familiar from the error function in trans-
port phenomena

erf(x) = 2√
π

∫ x
0
e−u

2
du

erf(∞) = 1

We calculate the integral of the normal density as follows∫∞
−∞
pξ(x)dx =

1√
2πσ 2

∫∞
−∞

exp

(
−1

2
(x −m)2
σ 2

)
dx

Define the change of variable

u = 1√
2

(
x −m
σ

)
which gives ∫∞

−∞
pξ(x)dx =

1√
π

∫∞
−∞

exp
(
−u2

)
du = 1

and (A.21) does have unit area. Computing the mean gives

E(ξ) = 1√
2πσ 2

∫∞
−∞
x exp

(
−1

2
(x −m)2
σ 2

)
dx

using the same change of variables as before yields

E(ξ) = 1√
π

∫∞
−∞
(
√

2uσ +m)e−u2
du
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The first term in the integral is zero because u is an odd function, and
the second term produces

E(ξ) =m

as claimed. Finally the definition of the variance of ξ gives

var(ξ) = 1√
2πσ 2

∫∞
−∞
(x −m)2 exp

(
−1

2
(x −m)2
σ 2

)
dx

Changing the variable of integration as before gives

var(ξ) = 2√
π
σ 2

∫∞
−∞
u2e−u

2
du

and because the integrand is an even function,

var(ξ) = 4√
π
σ 2

∫∞
0
u2e−u

2
du

Now changing the variable of integration again using s = u2 gives

var(ξ) = 2√
πσ 2

∫∞
0
s1/2e−sds

The second integral formula then gives

var(ξ) = σ 2

Shorthand notation for the random variable ξ having a normal distri-
bution with mean m and variance σ 2 is

ξ ∼ N(m,σ 2)

Figure A.8 shows the normal distribution with a mean of one and
variances of 1/2, 1 and 2. Notice that a large variance implies that
the random variable is likely to take on large values. As the variance
shrinks to zero, the probability density becomes a delta function and
the random variable approaches a deterministic value.

Central limit theorem.

The central limit theorem states that if a set of n random
variables xi, i = 1,2, . . . , n are independent, then under gen-
eral conditions the density py of their sum

y = x1 + x2 + · · · + xn

properly normalized, tends to a normal density as n → ∞.
(Papoulis, 1984, p. 194).
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Figure A.8: Normal distribution, pξ(x) =
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2πσ 2
exp
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(x −m)2
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)
.

Mean is one and standard deviations are 1/2, 1 and 2.

Notice that we require only mild restrictions on how the xi themselves
are distributed for the sum y to tend to a normal. See Papoulis (1984,
p. 198) for one set of sufficient conditions and a proof of this theorem.

Fourier transform of the density function. It is often convenient to
handle the algebra of density functions, particularly normal densities,
by using the Fourier transform of the density function rather than the
density itself. The transform, which we denote asϕξ(u), is often called
the characteristic function or generating function in the statistics liter-
ature. From the definition of the Fourier transform

ϕξ(u) =
∫∞
−∞
eiuxpξ(x)dx

The transform has a one-to-one correspondence with the density func-
tion, which can be seen from the inverse transform formula

pξ(x) =
1

2π

∫∞
−∞
e−iuxϕξ(u)du
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Example A.36: Fourier transform of the normal density.

Show the Fourier transform of the normal density is
ϕξ(u) = exp

(
ium− 1

2u
2σ 2

)
. �

A.16 Multivariate Density Functions

In applications we normally do not have a single random variable but
a collection of random variables. We group these variables together
in a vector and let random variable ξ now take on values in Rn. The
probability density function is still a nonnegative scalar function

pξ(x) : Rn → R+

which is sometimes called the joint density function. As in the scalar
case, the probability that the n-dimensional random variable ξ takes
on values between a and b is given by

Pr(a ≤ ξ ≤ b) =
∫ bn
an
. . .
∫ b1

a1

pξ(x)dx1 · · ·dxn

Marginal density functions. We are often interested in only some
subset of the random variables in a problem. Consider two vectors
of random variables, ξ ∈ Rn and η ∈ Rm. We can consider the joint
distribution of both of these random variables pξ,η(x,y) or we may
only be interested in the ξ variables, in which case we can integrate out
the m η variables to obtain the marginal density of ξ

pξ(x) =
∞∫
· · ·

∫
−∞

pξ,η(x,y)dy1 · · ·dym

Analogously to produce the marginal density of η we use

pη(y) =
∞∫
· · ·

∫
−∞

pξ,η(x,y)dx1 · · ·dxn

Multivariate normal density. We define the multivariate normal den-
sity of the random variable ξ ∈ Rn as

pξ(x) =
1

(2π)n/2(detP)1/2
exp

[
−1

2
(x −m)′P−1(x −m)

]
(A.22)

in which m ∈ Rn is the mean and P ∈ Rn×n is the covariance matrix.
The notation detP denotes determinant of P . As noted before, P is a
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Figure A.9: Multivariate normal in two dimensions.

real, symmetric matrix. The multivariate normal density is well-defined
only for P > 0. The singular, or degenerate, case P ≥ 0 is discussed
subsequently. Shorthand notation for the random variable ξ having a
normal distribution with mean m and covariance P is

ξ ∼ N(m,P)

The matrix P is a real, symmetric matrix. Figure A.9 displays a mul-
tivariate normal for

P−1 =
[

3.5 2.5
2.5 4.0

]
m =

[
0
0

]

As displayed in Figure A.9, lines of constant probability in the multi-
variate normal are lines of constant

(x −m)′P−1(x −m)

To understand the geometry of lines of constant probability (ellipses in
two dimensions, ellipsoids or hyperellipsoids in three or more dimen-
sions) we examine the eigenvalues and eigenvectors of the P−1 matrix.
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Avi = λivi
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x2√
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√
bÃ11

√
bÃ22

Figure A.10: The geometry of quadratic form x′Ax = b.

Consider the quadratic function x′Ax depicted in Figure A.10. Each
eigenvector of A points along one of the axes of the ellipse x′Ax = b.
The eigenvalues show us how stretched the ellipse is in each eigenvec-
tor direction. If we want to put simple bounds on the ellipse, then we
draw a box around it as shown in Figure A.10. Notice the box contains
much more area than the corresponding ellipse and we have lost the
correlation between the elements of x. This loss of information means
we can put different tangent ellipses of quite different shapes inside
the same box. The size of the bounding box is given by

length of ith side =
√
bÃii

in which
Ãii = (i, i) element of A−1

See Exercise A.45 for a derivation of the size of the bounding box. Fig-
ure A.10 displays these results: the eigenvectors are aligned with the
ellipse axes and the eigenvalues scale the lengths. The lengths of the
sides of the box that are tangent to the ellipse are proportional to the
square root of the diagonal elements of A−1.

Singular or degenerate normal distributions. It is often convenient
to extend the definition of the normal distribution to admit positive
semidefinite covariance matrices. The distribution with a semidefinite
covariance is known as a singular or degnerate normal distribution (An-
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derson, 2003, p. 30). Figure A.11 shows a nearly singular normal dis-
tribution.

To see how the singular normal arises, let the scalar random variable
ξ be distributed normally with zero mean and positive definite covari-
ance, ξ ∼ N(0, Px), and consider the simple linear transformation

η = Aξ A =
[

1
1

]

in which we have created two identical copies of ξ for the two compo-
nents η1 and η2 of η. Now consider the density of η. If we try to use
the standard formulas for transformation of a normal, we would have

η ∼ N(0, Py) Py = APxA′ =
[
Px Px
Px Px

]

and Py is singular since its rows are linearly dependent. Therefore one
of the eigenvalues of Py is zero and Py is positive semidefinite and not
positive definite. Obviously we cannot use (A.22) for the density in this
case because the inverse of Py does not exist. To handle these cases, we
first provide an interpretation that remains valid when the covariance
matrix is singular and semidefinite.

Definition A.37 (Density of a singular normal). A singular joint normal
density of random variables (ξ1, ξ2), ξ1 ∈ Rn1 , ξ2 ∈ Rn2 , is denoted[

ξ1

ξ2

]
∼ N

[[m1

m2

]
,
[
Λ1 0
0 0

]]
with Λ1 > 0. The density is defined by

pξ(x1, x2) =
1

(2π)
n1
2 (detΛ1)

1
2

exp
[
−1

2
|x1 −m1)|2Λ−1

1

]
δ(x2−m2)

(A.23)

In this limit, the “random” variable ξ2 becomes deterministic and
equal to its mean m2. For the case n1 = 0, we have the completely
degenerate case in which pξ2(x2) = δ(x2 −m2), which describes the
completely deterministic case ξ2 = m2 and there is no random com-
ponent ξ1. This expanded definition enables us to generalize the im-
portant result that the linear transformation of a normal is normal,
so that it holds for any linear transformation, including rank deficient
transformations such as the A matrix given above in which the rows
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are not independent (see Exercise 1.40). Starting with the definition of
a singular normal, we can obtain the density for ξ ∼ N(mx, Px) for any
positive semidefinite Px ≥ 0. The result is

pξ(x) =
1

(2π)
r
2 (detΛ1)

1
2

exp
[
− 1

2
|(x −mx)|2Q1

]
δ(Q′2(x −mx))

(A.24)
in which matrices Λ ∈ Rr×r and orthonormal Q ∈ Rn×n are obtained
from the eigenvalue decomposition of Px

Px = QΛQ′ =
[
Q1 Q2

][Λ1 0
0 0

][
Q′1
Q′2

]

andΛ1 > 0 ∈ Rr×r ,Q1 ∈ Rn×r ,Q2 ∈ Rn×(n−r). This density is nonzero
for x satisfying Q′2(x −mx) = 0. If we let N(Q′2) denote the r di-
mensional nullspace of Q′2, we have that the density is nonzero for
x ∈ N(Q′2)⊕ {mx} in which ⊕ denotes set addition.

Example A.38: Marginal normal density

Given that ξ and η are jointly, normally distributed with mean

m =
[
mx
my

]

and covariance matrix

P =
[
Px Pxy
Pyx Py

]

show that the marginal density of ξ is normal with the following pa-
rameters

ξ ∼ N(mx, Px) (A.25)

Solution

As a first approach to establish (A.25), we directly integrate the y vari-
ables. Let x̄ = x −mx and ȳ = y −my , and nx and ny be the dimen-
sion of the ξ and η variables, respectively, and n = nx +ny . Then the
definition of the marginal density gives

pξ(x) =
1

(2π)n/2(detP)1/2

∫∞
−∞

exp

−1
2

[
x̄
ȳ

]′ [
Px Pxy
Pyx Py

]−1 [
x̄
ȳ

]dȳ
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Let the inverse of P be denoted as P̃ and partition P̃ as follows[
Px Pxy
Pyx Py

]−1

=
[
P̃x P̃xy
P̃yx P̃y

]
(A.26)

Substituting (A.26) into the definition of the marginal density and ex-
panding the quadratic form in the exponential yields

(2π)n/2(detP)1/2pξ(x) =

exp
(
−(1/2)x̄′P̃xx̄

)∫∞
−∞

exp
(
−(1/2)(2ȳ ′P̃yxx̄ + ȳ ′P̃y ȳ)

)
dȳ

We complete the square on the term in the integral by noting that

(ȳ+P̃
−1
y P̃yxx̄)′P̃y(ȳ+P̃

−1
y P̃yxx̄) = ȳ ′P̃y ȳ+2ȳ ′P̃yxx̄+x̄′P̃

′
yxP̃

−1
y P̃yxx̄

Substituting this relation into the previous equation gives

(2π)n/2(detP)1/2pξ(x) = exp
(
−(1/2)x̄′(P̃x − P̃

′
yxP̃

−1
y P̃yx)x̄

)
∫∞
−∞

exp
(
−(1/2)(ȳ + a)′P̃y(ȳ + a)

)
dȳ

in which a = P̃
−1
y P̃yxx̄. Using (A.22) to evaluate the integral gives

pξ(x) =
1

(2π)nx/2
(

det(P)det(P̃y)
)1/2 exp

(
−(1/2)x̄′(P̃x − P̃

′
yxP̃

−1
y P̃yx)x̄

)

From the matrix inversion formula we conclude

P̃x − P̃
′
xy P̃

−1
y P̃yx = P−1

x

and

det(P) = det(Px)det(Py − PyxP−1
x Pxy) = detPx det P̃

−1
y = detPx

det P̃y

Substituting these results into the previous equation gives

pξ(x) =
1

(2π)nx/2(detPx)1/2
exp

(
−(1/2)x̄′P−1

x x̄
)

Therefore
ξ ∼ N(mx, Px)

�
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Figure A.11: A nearly singular normal density in two dimensions.

Functions of random variables. In stochastic dynamical systems we
need to know how the density of a random variable is related to the
density of a function of that random variable. Let f : Rn → Rn be
a mapping of the random variable ξ into the random variable η and
assume that the inverse mapping also exits

η = f(ξ), ξ = f−1(η)

Given the density of ξ,pξ(x), we wish to compute the density of η,
pη(y), induced by the function f . Let S denote an arbitrary region of
the field of the random variable ξ and define the set S′ as the transform
of this set under the function f

S′ = {y|y = f(x),x ∈ S}

Then we seek a function pη(y) such that∫
S
pξ(x)dx =

∫
S′
pη(y)dy (A.27)
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for every admissible set S. Using the rules of calculus for transforming
a variable of integration we can write∫

S
pξ(x)dx =

∫
S′
pξ(f−1(y))

∣∣∣∣∣det
(
∂f−1(y)
∂y

)∣∣∣∣∣dy (A.28)

in which
∣∣det(∂f−1(y)/∂y)

∣∣ is the absolute value of the determinant
of the Jacobian matrix of the transformation from η to ξ. Subtracting
(A.28) from (A.27) gives∫

S′

(
pη(y)− pξ(f−1(y))

∣∣∣det(∂f−1(y)/∂y)
∣∣∣)dy = 0 (A.29)

Because (A.29) must be true for any set S′, we conclude (a proof by
contradiction is immediate)8

pη(y) = pξ(f−1(y))
∣∣∣det(∂f−1(y)/∂y)

∣∣∣ (A.30)

Example A.39: Nonlinear transformation

Show that

pη(y) =
1

3
√

2πσy2/3 exp

−1
2

(
y1/3 −m

σ

)2


is the density function of the random variable η under the transforma-
tion

η = ξ3

for ξ ∼ N(m,σ 2). Notice that the density pη is singular at y = 0. �

Noninvertible transformations. Givenn random variables ξ = (ξ1, ξ2,
. . . , ξn)with joint densitypξ and k random variablesη = (η1, η2, . . . , ηk)
defined by the transformation η = f(ξ)

η1 = f1(ξ) η2 = f2(ξ) · · · ηk = fk(ξ)

We wish to find pη in terms of pξ . Consider the region generated in Rn

by the vector inequality
f(x) ≤ c

8Some care should be exercised if one has generalized functions in mind for the
conditional density.
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Figure A.12: The region X(c) for y =max(x1, x2) ≤ c.

Call this region X(c), which is by definition

X(c) = {x|f(x) ≤ c}

Note X is not necessarily simply connected. The probability distribu-
tion (not density) for η then satisfies

Pη(y) =
∫
X(y)

pξ(x)dx (A.31)

If the density pη is of interest, it can be obtained by differentiating Pη.

Example A.40: Maximum of two random variables

Given two independent random variables, ξ1, ξ2 and the new random
variable defined by the noninvertible, nonlinear transformation

η =max(ξ1, ξ2)

Show that η’s density is given by

pη(y) = pξ1(y)
∫ y
−∞
pξ2(x)dx + pξ2(y)

∫ y
−∞
pξ1(x)dx

Solution

The region X(c) generated by the inequality y = max(x1, x2) ≤ c is
sketched in Figure A.12. Applying (A.31) then gives

Pη(y) =
∫ y
−∞

∫ y
−∞
pξ(x1, x2)dx1dx2

= Pξ(y,y)
= Pξ1(y)Pξ2(y)
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which has a clear physical interpretation. It says the probability that
the maximum of two independent random variables is less than some
value is equal to the probability that both random variables are less
than that value. To obtain the density, we differentiate

pη(y) = pξ1(y)Pξ2(y)+ Pξ1(y)pξ2(y)

= pξ1(y)
∫ y
−∞
pξ2(x)dx + pξ2(y)

∫ y
−∞
pξ1(x)dx

�

A.16.1 Statistical Independence and Correlation

We say two random variables ξ, η are statistically independent or sim-
ply independent if

pξ,η(x,y) = pξ(x)pη(y), all x,y

The covariance of two random variables ξ, η is defined as

cov(ξ, η) = E ((ξ −E(ξ)) (η−E(η)))

The covariance of the vector-valued random variable ξ with compo-
nents ξi, i = 1, . . . n can be written as

Pij = cov(ξi, ξj)

P =


var(ξ1) cov(ξ1, ξ2) · · · cov(ξ1, ξn)

cov(ξ2, ξ1) var(ξ2) · · · cov(ξ2, ξn)
...

...
. . .

...
cov(ξn, ξ1) cov(ξn, ξ2) · · · var(ξn)


We say two random variables, ξ and η, are uncorrelated if

cov(ξ, η) = 0

Example A.41: Independent implies uncorrelated

Prove that if ξ and η are statistically independent, then they are uncor-
related.
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Solution

The definition of covariance gives

cov(ξ, η) = E((ξ −E(ξ))(η−E(η)))
= E(ξη− ξE(η)− ηE(ξ)+E(ξ)E(η))
= E(ξη)−E(ξ)E(η)

Taking the expectation of the product ξη and using the fact that ξ and
η are independent gives

E(ξη) =
∞∫∫
−∞
xypξ,η(x,y)dxdy

=
∞∫∫
−∞
xypξ(x)pη(y)dxdy

=
∫∞
−∞
xpξ(x)dx

∫∞
−∞
ypη(y)dy

= E(ξ)E(η)

Substituting this fact into the covariance equation gives

cov(ξ, η) = 0

�

Example A.42: Does uncorrelated imply independent?

Let ξ and η be jointly distributed random variables with probability
density function

pξ,η(x,y) =
{

1
4[1+ xy(x2 −y2)], |x| < 1,

∣∣y∣∣ < 1
0, otherwise

(a) Compute the marginals pξ(x) and pη(y). Are ξ and η indepen-
dent?

(b) Compute cov(ξ, η). Are ξ and η uncorrelated?

(c) What is the relationship between independent and uncorrelated?
Are your results on this example consistent with this relationship?
Why or why not?
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pξ,η(x,y) = 1
4

[
1+ xy(x2 −y2)

]

-1
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Figure A.13: A joint density function for the two uncorrelated ran-
dom variables in Example A.42.

Solution

The joint density is shown in Figure A.13.

(a) Direct integration of the joint density produces

pξ(x) = (1/2), |x| < 1 E(ξ) = 0

pη(y) = (1/2),
∣∣y∣∣ < 1 E(η) = 0

and we see that both marginals are zero mean, uniform densities.
Obviously ξ and η are not independent because the joint density
is not the product of the marginals.

(b) Performing the double integral for the expectation of the product
term gives

E(ξη) =
1∫∫
−1

xy + (xy)2(x2 −y2)dxdy

= 0
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and the covariance of ξ and η is therefore

cov(ξ, η) = E(ξη)−E(ξ)E(η)
= 0

and ξ and η are uncorrelated.

(c) We know independent implies uncorrelated. This example does
not contradict that relationship. This example shows uncorre-
lated does not imply independent, in general, but see the next
example for normals.

�

Example A.43: Independent and uncorrelated are equivalent for nor-
mals

If two random variables are jointly normally distributed,[
ξ
η

]
∼ N

([
mx
my

]
,
[
Px Pxy
Pyx Py

])

Prove ξ and η are statistically independent if and only if ξ and η are
uncorrelated, or, equivalently, P is block diagonal.

Solution

We have already shown that independent implies uncorrelated for any
density, so we now show that, for normals, uncorrelated implies inde-
pendent. Given cov(ξ, η) = 0, we have

Pxy = P ′yx = 0 detP = detPx detPy

so the density can be written

pξ,η(x,y) =
exp

−1
2

[
x̄
ȳ

]′ [
Px 0
0 Py

]−1 [
x̄
ȳ

]
(2π)(nx+ny )/2

(
detPx detPy

)1/2 (A.32)

For any joint normal, we know the marginals are simply

ξ ∼ N(mx, Px) η ∼ N(my , Py)
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so we have

pξ(x) =
1

(2π)nx/2(detPx)1/2
exp

(
−(1/2)x̄′P−1

x x̄
)

pη(y) =
1

(2π)ny/2(detPy)1/2
exp

(
−(1/2)ȳ ′P−1

y ȳ
)

Forming the product and combining terms gives

pξ(x)pη(y) =
exp

(
−1

2

[
x̄
ȳ

]′ [
P−1
x 0
0 P−1

y

][
x̄
ȳ

])
(2π)(nx+ny )/2

(
detPx detPy

)1/2

Comparing this equation to (A.32), and using the inverse of a block-
diagonal matrix, we have shown that ξ and η are statistically indepen-
dent. �

A.17 Conditional Probability and Bayes’s Theorem

Let ξ andη be jointly distributed random variables with densitypξ,η(x,y).
We seek the density function of ξ given a specific realization y of η has
been observed. We define the conditional density function as

pξ|η(x|y) =
pξ,η(x,y)
pη(y)

Consider a roll of a single die in which η takes on values E or O to
denote whether the outcome is even or odd and ξ is the integer value
of the die. The twelve values of the joint density function are simply
computed

pξ,η(1,E) = 0
pξ,η(2,E) = 1/6
pξ,η(3,E) = 0
pξ,η(4,E) = 1/6
pξ,η(5,E) = 0
pξ,η(6,E) = 1/6

pξ,η(1,O) = 1/6
pξ,η(2,O) = 0
pξ,η(3,O) = 1/6
pξ,η(4,O) = 0
pξ,η(5,O) = 1/6
pξ,η(6,O) = 0

(A.33)

The marginal densities are then easily computed; we have for ξ

pξ(x) =
E∑

y=O

pξ,η(x,y)
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which gives by summing across rows of (A.33)

pξ(x) = 1/6, x = 1,2, . . .6

Similarly, we have for η

pη(y) =
6∑
x=1

pξ,η(x,y)

which gives by summing down the columns of (A.33)

pη(y) = 1/2, y = E,O

These are both in accordance of our intuition on the rolling of the die:
uniform probability for each value 1 to 6 and equal probability for an
even or an odd outcome. Now the conditional density is a different
concept. The conditional density pξ|η(x,y) tells us the density of x
given that η = y has been observed. So consider the value of this
function

pξ|η(1|O)

which tells us the probability that the die has a 1 given that we know
that it is odd. We expect that the additional information on the die
being odd causes us to revise our probability that it is 1 from 1/6 to
1/3. Applying the defining formula for conditional density indeed gives

pξ|η(1|O) = pξ,η(1,O)/pη(O) =
1/6
1/2

= 1/3

Consider the reverse question, the probability that we have an odd
given that we observe a 1. The definition of conditional density gives

pη,ξ(O|1) = pη,ξ(O,1)/pξ(1) =
1/6
1/6

= 1

i.e., we are sure the die is odd if it is 1. Notice that the arguments to
the conditional density do not commute as they do in the joint density.

This fact leads to a famous result. Consider the definition of condi-
tional density, which can be expressed as

pξ,η(x,y) = pξ|η(x|y)pη(y)

or
pη,ξ(y,x) = pη|ξ(y|x)pξ(x)
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Because pξ,η(x,y) = pη,ξ(y,x), we can equate the right-hand sides
and deduce

pξ|η(x|y) =
pη|ξ(y|x)pξ(x)

pη(y)

which is known as Bayes’s theorem (Bayes, 1763). Notice that this re-
sult comes in handy whenever we wish to switch the variable that is
known in the conditional density, which we will see is a key step in
state estimation problems.

Example A.44: Conditional normal density

Show that if ξ and η are jointly normally distributed as[
ξ
η

]
∼ N

([
mx
my

]
,
[
Px Pxy
Pyx Py

])

then the conditional density of ξ given η is also normal

(ξ|η) ∼ N(m,P)

in which the mean is

m =mx + PxyP−1
y (y −my) (A.34)

and the covariance is

P = Px − PxyP−1
y Pyx (A.35)

Solution

The definition of conditional density gives

pξ|η(x|y) =
pξ,η(x,y)
pη(y)

Because (ξ, η) is jointly normal, we know from Example A.38

pη(y) =
1

(2π)nη/2(detPy)1/2
exp

(
−(1/2)(y −my)′P−1

y (y −my)
)

and therefore

pξ|η(x|y) =
(detPy)1/2

(2π)nξ/2
(

det

[
Px Pxy
Pyx Py

])1/2 exp(−1/2a) (A.36)
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in which the argument of the exponent is

a =
[
x −mx
y −my

]′ [
Px Pxy
Pyx Py

]−1 [
x −mx
y −my

]
−(y−my)′P−1

y (y−my)

If we use P = Px − PxyP−1
y Pyx as defined in (A.35) then we can use the

partitioned matrix inversion formula to express the matrix inverse in
the previous equation as[

Px Pxy
Pyx Py

]−1

=
[

P−1 −P−1PxyP−1
y

−P−1
y PyxP−1 P−1

y + P−1
y PyxP−1PxyP−1

y

]

Substituting this expression and multiplying out terms yields

a = (x −mx)′P−1(x −mx)− 2(y −my)′(P−1
y PyxP−1)(x −mx)

+ (y −my)′(P−1
y PyxP−1PxyP−1

y )(y −my)

which is the expansion of the following quadratic term

a =
[
(x −mx)− PxyP−1

y (y −my)
]′
P−1

[
(x −mx)− PxyP−1

y (y −my)
]

in which we use the fact that Pxy = P ′yx . Substituting (A.34) into this
expression yields

a = (x −m)′P−1(x −m) (A.37)

Finally noting that for the partitioned matrix

det

[
Px Pxy
Pyx Py

]
= detPy detP (A.38)

and substitution of equations (A.38) and (A.37) into (A.36) yields

pξ|η(x|y) =
1

(2π)nξ/2(detP)1/2
exp

(
−1

2
(x −m)′P−1(x −m)

)
which is the desired result. �

Example A.45: More normal conditional densities

Let the joint conditional of random variables a and b given c be a nor-
mal distribution with

p(a,b|c) ∼ N
([

ma
mb

]
,
[
Pa Pab
Pba Pb

])
(A.39)
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Then the conditional density of a given b and c is also normal

p(a|b, c) ∼ N(m,P)

in which the mean is

m =ma + PabP−1
b (b −mb)

and the covariance is

P = Pa − PabP−1
b Pba

Solution

From the definition of joint density we have

p(a|b, c) = p(a,b, c)
p(b, c)

Multiplying the top and bottom of the fraction by p(c) yields

p(a|b, c) = p(a,b, c)
p(c)

p(c)
p(b, c)

or

p(a|b, c) = p(a,b|c)
p(b|c)

Substituting the distribution given in (A.39) and using the result in Ex-
ample A.38 to evaluate p(b|c) yields

p(a|b, c) =
N
([

ma
mb

]
,
[
Pa Pab
Pba Pb

])
N(mb, Pb)

And now applying the methods of Example A.44 this ratio of normal
distributions reduces to the desired expression. �

Adjoint operator. Given a linear operator G : U → V and inner prod-
ucts for the spaces U and V, the adjoint of G, denoted by G∗ is the
linear operator G∗ : V→ U such that

〈u,G∗v〉 = 〈Gu,v〉, ∀u ∈ U, v ∈ V (A.40)
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Dual dynamic system (Callier and Desoer, 1991). The dynamic sys-
tem

x(k+ 1) = Ax(k)+ Bu(k), k = 0, . . . ,N − 1

y(k) = Cx(k)+Du(k)

maps an initial condition and input sequence (x(0),u(0), . . . , u(N−1))
into a final condition and an output sequence (x(N),y(0), . . . , y(N −
1)). Call this linear operator G

x(N)
y(0)

...
y(N − 1)

 = G


x(0)
u(0)

...
u(N − 1)


The dual dynamic system represents the adjoint operator G∗

x(0)
y(1)

...
y(N)

 = G∗

x(N)
u(1)

...
u(N)


We define the usual inner product, 〈a,b〉 = a′b, and substitute into
(A.40) to obtain

x(0)′x(0)+u(0)′y(1)+ · · · +u(N − 1)′y(N)︸ ︷︷ ︸
〈u,G∗v〉

−

x(N)′x(N)+y(0)′u(1)+ · · · +y(N − 1)′u(N)︸ ︷︷ ︸
〈Gu,v〉

= 0

If we express the y(k) in terms of x(0) and u(k) and collect terms we
obtain

0 = x(0)′
[
x(0)− C′u(1)−A′C′u(2)− · · · −A′Nx(N)

]
+u(0)′

[
y(1)−D′u(1)− B′C′u(2)− · · · − B′A′(N−2)C′u(N)− B′A′(N−1)x(N)

]
+ · · ·
+u(N − 2)′

[
y(N − 1)−D′u(N − 1)− B′C′u(N)− B′A′x(N)

]
+u(N − 1)′

[
y(N)−D′u(N)− B′x(N)

]
Since this equation must hold for all (x(0),u(0), . . . , u(N − 1)), each
term in brackets must vanish. From the u(N − 1) term we conclude

y(N) = B′x(N)+D′u(N)
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Using this result, the u(N − 2) term gives

B′
(
x(N − 1)−

(
A′x(N)+ C′u(N)

))
= 0

From which we find the state recursion for the dual system

x(N − 1) = A′x(N)+ C′u(N)

Passing through each term then yields the dual state space description
of the adjoint operator G∗

x(k− 1) = A′x(k)+ C′u(k), k = N, . . . ,1
y(k) = B′x(k)+D′u(k)

So the primal and dual dynamic systems change matrices in the follow-
ing way

(A, B,C,D) -→ (A′, C′, B′,D′)
Notice this result produces the duality variables listed in Table A.1 if
we first note that we have also renamed the regulator’s input matrix B
to G in the estimation problem. We also note that time runs in the op-
posite directions in the dynamic system and the dual dynamic system,
which corresponds to the fact that the Riccati equation iterations run
in opposite directions in the regulation and estimation problems.

A.18 Exercises

Exercise A.1: Norms in Rn

Show that the following three functions are all norms in Rn

|x|2 :=
 n∑
i=1

(xi)2
1/2

|x|∞ :=max{|x1|, |x2|, . . . , |xn|}

|x|1 :=
n∑
i=1

|xj|

where xj denotes the jth component of the vector x.

Exercise A.2: Equivalent norms

Show that there are finite constants Kij , i, j = 1,2,∞ such that

|x|i ≤ Kij |x|j , for all i, j ∈ {1,2,∞}.

This result shows that the norms are equivalent and may be used interchangeably for

establishing that sequences are convergent, sets are open or closed, etc.
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Regulator Estimator
A A′

B C′

C G′

k l = N − k
Π(k) P−(l)

Π(k− 1) P−(l+ 1)
Π P−

Q Q
R R

Q(N) Q(0)
K −L̃

′

A+ BK (A− L̃C)′
x ε

Regulator Estimator
R > 0, Q > 0 R > 0, Q > 0
(A, B) stabilizable (A,C) detectable
(A,C) detectable (A,G) stabilizable

Table A.1: Duality variables and stability conditions for linear quad-
ratic regulation and linear estimation.

Exercise A.3: Open and closed balls

Let x ∈ Rn and ρ > 0 be given. Show that {z | |z − x| < ρ} is open and that B(x,ρ) is

closed.

Exercise A.4: Condition for closed set

Show that X ⊂ Rn is closed if and only if int(B(x, ρ)) ∩ X 6= ∅ for all ρ > 0 implies

x ∈ X.

Exercise A.5: Convergence

Suppose that xi → x̂ as i→∞; show that for every ρ > 0 there exists an ip ∈ I≥0 such

that xi ∈ B(x̂, ρ) for all i ≥ ip .

Exercise A.6: Limit is unique

Suppose that x̂, x̂′ are limits of a sequence {xi}i∈I≥0 . Show that x̂ = x̂′.

Exercise A.7: Open and closed sets

(a) Show that a set X ⊂ Rn is open if and only if, for any x̂ ∈ X and any sequence
{xi} ⊂ Rn such that xi → x̂ as i → ∞, there exists a q ∈ I≥0 such that xi ∈ X
for all i ≥ q.

(b) Show that a set X ⊂ Rn is closed if and only if for all {xi} ⊂ X, if xi → x̂ as
i → ∞, then x̂ ∈ X, i.e., a set X is closed if and only if it contains the limit of
every convergent sequences lying in X.
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Exercise A.8: Decreasing and bounded below

Prove the observation at the end of Section A.10 that a monotone decreasing sequence

that is bounded below converges.

Exercise A.9: Continuous function

Show that f : Rn → Rm is continuous at x̂ implies f(xi)→ f(x̂) for any sequence {xi}
satisfying xi → x̂ as i→∞.

Exercise A.10: Alternative proof of existence of minimum of continuous
function on compact set

Prove Proposition A.7 by making use of the fact that f(X) is compact.

Exercise A.11: Differentiable implies Lipschitz

Suppose that f : Rn → Rm has a continuous derivative fx(·) in a neighborhood of x̂.

Show that f is locally Lipschitz continuous at x̂.

Exercise A.12: Continuous, Lipschitz continuous, and differentiable

Provide examples of functions meeting the following conditions.

1. Continuous but not Lipschitz continuous.

2. Lipschitz continuous but not differentiable.

Exercise A.13: Differentiating quadratic functions and time-varying matrix
inverses

(a) Show that ∇f(x) = Qx if f(x) = (1/2)x′Qx and Q is symmetric.

(b) Show that (d/dt)A−1(t) = −A−1(t)Ȧ(t)A−1(t) if A : R → Rn×n, A(t) is invert-
ible for all t ∈ R, and Ȧ(t) := (d/dt)A(t).

Exercise A.14: Directional derivative

Suppose that f : Rn → Rm has a derivative fx(x̂) at x̂. Show that for any h, the
directional derivative df(x̂;h) exists and is given by

df(x̂;h) = fx(x̂)h = (∂f(x)/∂x)h.

Exercise A.15: Convex combination

Suppose S ⊂ Rn is convex. Let {xi}ki=1 be points in S and let {µi}ki=1 be scalars such

that µi ≥ 0 for i = 1,2, . . . , k and
∑k
i=1 µ

i = 1. Show that k∑
i=1

µixi

 ∈ S.
Exercise A.16: Convex epigraph

Show that f : Rn → R is convex if and only if its epigraph is convex.
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Exercise A.17: Bounded second derivative and minimum

Suppose that f : Rn → R is twice continuously differentiable and that for some ∞ >
M ≥ m > 0, M|y|2 ≥ 〈y, ∂2f/∂x2(x)y〉 ≥ m|y|2 for all x,y ∈ Rn. Show that the

sublevel sets of f are convex and compact and that f(·) attains its infimum.

Exercise A.18: Sum and max of convex functions are convex

Suppose that fi : Rn → R, i = 1,2, . . . ,m are convex. Show that

ψ1(x) :=max
i
{fi(x) | i ∈ {1,2, . . . ,m}},

ψ2(x) :=
m∑
i=1

fi(x)

are both convex.

Exercise A.19: Einige kleine Mathprobleme

(a) Prove that if λ is an eigenvalue and v is an eigenvector of A (Av = λv), then λ
is also an eigenvalue of T in which T is upper triangular and given by the Schur
decomposition of A

Q∗AQ = T
What is the corresponding eigenvector?

(b) Prove statement 1. on positive definite matrices. Where is this fact needed?

(c) Prove statement 6. on positive definite matrices. Where is this fact needed?

(d) Prove statement 5. on positive definite matrices.

(e) Prove statement 8. on positive semidefinite matrices.

(f) Derive the two expressions for the partitioned A−1.

Exercise A.20: Positive definite but not symmetric matrices

Consider redefining the notation A > 0 for A ∈ Rn×n to mean x′Ax > 0 for all x ∈
Rn ≠ 0. In other words, the restriction that A is symmetric in the usual definition of
positive definiteness is removed. Consider also B := (A + A′)/2. Show the following
hold for all A. (a) A > 0 if and only if B is positive definite. (b) tr(A) = tr(B). (Johnson,
1970; Johnson and Hillar, 2002)

Exercise A.21: Trace of a matrix function

Derive the following formula for differentiating the trace of a function of a square
matrix

dtr(f (A))
dA

= g(A′) g(x) = df(x)
dx

in which g is the usual scalar derivative of the scalar function f . This result proves

useful in evaluating the change in the expectation of the stage cost in stochastic control

problems.
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Exercise A.22: Some matrix differentiation

Derive the following formulas (Bard, 1974). A,B ∈ Rn×n, a,x ∈ Rn.

(a)
∂x′Ax
∂x

= Ax +A′x

(b)
∂Axa′Bx
∂x′

= (a′Bx)A+Axa′B

(c)
∂a′Ab
∂A

= ab′

Exercise A.23: Partitioned matrix inversion formula

In deriving the partitioned matrix inversion formula we assumed A is partitioned into

A =
[
B C
D E

]

and that A−1, B−1 and E−1 exist. In the final formula, the term

(E −DB−1C)−1

appears, but we did not assume this matrix is invertible. Did we leave out an assump-

tion or can the existence of this matrix inverse be proven given the other assumptions?

If we left out an assumption, provide an example in which this matrix is not invertible.

If it follows from the other assumptions, prove this inverse exists.

Exercise A.24: Partitioned positive definite matrices

Consider the partitioned positive definite, symmetric matrix

H =
[
H11 H12
H21 H22

]
Prove that the following matrices are also positive definite

1. H11

2. H22

3. H in which

H =
[
H11 −H12
−H21 H22

]
4. H11 −H12H−1

22 H21 and H22 −H21H−1
11 H12

Exercise A.25: Properties of the matrix exponential

Prove that the following properties of the matrix exponential, which are useful for
dealing with continuous time linear systems. The matrix A is a real-valued n × n
matrix, and t is real.

(a)
rank

(
eAt

)
= n ∀t
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(b)

rank

(∫ t
0
eAτdτ

)
= n ∀t > 0

Exercise A.26: Controllability in continuous time

A linear, time-invariant, continuous time system

dx
dt
= Ax + Bu

x(0) = x0 (A.41)

is controllable if there exists an input u(t),0 ≤ t ≤ t1, t1 > 0 that takes the system
from any x0 at time zero to any x1 at some finite time t1.

(a) Prove that the system in (A.41) is controllable if and only if

rank (C) = n
in which C is, remarkably, the same controllability matrix that was defined for
discrete time systems 1.17

C =
[
B AB · · · An−1B

]
(b) Describe a calculational procedure for finding this required input.

Exercise A.27: Reachability Gramian in continuous time

Consider the symmetric, n×n matrix W defined by

W(t) =
∫ t

0
e(t−τ)ABB′e(t−τ)A

′
dτ

The matrixW is known as the reachability Gramian of the linear, time-invariant system.
The reachability Gramian proves useful in analyzing controllability and reachability.
Prove the following important properties of the reachability Gramian.

(a) The reachability Gramian satisfies the following matrix differential equation

dW
dt

= BB′ +AW +WA′

W(0) = 0

which provides one useful way to calculate its values.

(b) The reachability Gramian W(t) is full rank for all t > 0 if and only if the system
is controllable.

Exercise A.28: Differences in continuous time and discrete time systems

Consider the definition that a system is controllable if there exists an input that takes
the system from any x0 at time zero to any x1 at some finite time t1.

(a) Show that x1 can be taken as zero without changing the meaning of controlla-
bility for a linear continuous time system.

(b) In linear discrete time systems, x1 cannot be taken as zero without changing the
meaning of controllability. Why not? Which A require a distinction in discrete
time. What are the eigenvalues of the corresponding A in continuous time?
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Exercise A.29: Observability in continuous time

Consider the linear time-invariant continuous time system

dx
dt
= Ax

x(0) = x0 (A.42)

y = Cx

and let y(t;x0) represent the solution to (A.42) as a function of time t given starting
state value x0 at time zero. Consider the output from two different initial conditions
y(t;w), y(t;z) on the time interval 0 ≤ t ≤ t1 with t1 > 0.

The system in (A.42) is observable if

y(t;w) = y(t;z), 0 ≤ t ≤ t1 =⇒ w = z

In other words, if two output measurement trajectories agree, the initial conditions
that generated the output trajectories must agree, and hence, the initial condition is
unique. This uniqueness of the initial condition allows us to consider building a state
estimator to reconstruct x(0) from y(t;x0). After we have found the unique x(0),
solving the model provides the rest of the state trajectory x(t). We will see later that
this procedure is not the preferred way to build a state estimator; it simply shows that
if the system is observable, the goal of state estimation is reasonable.

Show that the system in (A.42) is observable if and only if

rank (O) = n

in which O is, again, the same observability matrix that was defined for discrete time
systems 1.37

O =


C
CA

...
CAn−1


Hint: what happens if you differentiate y(t;w) − y(t;z) with respect to time? How
many times is this function differentiable?

Exercise A.30: Observability Gramian in continuous time

Consider the symmetric, n×n matrix Wo defined by

Wo(t) =
∫ t

0
eA
′τC′CeAτdτ

The matrix Wo is known as the observability Gramian of the linear, time-invariant sys-
tem. Prove the following important properties of the observability Gramian.

(a) The observability GramianWo(t) is full rank for all t > 0 if and only if the system
is observable.

(b) Consider an observable linear time invariant system withu(t) = 0 so thaty(t) =
CeAtx0. Use the observability Gramian to solve this equation forx0 as a function
of y(t),0 ≤ t ≤ t1.

(c) Extend your result from the previous part to find x0 for an arbitrary u(t).
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Exercise A.31: Detectability of (A, C) and output penalty

Given a system

x(k+ 1) = Ax(k)+ Bu(k)
y(k) = Cx(k)

Suppose (A,C) is detectable and an input sequence has been found such that

u(k)→ 0 y(k)→ 0

Show that x(k)→ 0.

Exercise A.32: Prove your favorite Hautus Lemma

Prove the Hautus Lemma for controllability, Lemma 1.2, or observability, Lemma 1.4.

Exercise A.33: Positive semidefinite Q penalty and its square root

Consider the linear quadratic problem with system

x(k+ 1) = Ax(k)+ Bu(k)
y(k) = Q1/2x(k)

and infinite horizon cost function

Φ =
∞∑
k=0

x(k)′Qx(k)+u(k)′Ru(k)

=
∞∑
k=0

y(k)′y(k)+u(k)′Ru(k)

with Q ≥ 0, R > 0, and (A, B) stabilizable. In Exercise A.31 we showed that if (A,Q1/2)
is detectable and an input sequence has been found such that

u(k)→ 0 y(k)→ 0

then x(k)→ 0.

(a) Show that if Q ≥ 0, then Q1/2 is a well defined, real, symmetric matrix and
Q1/2 ≥ 0.

Hint: apply Theorem A.1 to Q, using fact 3..

(b) Show that (A,Q1/2) is detectable (observable) if and only if (A,Q) is detectable
(observable). So we can express one of the LQ existence, uniqueness, and stability
conditions using detectability of (A,Q) instead of (A,Q1/2).

Exercise A.34: Probability density of the inverse function

Consider a scalar random variable ξ ∈ R and let the random variable η be defined by
the inverse function

η = ξ−1

(a) If ξ is distributed uniformly on [a,1] with 0 < a < 1, what is the density of η?

(b) Is η’s density well defined if we allow a = 0? Explain your answer.
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Exercise A.35: Expectation as a linear operator

(a) Consider the random variable x to be defined as a linear combination of the
random variables a and b

x = a+ b
Show that

E(x) = E(a)+E(b)
Do a and b need to be statistically independent for this statement to be true?

(b) Next consider the random variable x to be defined as a scalar multiple of the
random variable a

x = αa
Show that

E(x) = αE(a)

(c) What can you conclude about E(x) if x is given by the linear combination

x =
∑
i
αivi

in which vi are random variables and αi are scalars.

Exercise A.36: Minimum of two random variables

Given two independent random variables, ξ1, ξ2 and the random variable defined by
the minimum operator

η =min(ξ1, ξ2)

(a) Sketch the region X(c) for the inequality min(x1, x2) ≤ c.

(b) Find η’s probability density in terms of the probability densities of ξ1, ξ2.

Exercise A.37: Maximum of n normally distributed random variables

Given n independent, identically distributed normal random variables, ξ1, ξ2, . . . , ξn
and the random variable defined by the maximum operator

η =max(ξ1, ξ2, . . . ξn)

(a) Derive a formula for η’s density.

(b) Plot pη for ξi ∼ N(0,1) and n = 1,2, . . .5. Describe the trend in pη as n in-
creases.

Exercise A.38: Another picture of mean

Consider a scalar random variable ξ with probability distribution Pξ shown in Fig-

ure A.14. Consider the inverse probability distribution, P−1
ξ , also shown in Figure A.14.

(a) Show that the expectation of ξ is equal to the following integral of the probability
distribution (David, 1981, p. 38)

E(ξ) = −
∫ 0

−∞
Pξ(x)dx +

∫∞
0
(1− Pξ(x))dx (A.43)



596 Mathematical Background

0

Pξ(x)

0 1

A1

A2

A1

A2

P−1
ξ (w)

x

w

Figure A.14: The probability distribution and inverse distribution for
random variable ξ. The mean of ξ is given by the dif-
ference in the hatched areas, E(ξ) = A2 −A1.

(b) Show that the expectation of ξ is equal to the following integral of the inverse
probability distribution

E(ξ) =
∫ 1

0
P−1
ξ (w)dw (A.44)

These interpretations of mean are shown as the hatched areas in Figure A.14,
E(ξ) = A2 −A1.

Exercise A.39: Ordering random variables

We can order two random variables A and B if they obey an inequality such as A ≥ B.
The frequency interpretation of the probability distribution, PA(c) = Pr(A ≤ c), then
implies that PA(c) ≤ PB(c) for all c.

If A ≥ B, show that
E(A) ≥ E(B)

Exercise A.40: Max of the mean and mean of the max

Given two random variables A and B, establish the following inequality

max(E(A),E(B)) ≤ E(max(A, B))

In other words, the max of the mean is an underbound for the mean of the max.

Exercise A.41: Observability

Consider the linear system with zero input

x(k+ 1) = Ax(k)
y(k) = Cx(k)
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with

A =

 1 0 0
0 1 0
2 1 1

 , C =
[

1 0 0
0 1 0

]

(a) What is the observability matrix for this system? What is its rank?

(b) Consider a string of data measurements

y(0) = y(1) = · · · = y(n− 1) = 0

Now x(0) = 0 is clearly consistent with these data. Is this x(0) unique? If yes,
prove it. If no, characterize the set of all x(0) that are consistent with these
data.

Exercise A.42: Nothing is revealed

An agitated graduate student shows up at your office. He begins, “I am afraid I have
discovered a deep contradiction in the foundations of systems theory.” You ask him
to calm down and tell you about it. He continues, “Well, we have the pole placement
theorem that says if (A,C) is observable, then there exists a matrix L such that the
eigenvalues of an observer

A−ALC
can be assigned arbitrarily.”

You reply, “Well, they do have to be conjugate pairs because the matrices A,L,C
are real-valued, but yeah, sure, so what?”

He continues, “Well we also have the Hautus Lemma that says (A,C) is observable
if and only if

rank

[
λI −A
C

]
= n ∀λ ∈ C

“You know, the Hautus Lemma has always been one of my favorite lemmas; I don’t
see a problem,” you reply.

“Well,” he continues, “isn’t the innovations form of the system, (A − ALC,C), ob-
servable if and only if the original system, (A,C), is observable?”

“Yeah . . . I seem to recall something like that,” you reply, starting to feel a little
uncomfortable.

“OK, how about if I decide to put all the observer poles at zero?” he asks, innocently.
You object, “Wait a minute, I guess you can do that, but that’s not going to be a

very good observer, so I don’t think it matters if . . . .”
“Well,” he interrupts, “how about we put all the eigenvalues of A − ALC at zero,

like I said, and then we check the Hautus condition at λ = 0? I get

rank

[
λI − (A−ALC)

C

]
= rank

[
0
C

]
λ = 0

“So tell me, how is that matrix on the right ever going to have rank n with that big, fat
zero sitting there?” At this point, you start feeling a little dizzy.

What’s causing the contradiction here: the pole placement theorem, the Hautus
Lemma, the statement about equivalence of observability in innovations form, some-
thing else? How do you respond to this student?
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Exercise A.43: The sum of throwing two dice

Using (A.30), what is the probability density for the sum of throwing two dice? On what
number do you want to place your bet? How often do you expect to win if you bet on
this outcome?

Make the standard assumptions: the probability density for each die is uniform

over the integer values from one to six, and the outcome of each die is independent of

the other die.

Exercise A.44: The product of throwing two dice

Using (A.30), what is the probability density for the product of throwing two dice? On
what number do you want to place your bet? How often do you expect to win if you
bet on this outcome?

Make the standard assumptions: the probability density for each die is uniform

over the integer values from one to six, and the outcome of each die is independent of

the other die.

Exercise A.45: The size of an ellipse’s bounding box

Here we derive the size of the bounding box depicted in Figure A.10. Consider a real,
positive definite, symmetric matrix A ∈ Rn×n and a real vector x ∈ Rn. The set of x
for which the scalar x′Ax is constant are n-dimensional ellipsoids. Find the length of
the sides of the smallest box that contains the ellipsoid defined by

x′Ax = b
Hint: Consider the equivalent optimization problem to minimize the value of x′Ax

such that the ith component of x is given by xi = c. This problem defines the ellipsoid
that is tangent to the plane xi = c, and can be used to answer the original question.

Exercise A.46: The tangent points of an ellipse’s bounding box

Find the tangent points of an ellipsoid defined by x′Ax = b, and its bounding box
as depicted in Figure A.10 for n = 2. For n = 2, draw the ellipse, bounding box and
compute the tangent points for the following parameters taken from Figure A.10

A =
[

3.5 2.5
2.5 4.0

]
b = 1

Exercise A.47: Let’s make a deal!

Consider the following contest of the American television game show of the 1960s, Let’s
Make a Deal. In the show’s grand finale, a contestant is presented with three doors.
Behind one of the doors is a valuable prize such as an all-expenses-paid vacation to
Hawaii or a new car. Behind the other two doors are goats and donkeys. The contestant
selects a door, say door number one. The game show host, Monty Hall, then says,

“Before I show you what is behind your door, let’s reveal what is behind door num-
ber three!” Monty always chooses a door that has one of the booby prizes behind it.
As the goat or donkey is revealed, the audience howls with laughter. Then Monty asks
innocently,

“Before I show you what is behind your door, I will allow you one chance to change
your mind. Do you want to change doors?” While the contestant considers this option,
the audience starts screaming out things like,
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“Stay with your door! No, switch, switch!” Finally the contestant chooses again,
and then Monty shows them what is behind their chosen door.

Let’s analyze this contest to see how to maximize the chance of winning. Define

p(i, j,y), i, j,y = 1,2,3

to be the probability that you chose door i, the prize is behind door j and Monty showed
you door y (named after the data!) after your initial guess. Then you would want to

max
j
p(j|i,y)

for your optimal choice after Monty shows you a door.

(a) Calculate this conditional density and give the probability that the prize is behind
door i, your original choice, and door j ≠ i.

(b) You will need to specify a model of Monty’s behavior. Please state the one that
is appropriate to Let’s Make a Deal.

(c) For what other model of Monty’s behavior is the answer that it doesn’t matter if
you switch doors. Why is this a poor model for the game show?

Exercise A.48: Norm of an extended state

Consider x ∈ Rn with a norm denoted |·|α, and u ∈ Rm with a norm denoted |·|β.
Now consider a proposed norm for the extended state (x,u)

|(x,u)|γ := |x|α + |u|β
Show that this proposal satisfies the definition of a norm given in Section A.8.

If the α and β norms are chosen to be p-norms, is the γ norm also a p-norm? Show
why or why not.

Exercise A.49: Distance of an extended state to an extended set

Let x ∈ Rn and X a set of elements in Rn, and u ∈ Rm and U a set of elements in Rm.
Denote distances from elements to their respective sets as

|x|X := inf
y∈X

∣∣x −y∣∣α |u|U := inf
v∈U

|u− v|β

|(x,u)|X×U := inf
(y,v)∈X×U

∣∣(x,u)− (y,v)∣∣γ
Use the norm of the extended state defined in Exercise A.48 to show that

|(x,u)|X×U = |x|X + |u|U
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B
Stability Theory

B.1 Introduction

In this appendix we consider stability properties of discrete time sys-
tems. A good general reference for stability theory of continuous time
systems is Khalil (2002). There are not many texts for stability theory
of discrete time systems; a useful reference is LaSalle (1986). Recently
stability theory for discrete time systems has received more attention
in the literature. In the notes below we draw on Jiang and Wang (2001,
2002); Kellet and Teel (2004a,b).

We consider systems of the form

x+ = f(x,u)

where the state x lies in Rn and the control (input) u lies in Rm; in
this formulation x and u denote, respectively, the current state and
control, and x+ the successor state. We assume in the sequel that the
function f : Rn × Rm → Rn is continuous. Let φ(k;x,u) denote the
solution of x+ = f(x,u) at time k if the initial state is x(0) = x and the
control sequence is u = {u(0),u(1),u(2), . . .}; the solution exists and
is unique. If a state-feedback control law u = κ(x) has been chosen,
the closed-loop system is described by x+ = f(x, κ(x)), which has the
same form x+ = fc(x) where fc(·) is defined by fc(x) := f(x, κ(x)).
Letφ(k;x,κ(·)) denote the solution of this difference equation at time
k if the initial state at time 0 is x(0) = x; the solution exists and is
unique (even if κ(·) is discontinuous). If κ(·) is not continuous, as may
be the case when κ(·) is an implicit model predictive control (MPC) law,
then fc(·) may not be continuous. In this case we assume that fc(·) is
locally bounded.1

1A function f : X → X is locally bounded if, for any x ∈ X, there exists a neighbor-
hood N of x such that f(N ) is a bounded set, i.e., if there exists a M > 0 such that
|f(x)| ≤ M for all x ∈N .

602
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We would like to be sure that the controlled system is “stable”, i.e.,
that small perturbations of the initial state do not cause large variations
in the subsequent behavior of the system, and that the state converges
to a desired state or, if this is impossible due to disturbances, to a
desired set of states. These objectives are made precise in Lyapunov
stability theory; in this theory, the system x+ = f(x) is assumed given
and conditions ensuring the stability, or asymptotic stability of a spec-
ified state or set are sought; the terms stability and asymptotic stability
are defined below. If convergence to a specified state, x∗ say, is sought,
it is desirable for this state to be an equilibrium point:

Definition B.1 (Equilibrium point). A point x∗ is an equilibrium point
of x+ = f(x) if x(0) = x∗ implies x(k) = φ(k;x∗) = x∗ for all k ≥ 0.
Hence x∗ is an equilibrium point if it satisfies

x∗ = f(x∗)

An equilibrium point x∗ is isolated if there are no other equilib-
rium points in a sufficiently small neighborhood of x∗. A linear system
x+ = Ax + b has a single equilibrium point x∗ = (I −A)−1b if I −A is
invertible; if not, the linear system has a continuum {x | (I −Ax) = b}
of equilibrium points. A nonlinear system, unlike a linear system, may
have several isolated equilibrium points.

In other situations, for example when studying the stability proper-
ties of an oscillator, convergence to a specified closed set A ⊂ Rn is
sought. In the case of a linear oscillator with state dimension 2, this
set is an ellipse. If convergence to a set A is sought, it is desirable for
the setA to be positive invariant :

Definition B.2 (Positive invariant set). A setA is positive invariant for
the system x+ = f(x) if x ∈A implies f(x) ∈A.

Clearly, any solution of x+ = f(x) with initial state in A, remains
in A. The (closed) set A = {x∗} consisting of a (single) equilibrium
point is a special case; x ∈A (x = x∗) implies f(x) ∈A (f(x) = x∗).
Define |x|A := infz∈A |x − z| to be the distance of a point x from the
set A; if A = {x∗}, then |x|A = |x − x∗| which reduces to |x| when
x∗ = 0.

Before introducing the concepts of stability and asymptotic stability
and their characterization by Lyapunov functions, it is convenient to
make a few definitions.
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Definition B.3 (K function). A function σ : R≥0 → R≥0 belongs to class
K if it is continuous, zero at zero, and strictly increasing; σ : R≥0 →
R≥0 belongs to class K∞ if it is a class K and unbounded (σ(s) → ∞
as s → ∞). A function β : R≥0 × I≥0 → R≥0 belongs to class KL if it is
continuous and if, for each t ≥ 0, β(·, t) is a class K function and for
each s ≥ 0, β(s, ·) is nonincreasing and satisfies limt→∞ β(s, t) = 0. A
function γ : R → R≥0 belongs to class PD (is positive definite) if it is
continuous and positive everywhere except at the origin.

The following useful properties of these functions are established
in Khalil (2002, Lemma 4.2): if α1(·) and α2(·) are K functions (K∞
functions), then α−1

1 (·) and (α1 ◦ α2)(·)2 are K functions (K∞ func-
tions). Moreover, if α1(·) and α2(·) are K functions and β(·) is a KL
function, then σ(r , s) = α1(β(α2(r), s)) is aKL function.

B.2 Stability and Asymptotic Stability

In this section we consider the stability properties of the autonomous
systemx+ = f(x); we assume that f(·) is locally bounded, and that the
set A is closed and positive invariant for x+ = f(x) unless otherwise
stated.

Definition B.4 (Local stability). The (closed positive invariant) setA is
locally stable for x+ = f(x) if, for all ε > 0, there exists a δ > 0 such
that |x|A < δ implies |φ(i;x)|A < ε for all i ∈ I≥0.

See Figure B.1 for an illustration of this definition whenA= {0}; in
this case we speak of stability of the origin.

Definition B.5 (Global attraction). The (closed positive invariant) setA
is globally attractive for the system x+ = f(x) if |φ(i;x)|A → 0 as
i→∞ for all x ∈ Rn.

Definition B.6 (Global asymptotic stability (GAS)). The (closed positive
invariant) set A is globally asymptotically stable (GAS) for x+ = f(x)
if it is locally stable and globally attractive.

It is possible for the origin to be globally attractive but not locally
stable. Consider a second order system

x+ = Ax +φ(x)
2(α1 ◦α2)(·) is the composition of the two functions α1(·) and α2(·) and is defined

by (α1 ◦α2)(s) := α1(α2(s)).
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Bδ(0)

0

Bε(0)

x

Figure B.1: Stability of the origin.

where A has eigenvalues λ1 = 0.5 and λ2 = 2 with associated eigen-
vectors w1 and w2, shown in Figure B.2; w1 is the “stable” and w2 the
“unstable” eigenvector; the smooth function φ(·) satisfies φ(0) = 0
and (∂/∂x)φ(0) = 0 so that x+ = Ax + φ(x) behaves like x+ = Ax
near the origin. If φ(x) ≡ 0, the motion corresponding to an initial
state αw1, α ≠ 0, converges to the origin, whereas the motion corre-
sponding to an initial state αw2 diverges. If φ(·) is such that it steers
nonzero states toward the horizontal axis, we get trajectories of the
form shown in Figure B.2. All trajectories converge to the origin but
the motion corresponding to an initial state αw2, no matter how small,
is similar to that shown in Figure B.2 and cannot satisfy the ε, δ defini-
tion of local stability. The origin is globally attractive but not stable. A
trajectory that joins an equilibrium point to itself, as in Figure B.2, is
called a homoclinic orbit. We collect below a set of useful definitions:

Definition B.7 (Various forms of stability). The closed positive invariant
setA is

(a) locally stable if, for each ε > 0, there exists a δ = δ(ε) > 0 such that
|x|A < δ implies |φ(i;x)|A < ε for all i ∈ I≥0.

(b) unstable, if it is not locally stable.

(c) locally attractive if there exists η > 0 such that |x|A < η implies
|φ(i;x)|A → 0 as i→∞.
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w1

w2

Figure B.2: An attractive but unstable origin.

(d) globally attractive if |φ(i;x)|A → 0 as i→∞ for all x ∈ Rn.

(e) locally asymptotically stable if it is locally stable and locally attrac-
tive.

(f) globally asymptotically stable if it is locally stable and globally at-
tractive.

(g) locally exponentially stable if there exist η > 0, c > 0, and γ ∈ (0,1)
such that |x|A < η implies |φ(i;x)|A ≤ c|x|Aγi for all i ∈ I≥0.

(h) globally exponentially stable if there exists a c > 0 and a γ ∈ (0,1)
such that |φ(i;x)|A ≤ c|x|Aγi for all x ∈ Rn, all i ∈ I≥0.

It is often convenient to characterize global asymptotic stability in
terms of a comparison function β(·).

Proposition B.8 (GAS and comparison function). SupposeA is compact
(and positive invariant) and that f(·) is continuous. Then A is GAS for
x+ = f(x) if and only if there exists a KL function β(·) such that, for
each x ∈ Rn

|φ(i;x)|A ≤ β(|x|A, i) ∀i ∈ I≥0 (B.1)

ThatA is GAS for x+ = f(x) if there exists aKL function β(·) sat-
isfying (B.1) follows directly from the definition of a classKL function.
The converse is harder to prove but is stated in Jiang and Wang (2002)
where Proposition 2.2 establishes the equivalence of the existence of a
KL function satisfying (2) with UGAS (uniform global asymptotic sta-
bility), and Corollary 3.3 which establishes the equivalence, when A is
compact, of UGAS and GAS.
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In practice, global asymptotic stability ofA cannot always be achieved
because of state constraints. Hence we have to extend slightly the def-
initions given above.

Definition B.9 (Various forms of stability (constrained)). Suppose X ⊂
Rn is positive invariant for x+ = f(x), that A is closed and positive
invariant for x+ = f(x), and that A lies in the interior of X. Then A
is

(a) locally stable in X if, for each ε > 0, there exists a δ = δ(ε) > 0 such
that x ∈ X ∩ (A⊕ δB), implies |φ(i;x)|A < ε for all i ∈ I≥0.

(b) locally attractive in X if there exists a η > 0 such that x ∈ X∩ (A⊕
ηB) implies |φ(i;x)|A → 0 as i→∞.

(c) attractive in X if |φ(i;x)|A → 0 as i→∞ for all x ∈ X.

(d) locally asymptotically stable inX if it is locally stable inX and locally
attractive in X.

(e) asymptotically stable with a region of attraction X if it is locally
stable in X and attractive in X.

(f) locally exponentially stable with a region of attraction X if there
exist η > 0, c > 0, and γ ∈ (0,1) such that x ∈ X ∩ (A⊕ ηB) implies
|φ(i;x)|A ≤ c|x|Aγi for all i ∈ I≥0.

(g) exponentially stable with a region of attraction X if there exists a
c > 0 and a γ ∈ (0,1) such that |φ(i;x)|A ≤ c|x|Aγi for all x ∈ X, all
i ∈ I≥0.

The assumption that X is positive invariant x+ = f(x) ensures that
φ(i;x) ∈ X for all x ∈ X, all i ∈ I≥0. Finally, we define the domain of
attraction of an asymptotically stable set A for the system x+ = f(x)
to be the set of all initial states x such that |φ(i;x)|A → 0 as i → ∞.
We use the term region of attraction to denote any set of initial states
x such that |φ(i;x)|A → 0 as i→∞.

B.3 Lyapunov Stability Theory

Energy in a passive electrical or mechanical system provides a useful
analogy to Lyapunov stability theory. In a lumped mechanical system,
the total stored energy is the sum of the potential and kinetic energies.
As time proceeds, this energy is dissipated in friction and the total
energy decays to zero at which point the system state is in equilibrium.
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To establish stability or asymptotic stability, Lyapunov theory follows
a similar path. If a real-valued function can be found which is positive
and decreasing if the state does not lie in the set A, then the state
converges to this set. We now make this intuitive idea more precise.

Definition B.10 (Lyapunov function). A function V : Rn → R≥0 is said
to be a Lyapunov function for the system x+ = f(x) and setA if there
exist functions αi ∈ K∞, i = 1,2 and α3 ∈ PD such that for any
x ∈ Rn,

V(x) ≥ α1(|x|A) (B.2)

V(x) ≤ α2(|x|A) (B.3)

V(f(x))− V(x) ≤ −α3(|x|A) (B.4)

If V(·) satisfies Equations B.2–B.4 for all x ∈ X where X ⊃ A is a
positive invariant set for x+ = f(x), then V(·) is said to be a Lyapunov
function in X for the system x+ = f(x) and setA.

The existence of a Lyapunov function is a sufficient condition for
global asymptotic stability as shown in the next result which we prove
under the assumption, common in MPC, that α3(·) isK∞ function.

Theorem B.11 (Lyapunov function and GAS). Suppose V(·) is a Lya-
punov function for x+ = f(x) and set A with α3(·) a K∞ function.
ThenA is globally asymptotically stable.

Proof. (i) Stability: Let ε > 0 be arbitrary and let δ := α−1
2 (α1(ε)). Sup-

pose |x|A < δ so that, by (B.3), V(x) ≤ α2(δ) = α1(ε). From (B.4),
{V(x(i)) | i ∈ I≥0}, x(i) := φ(i;x), is a nonincreasing sequence so
that, for all i ∈ I≥0, V(x(i)) ≤ V(x). From (B.2), |x(i)|A ≤ α−1

1 (V(x)) ≤
α−1

1 (α1(ε)) = ε for all i ∈ I≥0. (ii) Attractivity: Let x ∈ Rn be arbi-
trary. From (B.3) V(x) is finite, and from (B.2) and (B.4), the sequence
{V(x(i)) | i ∈ I≥0}, x(i) := φ(i;x), is nonincreasing and bounded from
below by zero. Hence both V(x(i)) and V(x(i+ 1)) converge to V̄ ≥ 0
as i→∞. But x(i+1) = f(x(i)) so that, from (B.4), α3(|x(i)|A)→ 0 as
i→∞. Since |x(i)|A = α−1

3 (α3(|x(i)|A)) where α−1
3 is aK∞ function,

|x(i)|A → 0 as i→∞. �

Theorem B.11 merely provides a sufficient condition for global asymp-
totic stability that might be thought to be conservative. The next result,
a converse stability theorem by Jiang and Wang (2002), establishes ne-
cessity under a stronger hypothesis, namely that f(·) is continuous
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rather than locally bounded and uses the fact, established in Jiang and
Wang (2002), Lemma 2.7, that the existence of a continuous Lyapunov
function for the system x+ = f(x) and set A implies the existence of
a smooth Lyapunov function.3

Theorem B.12 (Converse theorem for asymptotic stability). Let A be
compact and f(·) continuous. Suppose that the setA is globally asymp-
totically stable for the system x+ = f(x). Then there exists a smooth
Lyapunov function for the system x+ = f(x) and setA.

A proof of this result is given in Jiang and Wang (2002), Theorem
1, part 3, which establishes the result when A is UGAS (uniform glob-
ally asymptotically stable) for x+ = f(x) and A is merely closed and
positive invariant and Corollary 3.3. which establishes the equivalence,
whenA is compact, of UGAS and GAS (globally asymptotically stable).
It follows from Theorems B.11 and B.12 that if A is compact and f(·)
continuous, the set A is globally asymptotically stable for x+ = f(x)
if and only if there exists a smooth Lyapunov function for x+ = f(x)
and setA.

The appropriate generalization of Theorem B.11 for the constrained
case is:

Theorem B.13 (Lyapunov function for asymptotic stability (constrained
case)). Suppose X ⊂ Rn is positive invariant for x+ = f(x), that A is
closed and positive invariant for x+ = f(x), and that A lies in the
interior of X. If there exists a Lyapunov function in X for the system
x+ = f(x) and setAwithα3(·) aK∞ function, thenA is asymptotically
stable for x+ = f(x) with a region of attraction X.

The proof of this result is similar to that of Theorem B.11 and is left
as an exercise.

Theorem B.14 (Lyapunov function for exponential stability). Suppose
X ⊂ Rn is positive invariant for x+ = f(x), thatA is closed and positive
invariant for x+ = f(x), and that A lies in the interior of X. If there
exists V : Rn → R≥0 satisfying the following properties for all x ∈ X

a1 |x|σA ≤ V(x) ≤ a2 |x|σA
V(f(x))− V(x) ≤ −a3 |x|σA

in which a1, a2, a3, σ > 0, thenA is exponentially stable for x+ = f(x)
with a region of attraction X.

3A smooth function has derivatives of all orders.
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B.3.1 Lyapunov Function for Linear Systems

We review some facts involving the discrete matrix Lyapunov equation
and stability of the linear system

x+ = Ax

in which x ∈ Rn. The discrete time system is asymptotically stable if
and only if the magnitudes of the eigenvalues of A are strictly less than
unity. Such an A matrix is called stable, convergent, or discrete time
Hurwitz.

In the following, A,S,Q ∈ Rn×n. The following matrix equation is
known as a discrete matrix Lyapunov equation,

A′SA− S = −Q

The properties of solutions to this equation allow one to draw con-
clusions about the stability of A without computing its eigenvalues.
Sontag (1998a, p. 231) provides the following lemma

Lemma B.15 (Lyapunov function for linear systems). The following state-
ments are equivalent (Sontag, 1998a).

(a) A is stable.

(b) For eachQ ∈ Rn×n, there is a unique solution S of the discrete matrix
Lyapunov equation

A′SA− S = −Q
and if Q > 0 then S > 0.

(c) There is some S > 0 such that A′SA− S < 0.

(d) There is some S > 0 such that V(x) = x′Sx is a Lyapunov function
for the system x+ = Ax.

Exercise B.1 asks you to establish the equivalence of (a) and (b).

B.4 Robust Stability

We now turn to the task of obtaining stability conditions for discrete
time systems subject to disturbances. There are two separate questions
that should be addressed. The first is nominal robustness; is asymp-
totic stability of a setA for a (nominal) system x+ = f(x) maintained
in the presence of arbitrarily small disturbances? The second question
is the determination of conditions for asymptotic stability of a set A
for a system perturbed by disturbances lying in a given compact set.
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B.4.1 Nominal Robustness

Here we follow Teel (2004). The nominal system is x+ = f(x). Con-
sider the perturbed system

x+ = f(x + e)+w (B.5)

where e is the state error and w the additive disturbance. Let e :=
{e(0), e(1), . . .} and w := {w(0),w(1), . . .} denote the disturbance se-
quences with norms ‖e‖ := supi≥0 |e(i)| and ‖w‖ := supi≥0 |w(i)|. Let
Mδ := {(e,w) | ‖e‖ ≤ δ,‖w‖ ≤ δ} and, for each x ∈ Rn, let Sδ denote
the set of solutions φ(·;x,e,w) of (B.5) with initial state x (at time 0)
and perturbation sequences (e,w) ∈ Mδ. A compact setA is nominally
robust asymptotically stable for the (nominal) system x+ = f(x) if a
small neighborhood of A is locally stable and attractive for all suffi-
ciently small perturbation sequences. We use the adjective nominal to
indicate that we are examining how a system x+ = f(x) for which A
is known to be asymptotically stable behaves when subjected to small
disturbances. More precisely Teel (2004):

Definition B.16 (Nominal robust global asymptotic stability). The com-
pact setA is said to be nominally robustly globally asymptotically sta-
ble (nominally RGAS) for the system x+ = f(x) if there exists a KL
function β(·) and, for each ε > 0 and each compact set X, there exists a
δ > 0 such that, for each x ∈ X and each solutionφ(·) of the perturbed
system lying in Sδ, |φ(i)|A ≤ β(|x|A, i)+ ε for all i ∈ I≥0.

Thus, for each ε > 0, there exists a δ > 0 such that each solution
φ(·) ofx+ = f(x+e)+w starting in aδ neighborhood ofA remains in a
β(δ)+ε neighborhood ofA, and each solution starting anywhere in Rn

converges to a ε neighborhood ofA. These properties are a necessary
relaxation (because of the perturbations) of local stability and global
attractivity.

The following result, where we add the adjective “nominal”, is es-
tablished in Teel (2004), Theorem 2:

Theorem B.17 (Nominal RGAS and Lyapunov function). Suppose A is
compact and f(·) is locally bounded. Then the setA is nominally robust
globally asymptotically stable for the system x+ = f(x) if and only if
there exists a continuous (in fact, smooth) Lyapunov function for x+ =
f(x) and setA.

The significance of this result is that while a nonrobust system, for
which A is globally asymptotically stable, has a Lyapunov function,
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that function is not continuous. For the globally asymptotically sta-
ble example x+ = f(x) discussed in Section 3.2 of Chapter 3, where
f(x) = (0, |x|) when x1 ≠ 0 and f(x) = (0,0) otherwise, one Lya-
punov function V(·) is V(x) = 2|x| if x1 ≠ 0 and V(x) = |x| if x1 = 0.
That V(·) is a Lyapunov function follows from the fact that it satisfies
V(x) ≥ |x|, V(x) ≤ 2|x| and V(f(x)) − V(x) = −|x| for all x ∈ R2.
It follows immediately from its definition that V(·) is not continuous;
but we can also deduce from Theorem B.17 that every Lyapunov func-
tion for this system is not continuous since, as shown in Section 3.2
of Chapter 3, global asymptotic stability for this system is not robust.
Theorem B.17 shows that existence of a continuous Lyapunov function
guarantees nominal robustness. Also, it follows from Theorem B.12
that there exists a smooth Lyapunov function for x+ = f(x) if f(·) is
continuous andA is GAS for x+ = f(x). Since f(·) is locally bounded
if it is continuous, it then follows from Theorem B.17 that A is nomi-
nally robust GAS for x+ = f(x) if it is GAS and f(·) is continuous.

B.4.2 Robustness

We turn now to stability conditions for systems subject to bounded
disturbances (not vanishingly small) and described by

x+ = f(x,w) (B.6)

where the disturbance w lies in the compact set W. This system may
equivalently be described by the difference inclusion

x+ ∈ F(x) (B.7)

where the set F(x) := {f(x,w) | w ∈W}. Let S(x) denote the set of all
solutions of (B.6) or (B.7) with initial state x. We require, in the sequel,
that the setA is positive invariant for (B.6) (or for x+ ∈ F(x)):

Definition B.18 (Positive invariance with disturbances). The set A is
positive invariant for x+ = f(x,w),w ∈W if x ∈A implies f(x,w) ∈
A for allw ∈W; it is positive invariant for x+ ∈ F(x) if x ∈A implies
F(x) ⊆A.

Clearly the two definitions are equivalent; A is positive invariant
for x+ = f(x,w), w ∈ W, if and only if it is positive invariant for
x+ ∈ F(x). In Definitions B.19-B.21, we use “positive invariant” to
denote “positive invariant for x+ = f(x,w), w ∈W” or for x+ ∈ F(x).
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Definition B.19 (Local stability (disturbances)). The closed positive in-
variant set A is locally stable for x+ = f(x,w), w ∈ W (or for x+ ∈
F(x)) if, for all ε > 0, there exists a δ > 0 such that, for each x sat-
isfying |x|A < δ, each solution φ ∈ S(x) satisfies |φ(i)|A < ε for all
i ∈ I≥0.

Definition B.20 (Global attraction (disturbances)). The closed positive
invariant setA is globally attractive for the system x+ = f(x,w), w ∈
W (or for x+ ∈ F(x)) if, for each x ∈ Rn, each solution φ(·) ∈ S(x)
satisfies |φ(i)|A → 0 as i→∞.

Definition B.21 (GAS (disturbances)). The closed positive invariant set
A is globally asymptotically stable for x+ = f(x,w), w ∈ W (or for
x+ ∈ F(x)) if it is locally stable and globally attractive.

An alternative definition of global asymptotic stability of A for
x+ = f(x,w), w ∈ W, if A is compact, is the existence of a KL
function β(·) such that for each x ∈ Rn, each φ ∈ S(x) satisfies
|φ(i)|A ≤ β(|x|A, i) for all i ∈ I≥0. To cope with disturbances we
require a modified definition of a Lyapunov function.

Definition B.22 (Lyapunov function (disturbances)). A functionV : Rn →
R≥0 is said to be a Lyapunov function for the system x+ = f(x,w),
w ∈ W (or for x+ ∈ F(x)) and set A if there exist functions αi ∈ K∞,
i = 1,2 and α3 ∈ PD such that for any x ∈ Rn,

V(x) ≥ α1(|x|A) (B.8)

V(x) ≤ α2(|x|A) (B.9)

sup
z∈F(x)

V(z)− V(x) ≤ −α3(|x|A) (B.10)

Inequality B.10 ensures V(f(x,w))−V(x) ≤ −α3(|x|A) for allw ∈
W. The existence of a Lyapunov function for the system x+ ∈ F(x) and
setA is a sufficient condition forA to be globally asymptotically stable
for x+ ∈ F(x) as shown in the next result.

Theorem B.23 (Lyapunov function for GAS (disturbances)). Suppose
V(·) is a Lyapunov function for x+ = f(x,w),w ∈W (or for x+ ∈ F(x))
and setA with α3(·) aK∞ function. ThenA is globally asymptotically
stable for x+ = f(x,w), w ∈W (or for x+ ∈ F(x)).

Proof. (i) Local stability: Let ε > 0 be arbitrary and let δ := α−1
2 (α1(ε)).

Suppose |x|A < δ so that, by (B.9), V(x) ≤ α2(δ) = α1(ε). Let φ(·) be
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any solution in S(x) so that φ(0) = x. From (B.10), {V(φ(i)) | i ∈ I≥0}
is a nonincreasing sequence so that, for all i ∈ I≥0, V(φ(i)) ≤ V(x).
From (B.8), |φ(i)|A ≤ α−1

1 (V(x)) ≤ α−1
1 (α1(ε)) = ε for all i ∈ I≥0. (ii)

Global attractivity: Let x ∈ Rn be arbitrary. Let φ(·) be any solution
in S(x) so that φ(0) = x. From Equations B.8 and B.10, since φ(i +
1) ∈ F(φ(i)), the sequence {V(φ(i)) | i ∈ I≥0} is nonincreasing and
bounded from below by zero. Hence both V(φ(i)) and V(φ(i + 1))
converge to V̄ ≥ 0 as i → ∞. But φ(i + 1) ∈ F(φ(i)) so that, from
(B.10), α3(|φ(i)|A) → 0 as i → ∞. Since |φ(i)|A = α−1

3 (α3(|φ(i)|A))
where α−1

3 (·) is aK∞ function, |φ(i)|A → 0 as i→∞. �

B.5 Control-Lyapunov Functions

A control-Lyapunov function is a useful generalization, due to Sontag
(1998a, pp.218–233), of a Lyapunov function; while a Lyapunov func-
tion is relevant for a system x+ = f(x) and provides conditions for the
(asymptotic) stability of a set for this system, a control-Lyapunov func-
tion is relevant for a control system x+ = f(x,u) and provides condi-
tions for the existence of a controller u = κ(x) that ensures (asymp-
totic) stability of a set for the controlled system x+ = f(x, κ(x)). Con-
sider the control system

x+ = f(x,u)
where the control u is subject to the constraint

u ∈ U

Our standing assumptions in this section are that f(·) is continuous
and U is compact.

Definition B.24 (Global control-Lyapunov function (CLF)). A function
V : Rn → R≥0 is a global control-Lyapunov function for the system
x+ = f(x,u) and set A if there exist K∞-functions α1(·) and α2(·)
and a PD-function α3(·) satisfying for all x ∈ Rn:

V(x) ≥ α1(|x|A)
V(x) ≤ α2(|x|A)

inf
u∈U

V(f(x,u)) ≤ V(x)−α3(|x|A)

Definition B.25 (Global stabilizability). LetA be compact. The setA is
globally stabilizable for the system x+ = f(x,u) if there exists a state-
feedback function κ : Rn → U such that A is globally asymptotically
stable for x+ = f(x, κ(x)).
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In a similar fashion one can extend the concept of control-Lyapunov
functions to the case when the system is subject to disturbances. Con-
sider the system

x+ = f(x,u,w)

where the control u is constrained to lie in U and the disturbance takes
values in the set W. We assume that f(·) is continuous and that U and
W are compact. The system may be equivalently defined by

x+ ∈ F(x,u)

where the set-valued function F(·) is defined by

F(x,u) := {f(x,u,w) | w ∈W}

We can now make the obvious generalizations of the definitions in Sec-
tion B.4.2.

Definition B.26 (Positive invariance (disturbance and control)). The set
A is positive invariant for x+ = f(x,u,w), w ∈ W (or for x+ ∈
F(x,u)) if for all x ∈A there exists a u ∈ U such that f(x,u,w) ∈A
for all w ∈W (or F(x,u) ⊆A).

Definition B.27 (CLF (disturbance and control)). A function V : Rn →
R≥0 is said to be a control-Lyapunov function for the system x+ =
f(x,u,w), u ∈ U, w ∈ W (or x+ ∈ F(x,u), u ∈ U) and set A if there
exist functions αi ∈ K∞, i = 1,2 and α3 ∈ PD such that for any
x ∈ Rn,

V(x) ≥ α1(|x|A)
V(x) ≤ α2(|x|A)

inf
u∈U

sup
z∈F(x,u)

V(z) ≤ V(x)−α3(|x|A) (B.11)

Remark B.28 (CLF implies control law). Given a global control-Lyapunov
function V(·), one can choose a control law κ : Rn → U satisfying

sup
z∈F(x,κ(x))

V(z) ≤ V(x)−α3(|x|A)/2

for all x ∈ Rn. Since U is compact, κ(·) is locally bounded and, hence,
so is x , f(x, κ(x)). Thus we may use Theorem B.23 to deduce that
A is globally asymptotically stable for x+ = f(x, κ(x),w), w ∈W (for
x+ ∈ F(x, κ(x))).
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These results can be further extended to deal with the constrained
case. First, we generalize the definitions of positive invariance of a
set.

Definition B.29 (Positive invariance (constrained)). The setA is control
invariant for x+ = f(x,u), u ∈ U if, for all x ∈A, there exists a u ∈ U
such that f(x,u) ∈A.

Suppose that the state x is required to lie in the closed set X ⊂ Rn.
In order to show that it is possible to ensure a decrease of a Lyapunov
function, as in (B.11), in the presence of the state constraint x ∈ X,
we assume that there exists a control invariant set X ⊆ X for x+ =
f(x,u,w), u ∈ U, w ∈W. This enables us to obtain a control law that
keeps the state in X and, hence, in X, and, under suitable conditions,
to satisfy a variant of (B.11).

Definition B.30 (CLF (constrained)). Suppose the sets X andA, X ⊃A,
are control invariant for x+ = f(x,u), u ∈ U. A function V : X → R≥0

is said to be a control-Lyapunov function in X for the system x+ =
f(x,u), u ∈ U, and setA in X if there exist functions αi ∈ K∞, i = 1,2
and α3 ∈ PD, defined on X, such that for any x ∈ X,

V(x) ≥ α1(|x|A)
V(x) ≤ α2(|x|A)

inf
u∈U
{V(f(x,u)) | f(x,u) ∈ X} ≤ V(x)−α3(|x|A)

Finally we consider the constrained case in the presence of distur-
bances. First we define control invariance in the presence of distur-
bances.

Definition B.31 (Control invariance (disturbances, constrained)). The
set A is control invariant for x+ = f(x,u,w), u ∈ U, w ∈ W if, for all
x ∈ A, there exists a u ∈ U such that f(x,u,w) ∈ A for all w ∈ W
(or F(x,u) ⊆A where F(x,u) := {f(x,u,w) | w ∈W}.

Next, we define what we mean by a control-Lyapunov function in
this context.

Definition B.32 (CLF (disturbances, constrained)). Suppose the sets X
andA,X ⊃A, are control invariant forx+ = f(x,u,w),u ∈ U,w ∈W.
A function V : X → R≥0 is said to be a control-Lyapunov function in X
for the system x+ = f(x,u,w), u ∈ U, w ∈W and setA if there exist
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functions αi ∈ K∞, i = 1,2 and α3 ∈ PD, defined on X, such that for
any x ∈ X,

V(x) ≥ α1(|x|A)
V(x) ≤ α2(|x|A)
inf
u∈U

sup
z∈F(x,u)

{V(z) | F(x,u) ⊆ X} ≤ V(x)−α3(|x|A)

Suppose now that the state x is required to lie in the closed set
X ⊂ Rn. Again, in order to show that there exists a condition similar
to (B.11), we assume that there exists a control invariant set X ⊆ X for
x+ = f(x,u,w), u ∈ U, w ∈ W. This enables us to obtain a control
law that keeps the state in X and, hence, in X, and, under suitable
conditions, to satisfy a variant of (B.11).

B.6 Input-to-State Stability

We consider, as in the previous section, the system

x+ = f(x,w)

where the disturbance w takes values in Rp. In input-to-state stability
(Sontag and Wang, 1995; Jiang and Wang, 2001) we seek a bound on the
state in terms of a uniform bound on the disturbance sequence w :=
{w(0),w(1), . . .}. Let ‖·‖ denote the usual `∞ norm for sequences, i.e.,
‖w‖ := supk≥0 |w(k)|.

Definition B.33 (Input-to-state stable (ISS)). The system x+ = f(x,w)
is (globally) input-to-state stable (ISS) if there exists aKL function β(·)
and aK functionσ(·) such that, for eachx ∈ Rn, and each disturbance
sequence w = {w(0),w(1), . . .} in `∞

|φ(i;x,wi)| ≤ β(|x| , i)+ σ(‖wi‖)

for all i ∈ I≥0, where φ(i;x,wi) is the solution, at time i, if the initial
state isx at time 0 and the input sequence is wi := {w(0),w(1), . . . ,w(i−
1)}.

We note that this definition implies the origin is globally asymptot-
ically stable if the input sequence is identically zero. Also, the norm
of the state is asymptotically bounded by σ(‖w‖) where w := {w(0),
w(1), . . .}. As before, we seek a Lyapunov function that ensures input-
to-state stability.
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Definition B.34 (ISS-Lyapunov function). A function V : Rn → R≥0 is
an ISS-Lyapunov function for system x+ = f(x,w) if there exist K∞
functions α1(·),α2(·),α3(·) and a K function σ(·) such that for all
x ∈ Rn

V(|x|) ≥ α1(|x|)
V(|x|) ≤ α2(|x|)

V(f(x,w))− V(x) ≤ −α3(|x|)+ σ(|w|) ∀ w ∈ Rp

The following result appears in Jiang and Wang (2001), Lemma 3.5:

Lemma B.35 (ISS-Lyapunov function implies ISS). Suppose f(·) is con-
tinuous and that there exists a continuous ISS-Lyapunov function for
x+ = f(x,w). Then the system x+ = f(x,w) is ISS.

The converse, i.e., input to state stability implies the existence of
a smooth ISS-Lyapunov function for x+ = f(x,w) is also proved in
Jiang and Wang (2002), Theorem 1. We now consider the case when the
state satisfies the constraint x ∈ X where X is a closed subset of Rn.
Accordingly, we assume that the disturbance w satisfies w ∈W where
W is a compact set containing the origin and that X ⊂ X is a closed
robust positive invariant set for x+ = f(x,w), w ∈W or, equivalently,
for x+ ∈ F(x,u).

Definition B.36 (ISS (constrained)). Suppose that W is a compact set
containing the origin and that X ⊂ X is a closed robust positive invari-
ant set for x+ = f(x,w), w ∈ W. The system x+ = f(x,w), w ∈ W is
ISS in X if there exists a classKL function β(·) and a classK function
σ(·) such that, for all x ∈ X, all w ∈W where W is the set of infinite
sequences w satisfying w(i) ∈W for all i ∈ I≥0

|φ(i;x,wi)| ≤ β(|x|, i)+ σ(‖wi‖)

Definition B.37 (ISS-Lyapunov function (constrained)). A function V :
X → R≥0 is an ISS-Lyapunov function in X for system x+ = f(x,w)
if there exist K∞ functions α1(·),α2(·),α3(·) and a K function σ(·)
such that for all x ∈ X, all w ∈W

V(|x|) ≥ α1(|x|)
V(|x|) ≤ α2(|x|)

V(f(x,w))− V(x) ≤ −α3(|x|)+ σ(|w|)
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The following result is a trivial generalization of Lemma 3.5 in Jiang
and Wang (2001).

Lemma B.38 (ISS-Lyapunov function implies ISS (constrained)). Suppose
that W is a compact set containing the origin and that X ⊂ X is a closed
robust positive invariant set for x+ = f(x,w), w ∈W. If f(·) is contin-
uous and there exists a continuous ISS-Lyapunov function in X for the
system x+ = f(x,w), w ∈ W, then the system x+ = f(x,w), w ∈ W is
ISS in X.

B.7 Output-to-State Stability and Detectability

We present some definitions and results that are discrete time versions
of results due to Sontag and Wang (1997) and Krichman, Sontag, and
Wang (2001). The output-to-state (OSS) property corresponds, infor-
mally, to the statement that “no matter what the initial state is, if the
observed outputs are small, then the state must eventually be small”. It
is therefore a natural candidate for the concept of nonlinear (zero-state)
detectability. We consider first the autonomous system

x+ = f(x) y = h(x) (B.12)

where f(·) : X → X is locally Lipschitz continuous and h(·) is contin-
uously differentiable where X = Rn for some n. We assume x = 0
is an equilibrium state, i.e., f(0) = 0. We also assume h(0) = 0. We
use φ(k;x0) to denote the solution of (B.12) with initial state x0, and
y(k;x0) to denote h(φ(k;x0)). The function yx0(·) is defined by

yx0(k) := y(k;x0)

We use |·| and ‖·‖ to denote, respectively the Euclidean norm of a
vector and the sup norm of a sequence; ‖·‖0:k denotes the max norm
of a sequence restricted to the interval [0, k]. For conciseness, u, y
denote, respectively, the sequences {u(j)}, {y(j)}.

Definition B.39 (Output-to-state stable (OSS)). The system (B.12) is output-
to-state stable (OSS) if there exist functions β(·) ∈ KL and γ(·) ∈ K
such that for all x0 ∈ Rn and all k ≥ 0

|x(k;x0)| ≤max
{
β(|x0| , k), γ(‖y‖0:k)

}
Definition B.40 (OSS-Lyapunov function). An OSS-Lyapunov function
for system (B.12) is any function V(·) with the following properties
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(a) There existK∞-functions α1(·) and α2(·) such that

α1(x) ≤ V(x) ≤ α2(x)

for all x in Rn.

(b) There exist K∞-functions α(·) and σ(·) such that for all x ∈ Rn

either
V(f(x))− V(x) ≤ −α(|x|)+ σ(|h(x)|)

or
V(x(k+ 1;x0)) ≤ ρV(x(k;x0))+ σ(

∣∣y(k;x0)
∣∣) (B.13)

for some ρ ∈ (0,1).
Inequality (B.13) corresponds to an exponential-decay OSS-Lyapunov

function.

Theorem B.41 (OSS and OSS-Lyapunov function). The following prop-
erties are equivalent for system (B.12):

(a) The system is OSS.

(b) The system admits an OSS-Lyapunov function.

(c) The system admits an exponential-decay OSS-Lyapunov function.

B.8 Input/Output-to-State Stability

Consider now a system with both inputs and outputs

x+ = f(x,u) y = h(x) (B.14)

Input/output-to-state stability corresponds, roughly, to the statement
that, no matter what the initial state is, if the input and the output con-
verge to zero, so does the state. We assume f(·) is continuous and
locally Lipschitz in x on bounded u and that h(·) is continuously dif-
ferentiable. We also assume f(0,0) = 0 and h(0) = 0. Let x(·, x0,u)
denote the solution of (B.14) which results from initial state x0 and con-
trol u = {u(j)} and let yx0,u(k) = y(k;x0,u) denote h(x(k;x0,u)).

Definition B.42 (Input/output-to-state stable (IOSS)). The system (B.14)
is input/output-to-state stable (IOSS) if there exist functions β(·) ∈ KL
and γ1(·), γ2(·) ∈ K such that

|x(k;x0)| ≤max
{
β(|x0| , k), γ1 (‖u‖0:k−1) , γ2

(
‖y‖0:k

)}
for every initial state x0 ∈ Rn, every control sequence u = {u(j)}, and
all k ≥ 0.
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Definition B.43 (IOSS-Lyapunov function). An IOSS-Lyapunov function
for system (B.14) is any function V(·) with the following properties:

(a) There existK∞-functions α1(·) and α2(·) such that

α1(x) ≤ V(x) ≤ α2(x)

for all x in Rn.

(b) There exist K∞-functions α(·) and σ(·) such that for every trajec-
tory {x(k)}, x(k) = x(k;x0,u), and all k ≥ 0 either

V(x(k+ 1;x0,u))− V(x(k;x0,u)) ≤ −α(|x(k;x0,u)|)+ σ1(|u(k)|)
+ σ2(

∣∣y(k;x0,u)
∣∣)

or

V(x(k+1;x0,u)) ≤ ρV(x(k;x0,u)) ≤ +σ1(|u(k)|)+σ2(
∣∣y(k;x0,u)

∣∣)
Conjecture B.44 (IOSS and IOSS-Lyapunov function). The following prop-
erties are equivalent for system (B.14):

(a) The system is IOSS.

(b) The system admits a smooth IOSS-Lyapunov function.

(c) The system admits an exponential-decay IOSS-Lyapunov function.

B.9 Incremental-Input/Output-to-State Stability

Definition B.45 (Incremental input/output-to-state stable). The system
(B.14) is incrementally input/output-to-state stable (i-IOSS) if there ex-
ists some β(·) ∈ KL and γ1(·), γ2(·) ∈ K such that, for every two
initial states z1 and z2 and any two control sequences u1 = {u1(j)}
and u2 = {u2(j)}

|x(k;z1,u1)− x(k;z2,u2)| ≤

max
{
β(|z1 − z2| , k), γ1(‖u1 − u2‖0:k−1), γ2(

∥∥yz1,u1 − yz2,u2

∥∥
0:k)

}
B.10 Observability

Definition B.46 (Observability). The system (B.14) is (uniformly) observ-
able if there exists a positive integer N and an α(·) ∈ K such that

k−1∑
j=0

∣∣h(x(j;x,u))− h(x(j;z,u))∣∣ ≥ α(|x − z|) (B.15)
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for all x, z, all k ≥ N and all control sequences u; here x(j;z,u) =
φ(j;z,u), the solution of (B.14) when the initial state is z at time 0 and
the control sequence is u.

When the system is linear, i.e., f(x,u) = Ax + Bu and h(x) = Cx,
this assumption is equivalent to assuming the observability Gramian∑n−1
j=0 CAj(Aj)′C′ is positive definite. Consider the system described

by

z+ = f(z,u)+w y + v = h(z) (B.16)

with output yw = y + v . Let z(k;z,u,w) denote the solution, at time
k of (B.16) if the state at time 0 is z, the control sequence is u and the
disturbance sequence is w. We assume, in the sequel, that

Assumption B.47 (Lipschitz continuity of model).

(a) The function f(·) is globally Lipschitz continuous in Rn × U with
Lipschitz constant c.

(b) The function h(·) is globally Lipschitz continuous in Rn with Lips-
chitz constant c.

Lemma B.48 (Lipschitz continuity and state difference bound). Suppose
Assumption B.47 is satisfied (with Lipschitz constant c). Then,

|x(k;x,u)− z(k;z,u,w)| ≤ ck |x − z| +
k−1∑
i=0

ck−i−1 |w(i)|

Proof. Let δ(k) := |x(k;x,u)− z(k;z,u,w)|. Then

δ(k+ 1) =
∣∣f(x(k;x,u),u(k))− f(z(k;z,u,w),u(k))−w(k)

∣∣
≤ c |δ(k)| + |w(k)|

Iterating this equation yields the desired result. �

Theorem B.49 (Observability and convergence of state). Suppose (B.14)
is (uniformly) observable and that Assumption B.47 is satisfied. Then,
w(k)→ 0 and v(k)→ 0 as k→∞ imply |x(k;x,u)− z(k;z,u,w)| → 0
as k→∞.

Proof. Let x(k) and z(k) denote x(k;x,u) and z(k;z,u,w), respec-
tively, in the sequel. Since (B.14) is observable, there exists an integer
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N satisfying (B.15). Consider the sum

S(k) =
k+N∑
j=k
v(k) =

k+N∑
j=k

∣∣h(x(j;x,u))− h(z(j;z,u,w))∣∣
≥
k+N∑
j=k

∣∣h(x(j;x(k),u))− h(x(j;z(k),u))∣∣
−
k+N∑
j=k

∣∣h(x(j;z(k),u))− h(z(j;z(k),u,w))∣∣ (B.17)

where we have used the fact that |a+ b| ≥ |a|−|b|. By the assumption
of observability

k+N∑
j=k

∣∣h(x(j;x(k),u))− h(x(j;z(k),u))∣∣ ≥ α(|x(k)− z(k)|)
for all k. From Lemma B.48 and the Lipschitz assumption on h(·)∣∣h(x(j;z(k),u))− h(z(j;z(k),u,w))∣∣ ≤

c
∣∣x(j;z(k),u)− z(j;z(k),u,w)∣∣ ≤ c j−1∑

i=k
cj−1−i |w(i)|

for all j in {k+1, k+2, . . . k+N}. Hence there exists a d ∈ (0,∞) such
that the last term in (B.17) satisfies

k+N∑
j=k

∣∣h(x(j;x(k),u))− h(x(j;z(k),u))∣∣ ≤ d‖w‖k−N:k

Hence, (B.17) becomes

α(|x(k)− z(k)|) ≤ N ‖v‖k−N:k + d‖w‖k−N:k

Since, by assumption,w(k)→ 0 and v(k)→ 0 as k→∞, and α(·) ∈ K,
it follows that |x(k)− z(k)| → 0 as k→∞. �

B.11 Exercises

Exercise B.1: Lyapunov equation and linear systems

Establish the equivalence of (a) and (b) in Lemma B.15.
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Exercise B.2: Lyapunov function for exponential stability

Let V : Rn → R≥0 be a Lyapunov function for the system x+ = f(x) with the following
properties. For all x ∈ Rn

a1 |x|σ ≤ V(x) ≤ a2 |x|σ

V(f(x))− V(x) ≤ −a3 |x|σ

in which a1, a2, a3, σ > 0. Show that the origin of the system x+ = f(x) is globally
exponentially stable.

Exercise B.3: A converse theorem for exponential stability

(a) Assume that the origin is globally exponentially stable (GES) for the system

x+ = f(x)

in which f(·) is continuous. Show that there exists a continuous Lyapunov
function V(·) for the system satisfying for all x ∈ Rn

a1 |x|σ ≤ V(x) ≤ a2 |x|σ

V(f(x))− V(x) ≤ −a3 |x|σ

in which a1, a2, a3, σ > 0.

Hint: Consider summing the solution
∣∣φ(i;x)∣∣σ on i as a candidate Lyapunov

function V(x).

(b) Establish that in the Lyapunov function defined above, any σ > 0 is valid, and
also that the constant a3 can be chosen as large as one wishes.

Exercise B.4: A converse theorem for asymptotic stability

Show that if the origin is globally asymptotically stable (GAS) for the system

x+ = f(x)

Then there exists a Lyapunov function V(·) for the system satisfying for all x ∈ Rn

α1(|x|) ≤ V(x) ≤ α2(|x|)
V(f(x))− V(x) ≤ −α3(|x|)

in which α1(·),α2(·),α3(·) ∈ K∞.
Hint: use the following result due to Sontag (1998b, Proposition 7) and the approach

of Exercise B.3.

Proposition B.50 (Improving convergence (Sontag (1998b))). Assume that β(·) ∈ KL.
Then there exists θ1(·), θ2(·) ∈ K∞ so that

β(s, t) ≤ θ1(θ2(s)e−t) ∀s ≥ 0, ∀t ≥ 0 (B.18)

Exercise B.5: Revisit Lemma 1.3 in Chapter 1

Establish Lemma 1.3 in Chapter 1 using the Lyapunov function tools established in
this appendix. Strengthen the conclusion and establish that the closed-loop system is
globally exponentially stable.
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Exercise B.6: Continuity of Lyapunov function for asymptotic stability

Let X be a compact subset of Rn containing the origin in its interior that is positive
invariant for the system x+ = f(x). If f(·) is continuous on X and the origin is
asymptotically stable with a region of attraction X, show that the Lyapunov function
suggested in Exercise B.4 is continuous on X.

Exercise B.7: A Lipschitz continuous converse theorem for exponential sta-
bility

Consider the system x+ = f(x), f(0) = 0, with function f : D → Rn Lipschitz contin-
uous on compact set D ⊂ Rn containing the origin in its interior. Choose R > 0 such
that BR ⊆ D. Assume that there exist scalars c > 0 and λ ∈ (0,1) such that∣∣φ(k;x)

∣∣ ≤ c |x|λk for all |x| ≤ r , k ≥ 0

with r := R/c.
Show that there exists a Lipschitz continuous Lyapunov function V(·) satisfying for

all x ∈ Br

a1 |x|2 ≤ V(x) ≤ a2 |x|2

V(f(x))− V(x) ≤ −a3 |x|2

with a1, a2, a3 > 0.
Hint: Use the proposed Lyapunov function of Exercise B.3 with σ = 2. See also

(Khalil, 2002, Exercise 4.68).
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C
Optimization

C.1 Dynamic Programming

The name dynamic programming dates from the 1950s when it was
coined by Richard Bellman for a technique for solving dynamic opti-
mization problems, i.e., optimization problems associated with deter-
ministic or stochastic systems whose behavior is governed by differ-
ential or difference equations. Here we review some of the basic ideas
behind dynamic programming (DP) Bellman (1957); Bertsekas, Nedic,
and Ozdaglar (2001).

To introduce the topic in its simplest form, consider the simple
routing problem illustrated in Figure C.1. To maintain connection with
optimal control, each node in the graph can be regarded as a point (x, t)
in a subset S of X × T where both the state space X = {a,b, c, . . . , g}
and the set of times T = {0,1,2,3} are discrete. The set of permissible
control actions is U = {U,D}, i.e., to go “up” or “down.” The control
problem is to choose the lowest cost path from event (d,0) (state d
at t = 0) to any of the states at t = 3; the cost of going from one
event to the next is indicated on the graph. This problem is equivalent
to choosing an open-loop control, i.e., a sequence {u(0),u(1),u(2)}
of admissible control actions. There are 2N controls where N is the
number of stages, 3 in this example. The cost of each control can, in
this simple example, be evaluated and is given in Table C.1.

There are two different open-loop optimal controls, namely {U,D,U}

control UUU UUD UDU UDD DUU DUD DDU DDD
cost 20 24 16 24 24 32 20 16

Table C.1: Control Cost.

627
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Figure C.1: Routing problem.

and {D,D,D}, each incurring a cost of 16. The corresponding state tra-
jectories are {d, e,d, e} and {d, c, b,a}.

In discrete problems of this kind, DP replaces the N-stage problem
by M single stage problems, where M is the total number of nodes, i.e.,
the number of elements in S ⊂ X × T . The first set of optimization
problems deals with the states b,d, f at time N − 1 = 2. The optimal
decision at event (f ,2), i.e., state f at time 2, is the control U and gives
rise to a cost of 4. The optimal cost and control for node (f ,2) are
recorded; see Table C.2. The procedure is then repeated for states d
and b at time t = 2 (nodes (d,2) and (b,2)) and recorded as shown
in Table C.2. Attention is next focused on the states e and c at t =
1 (nodes (e,1) and (c,1)). The lowest cost that can be achieved at
node (e,1) if control U is chosen, is 16 + 4, the sum of the path cost
16 associated with the control U , and the optimal cost 4 associated
with the node (f ,2) that results from using control U at node (e,1).



C.1 Dynamic Programming 629

t 0 1 2
state d e c f d b

control U or D D D U U D
optimal cost 16 16 8 4 8 4

Table C.2: Optimal Cost and Control

Similarly the lowest possible cost, if controlD is chosen, is 8+8. Hence
the optimal control and cost for node (e,1) are, respectively, D and 16.
The procedure is repeated for the remaining state d at t = 1 (node
(d,1)). A similar calculation for the state d at t = 0 (node (d,0)),
where the optimal control isU orD, completes this backward recursion;
this backward recursion provides the optimal cost and control for each
(x, t), as recorded in Table C.2. The procedure therefore yields an
optimal feedback control that is a function of (x, t) ∈ S. To obtain the
optimal open-loop control for the initial node (d,0), the feedback law is
obeyed, leading to control U or D at t = 0; if U is chosen, the resultant
state at t = 1 is e. From Table C.2, the optimal control at (e,1) is
D, so that the successor node is (d,2). The optimal control at node
(d,2) is U . Thus the optimal open-loop control sequence {U,D,U} is
re-obtained. On the other hand, if the decision at (d,0) is chosen to
be D, the optimal sequence {D,D,D} is obtained. This simple example
illustrates the main features of DP that we will now examine in the
context of discrete time optimal control.

C.1.1 Optimal Control Problem

The discrete time system we consider is described by

x+ = f(x,u) (C.1)

where f(·) is continuous. The system is subject to the mixed state-
control constraint

(x,u) ∈ Z

where Z is a closed subset of Rn×Rm and Pu(Z) is compact where Pu
is the projection operator (x,u) , u. Often Z = X × U in which case
the constraint (x,u) ∈ Z becomes x ∈ X and u ∈ U and Pu(Z) = U
so that U is compact. In addition there is a constraint on the terminal
state x(N):

x(N) ∈ Xf



630 Optimization

where Xf is closed. In this section we find it easier to express the
value function and the optimal control in terms of the current state
and current time i rather than using time-to-go k. Hence we replace
time-to-go k by time i where k = N− i, replace V0

k (x) (the optimal cost
at state x when the time-to-go is k) by V0(x, i) (the optimal cost at state
x, time i) and replace Xk by X(i) where X(i) is the domain of V0(·, i)).

The cost associated with an initial state x at time 0 and a control
sequence u := {u(0),u(1), . . . , u(N − 1)} is

V(x,0,u) = Vf (x(N))+
N−1∑
i=1

`(x(i),u(i)) (C.2)

where `(·) andVf (·) are continuous and, for each i, x(i) = φ(i; (x,0),u)
is the solution at time i of (C.1) if the initial state is x at time 0 and the
control sequence is u. The optimal control problem P(x,0) is defined
by

V0(x,0) =min
u
V(x,0,u) (C.3)

subject to the constraints (x(i),u(i)) ∈ Z, i = 0,1, . . . ,N − 1 and
x(N) ∈ Xf . Equation (C.3) may be rewritten in the form

V0(x,0) =min
u
{V(x,0,u) | u ∈ U(x,0)} (C.4)

where u := {u(0),u(1), . . . , u(N − 1)},

U(x,0) := {u ∈ RNm | (x(i),u(i)) ∈ Z, i = 0,1, . . . ,N−1;x(N) ∈ Xf }

and x(i) := φ(i; (x,0),u). Thus U(x,0) is the set of admissible con-
trol sequences1 if the initial state is x at time 0. It follows from the
continuity of f(·) that for all i ∈ {0,1, . . . ,N − 1} and all x ∈ Rn,
u , φ(i; (x,0),u) is continuous, u , V(x,0,u) is continuous and
U(x,0) is compact. Hence the minimum in (C.4) exists at all x ∈ {x ∈
Rn | U(x,0) ≠∅}.

DP embeds problem P(x,0) for a given state x in a whole family of
problems P(x, i) where, for each (x, i), problem P(x, i) is defined by

V0(x, i) =min
ui
{V(x, i,ui) | ui ∈ U(x, i)}

where
ui := {u(i),u(i+ 1), . . . , u(N − 1)}

1An admissible control sequence satisfies all constraints.
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V(x, i,ui) := Vf (x(N))+
N−1∑
j=i
`(x(j),u(j)) (C.5)

and

U(x, i) := {ui ∈ R(N−i)m | (x(j),u(j)) ∈ Z, j = i, i+ 1, . . . ,N − 1

x(N) ∈ Xf } (C.6)

In (C.5) and (C.6), x(j) = φ(j; (x, i),ui), the solution at time j of (C.1)
if the initial state is x at time i and the control sequence is ui. For each
i, X(i) denotes the domain of V0(·, i) and U(·, i) so that

X(i) = {x ∈ Rn | U(x, i) ≠∅}. (C.7)

C.1.2 Dynamic Programming

One way to approach DP for discrete time control problems is the sim-
ple observation that for all (x, i)

V0(x, i) =min
ui
{V(x, i,ui) | ui ∈ U(x, i)}

=min
u
{`(x,u)+min

ui+1
V(f(x,u), i+ 1,ui+1) |

{u,ui+1} ∈ U(x, i)} (C.8)

where ui = {u,u(i + 1), . . . , u(N − 1)} = {u,ui+1}. We now make use
of the fact that {u,ui+1} ∈ U(x, i) if and only if (x,u) ∈ Z, f(x,u) ∈
X(i+ 1), and ui+1 ∈ U(f (x,u), i+ 1) since f(x,u) = x(i+ 1). Hence
we may rewrite (C.8) as

V0(x, i) =min
u
{`(x,u)+ V0(f (x,u), i+ 1) |

(x,u) ∈ Z, f (x,u) ∈ X(i+ 1)} (C.9)

for all x ∈ X(i) where

X(i) = {x ∈ Rn | ∃u such that (x,u) ∈ Z and f(x,u) ∈ X(i+ 1)}
(C.10)

Equations (C.9) and (C.10), together with the boundary condition

V0(x,N) = Vf (x) ∀x ∈ X(N), X(N) = Xf

constitute the DP recursion for constrained discrete time optimal con-
trol problems. If there are no state constraints, i.e., if Z = Rn×U where



632 Optimization

U ⊂ Rm is compact, then X(i) = Rn for all i ∈ {0,1, . . . ,N} and the DP
equations revert to the familiar DP recursion:

V0(x, i) =min
u
{`(x,u)+ V0(f (x,u), i+ 1)} ∀x ∈ Rn

with boundary condition

V0(x,N) = Vf ∀x ∈ Rn

We now prove some basic facts; the first is the well known principle
of optimality.

Lemma C.1 (Principle of optimality). Let x ∈ XN be arbitrary, let u :=
{u(0),u(1), . . . , u(N−1)} ∈ U(x,0) denote the solution of P(x,0) and
let {x,x(1), x(2), . . . , x(N)} denote the corresponding optimal state tra-
jectory so that for each i, x(i) = φ(i; (x,0),u). Then, for any i ∈
{0,1, . . . ,N−1}, the control sequence ui := {u(i),u(i+1), . . . , u(N−1)}
is optimal for P(x(i), i) (any portion of an optimal trajectory is optimal).

Proof. Since u ∈ U(x,0), the control sequence ui ∈ U(x(i), i). If
ui = {u(i),u(i+1), . . . , u(N−1)} is not optimal for P(x(i), i), there ex-
ists a control sequence u′ = {u′(i),u′(i+1), . . . , u(N−1)′} ∈ U(x(i), i)
such that V(x(i), i,u′) < V(x(i),u). Consider now the control se-
quence ũ := {u(0),u(1), . . . , u(i − 1),u′(i),u′(i + 1), . . . , u(N − 1)′}.
It follows that ũ ∈ U(x,0) and V(x,0, ũ) < V(x,0,u) = V0(x,0), a
contradiction. Hence u(x(i), i) is optimal for P(x(i), i). �

The most important feature of DP is the fact that the DP recur-
sion yields the optimal value V0(x, i) and the optimal control κ(x, i) =
arg minu{`(x,u)+ V0(f (x,u), i+ 1) | (x,u) ∈ Z, f (x,u) ∈ X(i+ 1)}
for each (x, i) ∈ X(i)× {0,1, . . . ,N − 1}.

Theorem C.2 (Optimal value function and control law from DP). Sup-
pose that the function Ψ : Rn × {0,1, . . . ,N} → R, satisfies, for all
i ∈ {1,2, . . . ,N − 1}, all x ∈ X(i), the DP recursion

Ψ(x, i) =min{`(x,u)+ Ψ(f (x,u), i+ 1) | (x,u) ∈ Z, f (x,u) ∈ X(i+ 1)}
X(i) = {x ∈ Rn | ∃u ∈ Rm such that (x,u) ∈ Z, f (x,u) ∈ X(i+ 1)}

with boundary conditions

Ψ(x,N) = Vf (x) ∀x ∈ Xf , X(N) = Xf

Then Ψ(x, i) = V0(x, i) for all (x, i) ∈ X(i) × {0,1,2, . . . ,N}; the DP
recursion yields the optimal value function and the optimal control law.
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Proof. Let (x, i) ∈ X(i)×{0,1, . . . ,N} be arbitrary. Let u = {u(i),u(i+
1), . . . , u(N − 1)} be an arbitrary control sequence in U(x, i) and let
x = {x,x(i+1), . . . , x(N)} denote the corresponding trajectory starting
at (x, i) so that for each j ∈ {i, i + 1, . . . ,N}, x(j) = φ(j;x, i,u). For
each j ∈ {i, i + 1, . . . ,N − 1}, let uj := {u(j),u(j + 1), . . . , u(N − 1)};
clearly uj ∈ U(x(j), j). The cost due to initial event (x(j), j) and
control sequence uj is Φ(x(j), j) defined by

Φ(x(j), j) := V(x(j), j,uj)

Showing that Ψ(x, i) ≤ Φ(x, i) proves that Ψ(x, i) = V0(x, i) since u is
an arbitrary sequence in U(x, i); because (x, i) ∈ X(i) × {0,1, . . . ,N}
is arbitrary, that fact that Ψ(x, i) = V0(x, i) proves that DP yields the
optimal value function.

To prove thatΨ(x, i) ≤ Φ(x, i), we compareΨ(x(j), j) andΦ(x(j), j)
for each j ∈ {i, i + 1, . . . ,N}, i.e., we compare the costs yielded by the
DP recursion and by the arbitrary control u along the corresponding
trajectory x. By definition, Ψ(x(j), j) satisfies for each j

Ψ(x(j), j) =min
u

{
`(x(j),u)+ Ψ(f (x(j),u), j + 1) |

(x(j),u) ∈ Z, f (x(j),u) ∈ X(j + 1)
}

(C.11)

To obtain Φ(x(j), j) for each j we solve the following recursive equa-
tion

Φ(x(j), j) = `(x(j),u(j))+ Φ(f (x(j),u(j)), j + 1) (C.12)

The boundary conditions are

Ψ(x(N),N) = Φ(x(N),N) = Vf (x(N)) (C.13)

Since u(j) satisfies (x(j),u(j)) ∈ Z and f(x(j),u(j)) ∈ X(j + 1) but
is not necessarily a minimizer in (C.11), we deduce that

Ψ(x(j), j) ≤ `(x(j),u(j))+ Ψ(f (x(j),u(j)), j + 1) (C.14)

For each j, let E(j) be defined by

E(j) := Ψ(x(j), j)− Φ(x(j), j)

Subtracting (C.12) from (C.14) and replacing f(x(j),u(j)) by x(j + 1)
yields

E(j) ≤ E(j + 1) ∀j ∈ {i, i+ 1, . . . N}
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Since E(N) = 0 by virtue of (C.13), we deduce that E(j) ≤ 0 for all
j ∈ {i, i+ 1, . . . ,N}; in particular, E(i) ≤ 0 so that

Ψ(x, i) ≤ Φ(x, i) = V(x, i,u)

for all u ∈ U(x, i). Hence Ψ(x, i) = V0(x, i) for all (x, i) ∈ X(i) ×
{0,1, . . . ,N}. �

Example C.3: DP applied to linear quadratic regulator

A much used example is the familiar linear quadratic regulator prob-
lem. The system is defined by

x+ = Ax + Bu

There are no constraints. The cost function is defined by (C.2) where

`(x,u) := (1/2)x′Qx + (1/2)u′Ru

and Vf (x) = 0 for all x; the horizon length is N. We assume that Q
is symmetric and positive semidefinite and that R is symmetric and
positive definite. The DP recursion is

V0(x, i) =min
u
{`(x,u)+ V0(Ax + Bu, i+ 1)} ∀x ∈ Rn

with terminal condition

V0(x,N) = 0 ∀x ∈ Rn

Assume that V0(·, i + 1) is quadratic and positive semidefinite and,
therefore, has the form

V0(x, i+ 1) = (1/2)x′P(i+ 1)x

where P(i+ 1) is symmetric and positive semidefinite. Then

V0(x, i) = (1/2)min
u
{x′Qx +u′Ru+ (Ax + Bu)′P(i+ 1)(Ax + Bu)}

The right-hand side of the last equation is a positive definite function
of u for all x, so that it has a unique minimizer given by

κ(x, i) = K(i)x K(i) := −(B′P(i+ 1)B + R)−1B′P(i+ 1)

Substituting u = K(i)x in the expression for V0(x, i) yields

V0(x, i) = (1/2)x′P(i)x
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where P(i) is given by:

P(i) = Q+K(i)′RK(i)−A′P(i+ 1)B(B′P(i+ 1)B + R)−1B′P(i+ 1)A

Hence V0(·, i) is quadratic and positive semidefinite if V0(·, i + 1) is.
But V0(·, N), defined by

V0(x,N) := (1/2)x′P(N)x = 0 P(N) := 0

is symmetric and positive semidefinite. By induction V0(·, i) is quad-
ratic and positive semidefinite (and P(i) is symmetric and positive
semidefinite) for all i ∈ {0,1, . . . ,N}. Substituting K(i) = −(B′P(i +
1)B+R)−1B′P(i+1)A in the expression for P(i) yields the more famil-
iar matrix Riccati equation

P(i) = Q+A′P(i+ 1)A−A′P(i+ 1)B(B′P(i+ 1)B + R)−1BP(i+ 1)A

�

C.2 Optimality Conditions

In this section we obtain optimality conditions for problems of the form

f 0 = inf
u
{f(u) | u ∈ U}

In these problems, u ∈ Rm is the decision variable,f(u) the cost to be
minimized by appropriate choice of uand U ⊂ Rm the constraint set.
The value of the problem is f 0. Some readers may wish to read only
Section C.2.2, which deals with convex optimization problems and Sec-
tion C.2.3 which deals with convex optimization problems in which the
constraint set U is polyhedral. These sections require some knowledge
of tangent and normal cones discussed in Section C.2.1; Proposition C.7
in particular derives the normal cone for the case when U is convex.

C.2.1 Tangent and Normal Cones

In determining conditions of optimality, it is often convenient to em-
ploy approximations to the cost function f(·) and the constraint set U .
Thus the cost function f(·)may be approximated, in the neighborhood
of a point ū, by the first order expansion f(ū) + 〈∇f(ū), (u − ū)〉 or
by the second order expansion f(ū)+ 〈∇f(ū), (u− ū)〉 + (1/2)((u−
ū)′∇2f(x̄)(u− ū)) if the necessary derivatives exist. Thus we see that



636 Optimization
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Figure C.2: Approximation of the set U .
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Figure C.3: Tangent cones.

in the unconstrained case, a necessary condition for the optimality of
ū is ∇f(ū) = 0. To obtain necessary conditions of optimality for con-
strained optimization problems, we need to approximate the constraint
set as well; this is more difficult. An example of U and its approxima-
tion is shown in Figure C.2; here the set U = {u ∈ R2 | g(u) = 0}
where g : R → R is approximated in the neighborhood of a point ū
satisfying g(ū) = 0 by the set ū ⊕ TU(ū) where2 the tangent cone
TU(ū) := {h ∈ R2 | ∇g(ū),u− ū〉 = 0}. In general, a set U is approx-

2If A and B are two subsets of Rn, say, then A ⊕ B := {a + b | a ∈ A,b ∈ B} and
a⊕ B := {a+ b | b ∈ B}.
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U

u

N̂U (u)

Figure C.4: Normal at u.

imated, near a point ū, by ū⊕TU(ū) where its tangent cone TU(ū) is
defined below. Following Rockafellar and Wets (1998), we use uν --------------------------------------------→

U
v

to denote that the sequence {uν | ν ∈ I≥0} converges to v as ν → ∞
while satisfying uν ∈ U for all ν ∈ I≥0.

Definition C.4 (Tangent vector). A vector h ∈ Rm is tangent to the set
U at ū if there exist sequences uν --------------------------------------------→

U
ū and λν ↘ 0 such that

[uν − ū]/λν → h

TU(u) is the set of all tangent vectors.

Equivalently, a vector h ∈ Rm is tangent to the set U at ū if there
exist sequences hν → h and λν ↘ 0 such that ū + λνhν ∈ U for all
ν ∈ I≥0. This equivalence can be seen by identifyinguν with ū+λνhν .

Proposition C.5 (Tangent vectors are closed cone). The set TU(u) of all
tangent vectors to U at any point u ∈ U is a closed cone.

See Rockafellar and Wets (1998), Proposition 6.2. That TU(ū) is a
cone may be seen from its definition; if h is a tangent, so is αh for any
α ≥ 0. Two examples of a tangent cone are illustrated in Figure C.3.

Associated with each tangent cone TU(u) is a normal cone N̂(u)
defined as follows Rockafellar and Wets (1998):

Definition C.6 (Regular normal). A vector g ∈ Rm is a regular normal
to a set U ⊂ Rm at ū ∈ U if

〈g,u− ū〉 ≤ o(|u− ū|) ∀u ∈ U (C.15)

where o(·) has the property that o(|u− ū|)/|u− ū| → 0 as u--------------------------------------------→
U
ū with

u ≠ ū; N̂U(u) is the set of all regular normal vectors.
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Some examples of normal cones are illustrated in Figure C.3; here
the set N̂U(u) = {λg | λ ≥ 0} is a cone generated by a single vector g,
say, while N̂U(v) = {λ1g1 + λ2g2 | λ1 ≥ 0, λ2 ≥ 0} is a cone generated
by two vectors g1 and g2, say. The term o(|u− ū|)may be replaced by
0 if U is convex as shown in Proposition C.7(b) below but is needed in
general since U may not be locally convex at ū as illustrated in Figure
C.4.

The tangent cone TU(ū) and the normal cone N̂U(ū) at a point ū ∈
U are related as follows.

Proposition C.7 (Relation of normal and tangent cones).

(a) At any point ū ∈ U ⊂ Rm,

N̂U(ū) = TU(ū)∗ := {g | 〈g,h〉 ≤ 0 ∀h ∈ TU(ū)}

where, for any cone V , V∗ := {g | 〈g,h〉 ≤ 0 ∀h ∈ V} denotes the polar
cone of V .

(b) If U is convex, then, at any point ū ∈ U

N̂U(ū) = {g | 〈g,u− ū〉 ≤ 0 ∀u ∈ U} (C.16)

Proof. (a) To prove N̂U(ū) ⊂ TU(ū)∗, we take an arbitrary point g
in N̂U(ū) and show that 〈g,h〉 ≤ 0 for all h ∈ T (ū) implying that
g ∈ T ∗U (ū). For, if h is tangent to U at ū, there exist, by definition,
sequences uν --------------------------------------------→

U
ū and λν ↘ 0 such that

hν := (uν − ū)/λν → h

Since g ∈ N̂U(ū), it follows from (C.15) that 〈g,hν〉 ≤ o(|(uν − ū)|) =
o(λν|hν|); the limit as ν → ∞ yields 〈g,h〉 ≤ 0, so that g ∈ T ∗U (ū).
Hence N̂U(ū) ⊂ TU(ū)∗. The proof of this result, and the more subtle
proof of the converse, that TU(ū)∗ ⊂ N̂U(ū), are given in Rockafellar
and Wets (1998), Proposition 6.5.

(b) This part of the proposition is proved in (Rockafellar and Wets,
1998, Theorem 6.9).

�

We wish to derive optimality conditions for problems of the form
P : infu{f(u) | u ∈ U}. The value of the problem is defined to be

f 0 := inf
u
{f(u) | u ∈ U}
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There may not exist a u ∈ U such that f(u) = f 0. If, however, f(·) is
continuous and U is compact, there exists a minimizing u in U , i.e.,

f 0 = inf
u
{f(u) | u ∈ U} =min

u
{f(u) | u ∈ U}

The minimizing u, if it exists, may not be unique so

u0 := arg min
u
{f(u) | u ∈ U}

may be a set. We sayu is feasible ifu ∈ U . A pointu is globally optimal
for problem P if u is feasible and f(v) ≥ f(u) for all v ∈ U . A point u
is locally optimal for problem P if u is feasible and there exists a ε > 0
such that f(v) ≥ f(u) for all v in (u⊕ εB)∩ U where B is the closed
unit ball {u |min |u| ≤ 1}.

C.2.2 Convex Optimization Problems

The optimization problem P is convex if the function f : Rm → R and
the set U ⊂ Rm are convex. In convex optimization problems, U often
takes the form {u | gj(u) ≤ 0, j ∈ J} where J := {1,2, . . . , J} and
each function gj(·) is convex. A useful feature of convex optimization
problems is the following result:

Proposition C.8 (Global optimality for convex problems). Suppose the
function f(·) is convex and differentiable and the set U is convex. Any
locally optimal point of the convex optimization problem infu{f(u) |
u ∈ U} is globally optimal.

Proof. Suppose u is locally optimal so that there exists an ε > 0 such
that f(v) ≥ f(u) for all v ∈ (u ⊕ εB) ∩ U . If, contrary to what we
wish to prove, u is not globally optimal, there exists a w ∈ U such
that f(w) < f(u). For any λ ∈ [0,1], the point wλ := λw + (1 − λ)u
lies in [u,w] (the line joining u and w). Then wλ ∈ U (because U is
convex) and f(wλ) ≤ λf(w) + (1 − λ)f(u) < f(u) for all λ ∈ (0,1]
(because f(·) is convex and f(w) < f(u)). We can choose λ > 0 so
that wλ ∈ (u⊕ εB)∩ U and f(wλ) < f(u). This contradicts the local
optimality of u. Hence u is globally optimal. �

On the assumption that f(·) is differentiable, we can obtain a simple
necessary and sufficient condition for the (global) optimality of a point
u.
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Proposition C.9 (Optimality conditions – normal cone). Suppose the
function f(·) is convex and differentiable and the set U is convex. The
point u is optimal for problem P if and only if u ∈ U and

df(u;v −u) = 〈∇f(u), v −u〉 ≥ 0 ∀v ∈ U (C.17)

or, equivalently
−∇f(u) ∈ N̂U(u) (C.18)

Proof. Because f(·) is convex, it follows from Theorem 7 in Appendix
A1 that

f(v) ≥ f(u)+ 〈∇f(u), v −u〉 (C.19)

for all u,v in U . To prove sufficiency, suppose u ∈ U and that the
condition in (C.17) is satisfied. It then follows from (C.19) that f(v) ≥
f(u) for all v ∈ U so that u is globally optimal. To prove necessity,
suppose that u is globally optimal but that, contrary to what we wish
to prove, the condition on the right-hand side of (C.17) is not satisfied
so that there exists a v ∈ U such that

df(u;h) = 〈∇f(u), v −u〉 = −δ < 0

where h := v −u. For all λ ∈ [0,1], let vλ := λv + (1− λ)u = u+ λh;
because U is convex, each vλ lies in U . Since

df(u;h) = lim
λ↘0

f(u+ λh)− f(u)
λ

= lim
λ↘0

f(vλ)− f(u)
λ

= −δ

there exists a λ ∈ (0,1] such that f(vλ) − f(u) ≤ −λδ/2 < 0 which
contradicts the optimality of u. Hence the condition in (C.17) must be
satisfied. That (C.17) is equivalent to (C.18) follows from Proposition
C.7 (ii).

�

It is an interesting fact that U in Proposition C.9 may be replaced by
its approximation u⊕TU(u) at u yielding

Proposition C.10 (Optimality conditions – tangent cone). Suppose the
function f(·) is convex and differentiable and the set U is convex. The
point u is optimal for problem P if and only if u ∈ U and

df(u;v −u) = 〈∇f(u),h〉 ≥ 0 ∀h ∈ TU(u)

or, equivalently
−∇f(u) ∈ N̂U(u) = T ∗U (u).
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Proof. It follows from Proposition C.9 that u is optimal for problem P
if and only if u ∈ U and −∇f(u) ∈ N̂U(u). But, by Proposition C.7,
N̂U(u) = {g | 〈g,h〉 ≤ 0 ∀h ∈ TU(u)} so that −∇f(u) ∈ N̂U(u) is
equivalent to 〈∇f(u),h〉 ≥ 0 for all h ∈ TU(u). �

C.2.3 Convex Problems: Polyhedral Constraint Set

The definitions of tangent and normal cones given above may appear
complex but this complexity is necessary for proper treatment of the
general case when U is not necessarily convex. When U is polyhedral,
i.e., when U is defined by a set of linear inequalities

U := {u ∈ Rm | Au ≤ b}

where A ∈ Rp×m and b ∈ Rp, I := {1,2, . . . , p}, then the normal and
tangent cones are relatively simple. We first note that U is equivalently
defined by

U := {u ∈ Rm | 〈ai, u〉 ≤ bi, i ∈ I}

where ai is the ith row of A and bi is the ith element of b. For each
u ∈ U , let

I0(u) := {i ∈ I | 〈ai, u〉 = bi}

denote the index set of constraints active at u. Clearly I0(u) = ∅ if u
lies in the interior of U . An example of a polyhedral constraint set is
shown in Figure C.5. The next result shows that in this case, the tangent
cone is the set of h in Rm that satisfy 〈ai, h〉 ≤ 0 for all i in I0(u) and
the normal cone is the cone generated by the vectors ai, i ∈ I0(u); each
normal h in the normal cone may be expressed as

∑
i∈I0(u) µiai where

each µi ≥ 0.

Proposition C.11 (Representation of tangent and normal cones). Let
U := {u ∈ Rm | 〈ai, u〉 ≤ bi, i ∈ I}. Then, for any u ∈ U :

TU(u) = {h | 〈ai, h〉 ≤ 0, i ∈ I0(u)}
N̂U(u) = T ∗U (u) = cone{ai | i ∈ I0(u)}

Proof. (i) Suppose h is any vector in {h | 〈ai, h〉 ≤ 0, i ∈ I0(u)}. Let
the sequences uν and λν satisfy uν = u + λνh and λν ↘ 0 with λ0,
the first element in the sequence λν , satisfying u+λ0h ∈ U . It follows
that [uν − u]/λν ≡ h so that from Definition C.4, h is tangent to U
at u. Hence {h | 〈ai, h〉 ≤ 0, i ∈ I0(u)} ⊂ TU(u). (ii) Conversely, if
h ∈ TU(u), then there exist sequences λν ↘ 0 and hν → h such that
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〈ai, u + λνhν〉 ≤ bi for all i ∈ I , all ν ∈ I≥0. Since 〈ai, u〉 = bi for
all i ∈ I0(u), it follows that 〈ai, hν〉 ≤ 0 for all i ∈ I0(u), all ν ∈ I≥0;
taking the limit yields 〈ai, h〉 ≤ 0 for all i ∈ I0(u) so that h ∈ {h |
〈ai, h〉 ≤ 0, i ∈ I0(u)} which proves TU(u) ⊂ {h | 〈ai, h〉 ≤ 0, i ∈
I0(u)}. We conclude from (i) and (ii) that TU(u) = {h | 〈ai, h〉 ≤ 0, i ∈
I0(u)}. That N̂U(u) = T ∗U (u) = cone{ai | i ∈ I0(u)} then follows
from Proposition C.7 above and Proposition 9 in Appendix A1. �

The next result follows from Proposition C.5 and Proposition C.7.

Proposition C.12 (Optimality conditions — linear inequalities). Sup-
pose the function f(·) is convex and differentiable and U is the convex
set {u | Au ≤ b}. Then u is optimal for P : minu{f(u) | u ∈ U} if and
only if u ∈ U and

−∇f(u) ∈ N̂U(u) = cone{ai | i ∈ I0(u)}

Corollary C.13 (Optimality conditions — linear inequalities). Suppose
the function f(·) is convex and differentiable and U = {u | Au ≤ b}.
Then u is optimal for P : minu{f(u) | u ∈ U} if and only if Au ≤ b and
there exist multipliers µi ≥ 0, i ∈ I0(u) satisfying

∇f(u)+
∑

i∈I0(u)

µi∇gi(u) = 0 (C.20)

where, for each i, gi(u) := 〈ai, u〉−bi so that gi(u) ≤ 0 is the constraint
〈ai, u〉 ≤ bi and ∇gi(u) = ai.

Proof. Since any point g ∈ cone{ai | i ∈ I0(u)} may be expressed as
g =

∑
i∈I0(u) µiai where, for each i, µi ≥ 0, the condition −∇f(u) ∈

cone{ai | i ∈ I0(u)} is equivalent to the existence of multipliers µi ≥
0, i ∈ I0(u) satisfying (C.20). �

The above results are easily extended if U is defined by linear equal-
ity and inequality constraints, i.e., if

U := {〈ai, u〉 ≤ bi, i ∈ I, 〈ci, u〉 = di, i ∈ E}

In this case, at any point u ∈ U , the tangent cone is

TU(u) = {h | 〈ai, h〉 ≤ 0, i ∈ I0(u), 〈ci, h〉 = 0, i ∈ E}

and the normal cone is

N̂U(u) = {
∑

i∈I0(u)

λiai +
∑
i∈E
µici | λi ≥ 0 ∀i ∈ I0(u), µi ∈ R ∀i ∈ E}
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Figure C.5: Condition of optimality.

With U defined this way, u is optimal for minu{f(u) | u ∈ U} where
f(·) is convex and differentiable if and only if

−∇f(u) ∈ N̂U(u)

For each i ∈ I let gi(u) := 〈ai, u〉 − bi and for each i ∈ E, let hi(u) :=
〈ci, u〉 − di so that ∇g(ui) = ai and ∇hi = ci. It follows from the
characterization of N̂U(u) that u is optimal for minu{f(u) | u ∈ U} if
and only if there exist multipliers λi ≥ 0, i ∈ I0(u) and µi ∈ R, i ∈ E
such that

∇f(u)+
∑

i∈I0(u)

µi∇gi(u)+
∑
i∈E
hi(u) = 0 (C.21)

C.2.4 Nonconvex Problems

We first obtain a necessary condition of optimality for the problem
min{f(u) | u ∈ U} where f(·) is differentiable but not necessarily
convex and U ⊂ Rm is not necessarily convex; this result generalizes
the necessary condition of optimality in Proposition C.9.

Proposition C.14 (Necessary condition for nonconvex problem). A nec-
essary condition foru to be locally optimal for the problem of minimizing
a differentiable function f(·) over the set U is

df(u;h) = 〈∇f(u),h〉 ≥ 0, ∀h ∈ TU(u)
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which is equivalent to the condition

−∇f(u) ∈ N̂U(u)

Proof. Suppose, contrary to what we wish to prove, that there exists
a h ∈ TU(u) and a δ > 0 such that 〈∇f(u),h〉 = −δ < 0. Because
h ∈ TU(u), there exist sequences hν --------------------------------------------→

U
h and λν ↘ 0 such that uν :=

u+ λνhν converges to u and satisfies uν ∈ U for all ν ∈ I≥0. Then

f(uν)− f(u) = 〈∇f(u), λνhν〉 + o(λν|hν|)

Hence
[f (uν)− f(u)]/λν = 〈∇f(u),hν〉 + o(λν)/λν

where we make use of the fact that |hν| is bounded for ν sufficiently
large. It follows that

[f (uν)− f(u)]/λν → 〈∇f(u),h〉 = −δ

so that there exists a finite integer j such that f(uj)−f(u) ≤ −λjδ/2 <
0 which contradicts the local optimality of u. Hence 〈∇f(u),h〉 ≥ 0
for all h ∈ TU(u). That −∇f(u) ∈ N̂U(u) follows from Proposition
C.7. �

A more concise proof proceeds as follows Rockafellar and Wets
(1998). Since f(v) − f(u) = 〈∇f(u), v − u〉 + o(|v − u|) it follows
that 〈−∇f(u), v − u〉 = o(|v − u|) − (f (v) − f(u)). Because u is lo-
cally optimal, f(v) − f(u) ≥ 0 for all v in the neighborhood of u so
that 〈−∇f(u), v −u〉 ≤ o(|v −u|) which, by (C.15), is the definition of
a normal vector. Hence −∇f(u) ∈ N̂U(u).

C.2.5 Tangent and Normal Cones

The material in this section is not required for Chapters 1-7; it is pre-
sented merely to show that alternative definitions of tangent and nor-
mal cones are useful in more complex situations than those considered
above. Thus, the normal and tangent cones defined in C.2.1 have some
limitations when U is not convex or, at least, not similar to the con-
straint set illustrated in Figure C.4. Figure C.6 illustrates the type of
difficulty that may occur. Here the tangent cone TU(u) is not con-
vex, as shown in Figure C.6(b), so that the associated normal cone
N̂U(u) = TU(u)∗ = {0}. Hence the necessary condition of optimal-
ity of u for the problem of minimizing a differentiable function f(·)



C.2 Optimality Conditions 645

��
��
��
��

��
��
��

��
��
��

NU (u)
g ∈ N̂U (uν )

u

U

N̂U (u) = {0}

(a) Normal cones.

��
��
��
��

��
��
��

��
��
��

U

T̂U (u)

u

TU (u)

(b) Tangent cones.

Figure C.6: Tangent and normal cones.
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over U is ∇f(u) = 0; the only way a differentiable function f(·) can
achieve a minimum over U at u is for the condition ∇f(u) = 0 to be
satisfied. Alternative definitions of normality and tangency are some-
times necessary. In Rockafellar and Wets (1998), a vector g ∈ N̂U(u)
is normal in the regular sense; a normal in the general sense is then
defined by:

Definition C.15 (General normal). A vector g is normal to U at u in
the general sense if there exist sequences uν --------------------------------------------→

U
u and gν → g where

gν ∈ N̂U(uν) for all ν ; NU(u) is the set of all general normal vectors.

The cone NU(u) of general normal vectors is illustrated in Figure
C.6(a); here the cone NU(u) is the union of two distinct cones each
having form {αg | α ≥ 0}. Also shown in Figure C.6(a) are single
elements of two sequences gν in N̂U(uν) converging toNU(u). Counter
intuitively, the general normal vectors in this case point into the interior
of U . Associated with NU(u) is the set T̂U(u) of regular tangents to U
at u defined, when U is locally closed,3 in (Rockafellar and Wets, 1998,
Theorem 6.26) by:

Definition C.16 (General tangent). Suppose U is locally closed at u. A
vector h is tangent to U at u in the regular sense if, for all sequences
uν --------------------------------------------→

U
u, there exists a sequence hν → h that satisfies hν ∈ Tu(uν) for

all ν ; T̂U(u) is the set of all regular tangent vectors to U at u.

Alternatively, a vector h is tangent to U at u in the regular sense if,
for all sequences uν --------------------------------------------→

U
u and λν ↘ 0, there exists a sequence hν → h

satisfying uν + λνhν ∈ U for all ν ∈ I≥0. The cone of regular tangent
vectors for the example immediately above is shown in Figure C.6(b).
The following result is proved in Rockafellar and Wets (1998), Theorem
6.26:

Proposition C.17 (Set of regular tangents is closed convex cone). At any
u ∈ U , the set T̂U(u) of regular tangents to U at u is a closed convex
cone with T̂U(u) ⊂ TU(u). Moreover, if U is locally closed at u, then
T̂U(u) = NU(u)∗.

Figure C.7 illustrates some of these results. In Figure C.7, the con-
stant cost contour {v | f(v) = f(u)} of a nondifferentiable cost func-
tion f(·) is shown together with a sublevel set D passing through the

3A set U is locally closed at a point u if there exists a closed neighborhoodN of u
such that U ∩N is closed; U is locally closed if it is locally closed at all u.
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Figure C.7: Condition of optimality.

point u: f(v) ≤ f(u) for all v ∈ D. For this example, df(u;h) =
max{〈g1, h〉, 〈g2, h〉} where g1 and g2 are normals to the level set of
f(·) at u so that df(u;h) ≥ 0 for all h ∈ T̂U(u), a necessary condi-
tion of optimality; on the other hand, there exist h ∈ TU(u) such that
df(u;h) < 0. The situation is simpler if the constraint set U is regular
at u.

Definition C.18 (Regular set). A set U is regular at a point u ∈ U in the
sense of Clarke if it is locally closed at u and if NU(u) = N̂U(u) (all
normal vectors at u are regular).

The following consequences of Clarke regularity are established in
Rockafellar and Wets (1998), Corollary 6.29:

Proposition C.19 (Conditions for regular set). SupposeU is locally closed
atu ∈ U . Then U is regular atu is equivalent to each of the following.

(a) NU(u) = N̂U(u) (all normal vectors at u are regular).

(b) TU(u) = T̂U(u) (all tangent vectors at u are regular).

(c) NU(u) = TU(u)∗.

(d) TU(u) = NU(u)∗.

(e) 〈g,h〉 ≤ 0 for all h ∈ TU(u), all g ∈ NU(u).

It is shown in Rockafellar and Wets (1998) that if U is regular at u
and a constraint qualification is satisfied, then a necessary condition
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of optimality, similar to (C.21), may be obtained. To obtain this result,
we pursue a slightly different route in Sections C.2.6 and C.2.7.

C.2.6 Constraint Set Defined by Inequalities

We now consider the case when the set U is specified by a set of differ-
entiable inequalities:

U := {u | gi(u) ≤ 0 ∀i ∈ I} (C.22)

where, for each i ∈ I , the function gi : Rm → R is differentiable. For
each u ∈ U

I0(u) := {i ∈ I | gi(u) = 0}
is the index set of active constraints. For each u ∈ U , the set FU(u)
of feasible variations for the linearized set of inequalities; FU(u) is
defined by

FU(u) := {h | 〈∇gi(u),h〉 ≤ 0 ∀i ∈ I0(u)} (C.23)

The setFU(u) is a closed, convex cone and is called a cone of first order
feasible variations in Bertsekas (1999) because h is a descent direction
for gi(u) for all i ∈ I0(u), i.e., gi(u+λh) ≤ 0 for all λ sufficiently small.
When U is polyhedral, the case discussed in C.2.3, gi(u) = 〈ai, u〉 −
bi and ∇gi(u) = ai so that FU(u) = {h | 〈ai, h〉 ≤ 0 ∀i ∈ I0(u)}
which was shown in Proposition C.11 to be the tangent cone TU(u).
An important question whether FU(u) is the tangent cone TU(u) for
a wider class of problems because, if FU(u) = TU(u), a condition of
optimality of the form in (C.20) may be obtained. In the example in
Figure C.8, FU(u) is the horizontal axis {h ∈ R2 | h2 = 0} whereas
TU(u) is the half-line {h ∈ R2 | h1 ≥ 0, h2 = 0} so that in this case,
FU(u) ≠ TU(u). While FU(u) is always convex, being the intersection
of a set of half-spaces, the tangent coneTU(u) is not necessarily convex
as Figure C.6b shows. The set U is said to be quasiregular at u ∈ U
if FU(u) = TU(u) is which case u is said to be a quasiregular point
Bertsekas (1999). The next result, due to Bertsekas (1999), shows that
FU(u) = TU(u), i.e., U is quasiregular at u, when a certain constraint
qualification is satisfied.

Proposition C.20 (Quasiregular set). Suppose U := {u | gi(u) ≤ 0 ∀i ∈
I} where, for each i ∈ I , the function gi : Rm → R is differentiable.
Suppose also that u ∈ U and that there exists a vector h̄ ∈ FU(u) such
that

〈∇gi(u), h̄〉 < 0, ∀ i ∈ I0(u) (C.24)
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Figure C.8: FU(u) 6= TU(u).

Then
TU(u) = FU(u)

i.e., U is quasiregular at u.

Equation (C.24) is the constraint qualification; it can be seen that it
precludes the situation shown in Figure C.8.

Proof. It follows from the definition (C.23) ofFU(u) and the constraint
qualification (C.24) that:

〈∇gi(u),h+α(h̄− h)〉 < 0, ∀h ∈ FU(u),α ∈ (0,1], i ∈ I0(u)

Hence, for all h ∈ FU(u), all α ∈ (0,1], there exists a vector hα :=
h + α(h̄ − h), in FU(u) satisfying 〈∇gi(u),hα〉 < 0 for all i ∈ I0(u).
Assuming for the moment that hα ∈ TU(u) for allα ∈ (0,1], it follows,
since hα → h as α → 0 and TU(u) is closed, that h ∈ TU(u), thus
proving FU(u) ⊂ TU(u). It remains to show that hα is tangent to U
at u. Consider the sequences hν and λν ↘ 0 where hν := hα for all
ν ∈ I≥0. There exists a δ > 0 such that 〈∇gi(u),hα〉 ≤ −δ for all
i ∈ I0(u) and gi(u) ≤ −δ for all i ∈ I \ I0(u). Since

gi(u+ λνhν) = gi(u)+ λν〈∇gi(u),hα〉 + o(λν) ≤ −λνδ+ o(λν)

for all i ∈ I0(u), it follows that there exists a finite integer N such that
gi(u + λνhν) ≤ 0 for all i ∈ I , all ν ≥ N. Since the sequences {hν}
and {λν} for all ν ≥ N satisfy hν → hα, λν ↘ 0 and u + λνhν ∈ U for
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all i ∈ I , it follows that hα ∈ TU(u), thus completing the proof that
FU(u) ⊂ TU(u).

Suppose now that h ∈ TU(u). There exist sequences hν → h and
λν → 0 such that u+λνhν ∈ U so that g(u+λνhν) ≤ 0 for all ν ∈ I≥0.
Since g(u+λνhν) = g(u)+〈∇gj(u), λνhν〉+o(λν|hν|) ≤ 0, it follows
that 〈∇gj(u), λνhν〉 + o(λν) ≤ 0 for all j ∈ I0(u), all ν ∈ I≥0. Hence
〈∇gj(u),hν〉 + o(λν)/λν ≤ 0 for all j ∈ I0(u), all ν ∈ I≥0. Taking the
limit yields 〈∇gj(u),hν〉 ≤ 0 for all j ∈ I0(u) so that h ∈ FU(u)which
proves TU(u) ⊂ FU(u). Hence TU(u) = FU(u). �

The existence of a h̄ satisfying (C.24) is, as we have noted above, a
constraint qualification. If u is locally optimal for the inequality con-
strained optimization problem of minimizing a differentiable function
f(·) over the set U defined in (C.22) and, if (C.24) is satisfied thereby
ensuring that TU(u) = FU(u), then a condition of optimality of the
form (C.20) may be easily obtained as shown in the next result.

Proposition C.21 (Optimality conditions nonconvex problem). Suppose
u is locally optimal for the problem of minimizing a differentiable func-
tion f(·) over the set U defined in (C.22) and that TU(u) = FU(u).
Then

−∇f(u) ∈ cone{∇gi(u) | i ∈ I0(u)}

and there exist multipliers µi ≥ 0, i ∈ I0(u) satisfying

∇f(u)+
∑

i∈I0(u)

µi∇gi(u) = 0 (C.25)

Proof. It follows from Proposition C.14 that −∇f(u) ∈ N̂U(u) and
from Proposition C.7 that N̂U(u) = T ∗U (u). But, by hypothesis,TU(u) =
FU(u) so that N̂U(u) = F∗U (u), the polar cone of FU(u). It follows
from (C.23) and the definition of a polar cone, given in Appendix A1,
that

F∗U (u) = cone{∇gi(u) | i ∈| I0(u)}

Hence

−∇f(u) ∈ cone{∇gi(u) | i ∈ I0(u)}

The existence of multipliers µi satisfying (C.25) follows from the defi-
nition of a cone generated by {∇gi(u) | i ∈ I0(u)}. �
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C.2.7 Constraint Set Defined by Equalities and Inequalities

Finally, we consider the case when the set U is specified by a set of
differentiable equalities and inequalities:

U := {u | gi(u) ≤ 0 ∀i ∈ I, hi(u) = 0 ∀i ∈ E}

where, for each i ∈ I , the function gi : Rm → R is differentiable and for
each i ∈ E, the function hi : Rm → R is differentiable. For each u ∈ U

I0(u) := {i ∈ I | gi(u) = 0}

the index set of active inequality constraints is defined as before. We
wish to obtain necessary conditions for the problem of minimizing a
differentiable function f(·) over the set U . The presence of equality
constraints makes this objective more difficult than for the case when
U is defined merely by differentiable inequalities. The result we wish
to prove is a natural extension of Proposition C.21 in which the equality
constraints are included in the set of active constraints:

Proposition C.22 (Fritz-John necessary conditions). Supposeu is a local
minimizer for the problem of minimizing f(u) subject to the constraint
u ∈ U where U is defined in (C.22). Then there exist multipliers µ0,
µi, i ∈ I and λi, i ∈ E, not all zero, such that

µ0∇f(u)+
∑
i∈I
µi∇gi(u)+

∑
j∈E
λj∇hj(u) = 0 (C.26)

and
µigi(u) = 0 ∀i ∈ I

where µ0 ≥ 0 and µi ≥ 0 for all i ∈ I0.

The condition µigi(u) = 0 for all i ∈ I is known as the complemen-
tarity conditions and implies µi = 0 for all i ∈ I such that gi(u) < 0.
If µ0 > 0, then (C.26) may be normalized by dividing each term by µ0

yielding the more familiar expression

∇f(u)+
∑
i∈I
µi∇gi(u)+

∑
j∈E
∇hj(u) = 0

We return to this point later. Perhaps the simplest method for proving
Proposition C.22 is the penalty approach adopted by Bertsekas (1999),
Proposition 3.3.5. We merely give an outline of the proof. The con-
strained problem of minimizing f(v) over U is approximated, for each
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k ∈ I≥0 by a penalized problem defined below; as k increases the pe-
nalized problem becomes a closer approximation to the constrained
problem. For each i ∈ I , we define

g+i (v) :=max{gi(v),0}

For each k, the penalized problem Pk is then defined as the problem of
minimizing Fk(v) defined by

Fk(v) := f(v)+ (k/2)
∑
i∈I
(g+i (v))

2+ (k/2)
∑
j∈E
(hj(v))2+ (1/2)|v −u|2

subject to the constraint

S := {v | |v −u| ≤ ε}

where ε > 0 is such that f(u) ≤ f(v) for all v in S ∩U . Let vk denote
the solution of Pk. Bertsekas shows that vk → u as k → ∞ so that for
all k sufficiently large, vk lies in the interior of S and is, therefore, the
unconstrained minimizer of Fk(v). Hence for each k sufficiently large,
vk satisfies ∇Fk(vk) = 0, or

∇f(vk)+
∑
i∈I
µ̄ki∇g(vk)+

∑
i∈E
λ̄ki∇h(vk) = 0 (C.27)

where
µ̄ki := kg+i (vk), λ̄ki := khi(vk)

Let µk denote the vector with elements µki , i ∈ I and λk the vector with
elements λki , k ∈ E. Dividing (C.27) by δk defined by

δk := [1+ |µk|2 + |λk|2]1/2

yields
µk0∇f(vk)+

∑
i∈I
µki∇g(vk)+

∑
j∈E
λkj∇h(vk) = 0

where
µk0 := µ̄ki /δk, µki := µ̄ki /δk, λkj := λ̄ki /δk

and
(µk0)

2 + |µk|2 + |λk|2 = 1

Because of the last equation, the sequence {µk0 , µk, λk} lies in a compact
set, and therefore has a subsequence, indexed by K ⊂ I≥0, converging
to some limit {µ0, µ, λ} where µ and λ are vectors whose elements are,
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respectively, µi, i ∈ I and λj , j ∈ E. Because vk → u as k ∈ K tends
to infinity, it follows from (C.27) that

µ0∇f(u)+
∑
i∈I
µi∇gi(u)+

∑
j∈E
λj∇hj(u) = 0

To prove the complementarity condition, suppose, contrary to what we
wish to prove, that there exists a i ∈ I such that gi(u) < 0 but µi > 0.
Since µki → µi > 0 and gi(vk) → gi(u) as k → ∞, k ∈ K, it follows that
µiµki > 0 for all k ∈ K sufficiently large. But µki = µ̄ki /δk = kg+i (vk)/δk
so that µiµki > 0 implies µig+i (v

k) > 0 which in turn implies g+i (v
k) =

gi(vk) > 0 for all k ∈ K sufficiently large. This contradicts the fact that
gi(vk) → gi(u) < 0 as k → ∞, k ∈ K. Hence we must have gi(u) = 0
for all i ∈ I such that µi > 0.

The Fritz-John condition in Proposition C.22 is known as the Karush-
Kuhn-Tucker (KKT) condition if µ0 > 0; if this is the case, µ0 may be
normalized to µ0 = 1. A constraint qualification is required for the
Karush-Kuhn-Tucker condition to be a necessary condition of optimal-
ity for the optimization problem considered in this section. A sim-
ple constraint qualification is linear independence of {∇gi(u), i ∈
I0(u), ∇hj(u), j ∈ E} at a local minimizer u. For, if u is a lo-
cal minimizer and µ0 = 0, then the Fritz-John condition implies that∑
i∈I0(u) µi∇gi(u) +

∑
j∈E λj∇hj(u) = 0 which contradicts the linear

independence of {∇gi(u), i ∈ I0(u), ∇hj(u), j ∈ E} since not all the
multipliers are zero. Another constraint qualification, used in Propo-
sitions C.20 and C.21 for an optimization problem in which the con-
straint set is U := {u | gi(u) ≤ 0, i ∈ I}, is the existence of a vector
h̄(u) ∈ FU(u) such that 〈∇gi(u), h̄〉 < 0 for all i ∈ I0(u); this condi-
tion ensures µ0 = 1 in C.25. Many other constraint qualifications exist;
see, for example, Bertsekas (1999), Chapter 3.

C.3 Set-Valued Functions and Continuity of Value Func-
tion

A set-valued function U(·) is one for which, for each value of x, U(x)
is a set; these functions are encountered in parametric programming.
For example, in the problem P(x) : infu{f(x,u) | u ∈ U(x)} (which
has the same form as an optimal control problem in which x is the
state and u is a control sequence), the constraint set U is a set-valued
function of the state. The solution to the problem P(x) (the value of u
that achieves the minimum) can also be set-valued. It is important to
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Figure C.9: Graph of set-valued function U(·).

know how smoothly these set-valued functions vary with the parameter
x. In particular, we are interested in the continuity properties of the
value function x , f 0(x) = infu{f(x,u) | u ∈ U(x)} since, in optimal
control problems we employ the value function as a Lyapunov function
and robustness depends, as we have discussed earlier, on the continuity
of the Lyapunov function. Continuity of the value function depends,
in turn, on continuity of the set-valued constraint set U(·). We use the
notation U : Rn � Rm to denote the fact that U(·) maps points in Rn

into subsets of Rm.
The graph of a set-valued functions is often a useful tool. The graph

of U : Rn � Rm is defined to be the set Z := {(x,u) ∈ Rn ×Rm | u ∈
U(x)}; the domain of the set-valued function U is the set X := {x ∈
Rn | U(x) ≠ ∅} = {x ∈ Rn | ∃u ∈ Rm such that (x,u) ∈ Z}; clearly
X ⊂ Rn. Also X is the projection of the set Z ⊂ Rn ×Rm onto Rn, i.e.,
(x,u) ∈ Z implies x ∈ X. An example is shown in Figure C.9. In this
example, U(x) varies continuously with x. Examples in which U(·)
is discontinuous are shown in Figure C.10. In Figure C.10(a), the set
U(x) varies continuously if x increases from its initial value of x1, but
jumps to a much larger set if x decreases an infinitesimal amount (from
its initial value of x1); this is an example of a set-valued function that
is inner semicontinuous at x1. In Figure C.10(b), the set U(x) varies
continuously if x decreases from its initial value of x1, but jumps to
a much smaller set if x increases an infinitesimal amount (from its
initial value of x1); this is an example of a set-valued function that is
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(a) Inner semicontinuous set-valued function.
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(b) Outer semicontinuous set-valued function.

Figure C.10: Graphs of discontinuous set-valued functions.

outer semicontinuous at x1. The set-valued function is continuous at
x2 where it is both outer and inner semicontinuous.

We can now give precise definitions of inner and outer semiconti-
nuity.

C.3.1 Outer and Inner Semicontinuity

The concepts of inner and outer semicontinuity were introduced by
Rockafellar and Wets (1998, p. 144) to replace earlier definitions of
lower and upper semicontinuity of set-valued functions. This section is
based on the useful summary provided by Polak (1997, pp. 676-682).

Definition C.23 (Outer semicontinuous function). A set-valued func-
tion U : Rn �Rm is said to be outer semicontinuous (osc) at x if U(x)
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Figure C.11: Outer and inner semicontinuity of U(·).

is closed and if, for every compact set S such that U(x)∩ S = ∅, there
exists a δ > 0 such that U(x′) ∩ S = ∅ for all x′ ∈ x ⊕ δB.4 The
set-valued function U : Rn �Rm is outer semicontinuous if it is outer
semicontinuous at each x ∈ Rn.

Definition C.24 (Inner semicontinuous function). A set-valued function
U : Rn �Rm is said to be inner semicontinuous (isc) at x if, for every
open set S such that U(x) ∩ S ≠ ∅, there exists a δ > 0 such that
U(x′)∩S ≠∅ for allx′ ∈ x⊕δB. The set-valued functionU : Rn �Rm

is inner semicontinuous if it is inner semicontinuous at each x ∈ Rn.

These definitions are illustrated in Figure C.11. Roughly speaking,
a set-valued function that is outer semicontinuous at x cannot explode
as x changes to x′ arbitrarily close to x; similarly, a set-valued function
that is inner semicontinuous at x cannot collapse as x changes to x′

arbitrarily close to x.

Definition C.25 (Continuous function). A set-valued function is contin-
uous (at x) if it is both outer and inner continuous (at x).

If we return to Figure C.10(a) we see that S1 ∩ U(x1) = ∅ but S1 ∩
U(x) ≠ ∅ for x infinitesimally less than x1 so that U(·) is not outer
semicontinuous at x1. For all S2 such that S2 ∩ U(x1) ≠ ∅, however,
S2 ∩ U(x) ≠ ∅ for all x in a sufficiently small neighborhood of x1 so
that U(·) is inner semicontinuous at x1. If we turn to Figure C.10(b)
we see that S1 ∩ U(x1) ≠ ∅ but S1 ∩ U(x) = ∅ for x infinitesimally
greater than x1 so that in this case U(·) is not inner semicontinuous at
x1. For all S3 such that S3 ∩ U(x1) = ∅, however, S3 ∩ U(x) = ∅ for

4Recall that B := {x | |x| ≤ 1} is the closed unit ball in Rn.
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all x in a sufficiently small neighborhood of x1 so that U(·) is outer
semicontinuous at x1.

The definitions of outer and inner semicontinuity may be inter-
preted in terms of infinite sequences (Rockafellar and Wets, 1998, p.
152), (Polak, 1997, pp. 677-678).

Theorem C.26 (Equivalent conditions for outer and inner semicontinu-
ity).

(a) A set-valued function U : Rn � Rm is outer semicontinuous at x if
and only if for every infinite sequence {xi} converging to x, any accu-
mulation point5 u of any sequence {ui}, satisfying ui ∈ U(xi) for all i,
lies in U(x) (u ∈ U(x)).

(b) A set-valued function U : Rn � Rm is inner semicontinuous at x
if and only if for every u ∈ U(x) and for every infinite sequence {xi}
converging to x, there exists an infinite sequence {ui}, satisfying ui ∈
U(xi) for all i, that converges to u.

Proofs of these results may be found in Rockafellar and Wets (1998);
Polak (1997). Another result that we employ is:

Proposition C.27 (Outer semicontinuity and closed graph). A set-valued
function U : Rn �Rm is outer semicontinuous in its domain if and only
if its graph Z is closed in Rn ×Rm.

Proof. Since (x,u) ∈ Z is equivalent to u ∈ U(x), this result is a direct
consequence of the Theorem C.26. �

In the above discussion we have assumed, as in Polak (1997), that
U(x) is defined everywhere in Rn; in constrained parametric optimiza-
tion problems, however, U(x) is defined on X, a closed subset of Rn;
see Figure C.9. Only minor modifications of the above definitions are
then required. In definitions C.23 and C.24 we replace the closed set
δB by δB∩X and in Theorem C.26 we replace “every infinite sequence
(in Rn)” by “every infinite sequence in X.” In effect, we are replacing
the topology of Rn by its topology relative to X.

C.3.2 Continuity of the Value Function

Our main reason for introducing set-valued functions is to provide us
with tools for analyzing the continuity properties of the value func-
tion and optimal control law in constrained optimal control problems.

5Recall, u is the limit of {ui} if ui → u as i→∞; u is an accumulation point of {ui}
if it is the limit of a subsequence of {ui}.
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These problems have the form

V0(x) =min{V(x,u) | u ∈ U(x)} (C.28)

u0(x) = arg min{V(x,u) | u ∈ U(x)} (C.29)

where U : Rn � Rm is a set-valued function and V : Rn × Rm → R is
continuous; in optimal control problems arising from MPC, u should
be replaced by u = {u(0),u(1), . . . , u(N − 1)} and m by Nm. We are
interested in the continuity properties of the value function V0 : Rn →
R and the control law u0 : Rn → Rm; the latter may be set-valued (if
the minimizer in (C.28) is not unique).

The following max problem has been extensively studied in the lit-
erature

φ0(x) =max{φ(x,u) | u ∈ U(x)}
µ0(x) = arg max{φ(x,u) | u ∈ U(x)}

If we define φ(·) by φ(x,u) := −V(x,u), we see that φ0(x) = −V0(x)
and µ0(x) = u0(x) so that we can obtain the continuity properties of
V0(·) and u0(·) from those of φ0(·) and µ0(·) respectively. Using this
transcription and Corollary 5.4.2 and Theorem 5.4.3 in Polak (1997) we
obtain the following result:

Theorem C.28 (Minimum theorem). Suppose that V : Rn × Rm → R
is continuous, that U : Rn � Rm is continuous, compact-valued and
satisfies U(x) ⊂ U for all x ∈ X where U is compact. Then V0(·) is
continuous and u0(·) is outer semicontinuous. If, in addition, u0(x) =
{µ0(x)} (there is a unique minimizer µ0(x)), then µ0(·) is continuous.

It is unfortunately the case, however, that due to state constraints,
U(·) is often not continuous in constrained optimal control problems.
If U(·) is constant, which is the case in optimal control problem if state
or mixed control-state constraints are absent, then, from the above
results, the value function V0(·) is continuous. Indeed, under slightly
stronger assumptions, the value function is Lipschitz continuous.

Lipschitz continuity of the value function. If we assume that V(·)
is Lipschitz continuous and that U(x) ≡ U , we can establish Lipschitz
continuity of V0(·). Interestingly the result does not require, nor does
it imply, Lipschitz continuity of the minimizer u0(·).
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Theorem C.29 (Lipschitz continuity of value function). Suppose that
V : Rn × Rm → R is Lipschitz continuous on bounded sets6 and that
U(x) ≡ U where U is a compact subset of Rm. Then V0(·) is Lipschitz
continuous on bounded sets.

Proof. Let S be an arbitrary bounded set in X, the domain of the value
function V0(·), and let R := S ×U; R is a bounded subset of Z. Since R
is bounded, there exists a Lipschitz constant LS such that∣∣V(x′, u)− V(x′′, u)∣∣ ≤ LS|x′ − x′′|
for all x′, x′′ ∈ S, all u ∈ U . Hence,

V0(x′)− V0(x′′) ≤ V(x′, u′′)− V(x′′, u′′) ≤ LS|x′ − x′′|

for all x′, x′′ ∈ S, any u′′ ∈ u0(x′′). Interchanging x′ and x′′ in the
above derivation yields

V0(x′′)− V0(x′) ≤ V(x′′, u′)− V(x′, u′) ≤ LS|x′′ − x′|

for all x′, x′′ ∈ S, anyu′ ∈ u0(x′). Hence V0(·) is Lipschitz continuous
on bounded sets. �

We now specialize to the case where U(x) = {u ∈ Rm | (x,u) ∈ Z}
where Z is a polyhedron in Rn × Rm; for each x, U(x) is a polytope.
This type of constraint arises in constrained optimal control problems
when the system is linear and the state and control constraints are
polyhedral. What we show in the sequel is that, in this special case,
U(·) is continuous and so, therefore, is V0(·). An alternative proof,
which many readers may prefer, is given in Chapter 7 where we exploit
the fact that if V(·) is strictly convex and quadratic and Z polyhedral,
then V0(·) is piecewise quadratic and continuous. Our first concern is
to obtain a bound on d(u,U(x′)), the distance of any u ∈ U(x) from
the constraint set U(x′).

A bound on d(u, U(x′)), u ∈ U(x). The bound we require is given
by a special case of a theorem due to Clarke, Ledyaev, Stern, and Wolen-
ski (1998, Theorem 3.1, page 126). To motivate this result, consider
a differentiable convex function f : R → R so that f(u) ≥ f(v) +
〈∇f(v),u − v〉 for any two points u and v in R. Suppose also that
there exists a nonempty interval U = [a, b] ⊂ R such that f(u) ≤ 0

6A function V(·) is Lipschitz continuous on bounded sets if, for any bounded set S,
there exists a constant LS ∈ [0,∞) such that |V(z′)−V(z)| ≤ LS |z−z′| for all z, z′ ∈ S.
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Figure C.12: Subgradient of f(·).

for all u ∈ U and that there exists a δ > 0 such that ∆f(u) > δ for all
u ∈ R. Let u > b and let v = b be the closest point in U to u. Then
f(u) ≥ f(v) + 〈∇f(v),u − v〉 ≥ δ|v − u| so that d(u,U) ≤ f(u)/δ.
The theorem of Clarke et al. (1998) extends this result to the case when
f(·) is not necessarily differentiable but requires the concept of a sub-
gradient of a convex function

Definition C.30 (Subgradient of convex function). Suppose f : Rm → R
is convex. Then the subgradient δf(u) of f(·) at u is defined by

δf(u) := {g | f(v) ≥ f(u)+ 〈g,v −u〉 ∀v ∈ Rm}

Figure C.12 illustrates a subgradient. In the figure, g is one element
of the subgradient because f(v) ≥ f(u) + 〈g,v − u〉 for all v ; g is
the slope of the line passing through the point (u, f (u)). To obtain a
bound on d(u,U(x)) we require the following result which is a special
case of the much more general result of the theorem of Clarke et al.:

Theorem C.31 (Clarke et al. (1998)). Take a nonnegative valued, convex
function ψ : Rn × Rm → R. Let U(x) := {u ∈ Rm | ψ(x,u) = 0} and
X := {x ∈ Rn | U(x) ≠∅}. Assume there exists a δ > 0 such that

u ∈ Rm, x ∈ X,ψ(x,u) > 0 and g ∈ ∂uψ(x,u) =⇒ |g| > δ

where ∂uψ(x,u) denotes the convex subgradient of ψ with respect to
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the variable u. Then, for each x ∈ X, d(u,U(x)) ≤ ψ(x,u)/δ for all
u ∈ Rm.

The proof of this result is given in the reference cited above. We
next use this result to bound the distance of u from U(x) where, for
each x, U(x) is polyhedral.

Corollary C.32 (A bound on d(u,U(x′)) for u ∈ U(x)). 7 Suppose Z is
a polyhedron in Rn×Rm and letX denote its projection on Rn (X = {x |
∃u ∈ Rm such that (x,u) ∈ Z}). Let U(x) := {u | (x,u) ∈ Z}. Then
there exists a K > 0 such that for all x,x′ ∈ X, d(u,U(x′)) ≤ K|x′−x|
for all u ∈ U(x) (or, for all x,x′ ∈ X, all u ∈ U(x), there exists a
u′ ∈ U(x′) such that |u′ −u| ≤ K|x′ − x|).

Proof. The polyhedronZ admits the representationZ = {(x,u) | 〈mj , u〉−
〈nj , x〉 − pj ≤ 0, j ∈ J} for some mj ∈ Rm, nj ∈ Rn and pj ∈ R, j ∈
J := {1, . . . , J}. DefineD to be the collection of all index sets I ⊆ J such
that

∑
j∈I λjmj ≠ 0, ∀λ ∈ ΛI in which, for a particular index set I, ΛI is

defined to be ΛI := {λ | λj ≥ 0,
∑
j∈I λj = 1}. Because D is a finite set,

there exists a δ > 0 such that for all I ∈ D, all λ ∈ ΛI , |
∑
j∈I λjmj| > δ.

Letψ(·) be defined byψ(x,u) :=max{〈mj , u〉−〈nj , x〉−pj ,0 | j ∈ J}
so that (x,u) ∈ Z (or u ∈ U(x)) if and only if ψ(x,u) = 0. We now
claim that, for every (x,u) ∈ X × Rm such that ψ(x,u) > 0 and ev-
ery g ∈ ∂uψ(x,u), the subgradient of ψ with respect to u at (x,u),
we have |g| > δ. Assuming for the moment that the claim is true, the
proof of the Corollary may be completed with the aid of Theorem C.31.
Assume, as stated in the Corollary, that x,x′ ∈ X and u ∈ U(x); the
theorem asserts

d(u,U(x′)) ≤ (1/δ)ψ(x′, u), ∀x′ ∈ X

But ψ(x,u) = 0 (since u ∈ U(x)) so that

d(u,U(x′)) ≤ (1/δ)[ψ(x′, u)−ψ(x,u)] ≤ (c/δ)|x′ − x|

where c is the Lipschitz constant for x , ψ(x,u) (ψ(·) is piecewise
affine and continuous). This proves the Corollary with K = c/δ.

It remains to confirm the claim. Take any (x,u) ∈ X × Rm such
thatψ(x,u) > 0. Then maxj{〈mj , u〉−〈nj , x〉−pj ,0 | j ∈ J} > 0. Let

7The authors wish to thank Richard Vinter and Francis Clarke for providing this
result.
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I0(x,u) denote the active constraint set (the set of those constraints
at which the maximum is achieved). Then

〈mj , u〉 − 〈nj , x〉 − pj > 0, ∀j ∈ I0(x,u)

Since x ∈ X, there exists a ū ∈ U(x) so that

〈mj , ū〉 − 〈nj , x〉 − pj ≤ 0, ∀j ∈ I0(x,u)

Subtracting these two inequalities yields

〈mj , u− ū〉 > 0, ∀j ∈ I0(x,u)

But then, for all λ ∈ ΛI0(x,u), it follows that |
∑
j∈I0(x,u) λjmj(u− ū)| >

0, so that ∑
j∈I0(x,u)

λjmj ≠ 0

It follows that I0(x,u) ∈ D. Hence∣∣ ∑
j∈I0(x,u)

λjmj∣∣ > δ, ∀λ ∈ ΛI0(x,u)
Now take any g ∈ ∂uf(x,u) = co{mj | j ∈ I0(x,u)} (co denotes “con-
vex hull”). There exists a λ ∈ ΛI0(x,u) such that g =

∑
j∈I0(x,u) λjmj .

But then |g| > δ by the inequality above. This proves the claim and,
hence, completes the proof of the Corollary. �

Continuity of the value function when U(x) = {u | (x, u) ∈ Z}.
In this section we investigate continuity of the value function for the
constrained linear quadratic optimal control problem P(x); in fact we
establish continuity of the value function for the more general prob-
lem where the cost is continuous rather than quadratic. We showed in
Chapter 2 that the optimal control problem of interest takes the form

V0(x) =min
u
{V(x,u) | (x,u) ∈ Z}

where Z is a polyhedron in Rn × U where U ⊂ Rm is a polytope and,
hence, is compact and convex; in MPC problems we replace the control
u by the sequence of controls u and m by Nm. Let u0 : Rn � Rm be
defined by

u0(x) := arg min
u
{V(x,u) | (x,u) ∈ Z}

and let X be defined by

X := {x | ∃u such that (x,u) ∈ Z}
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so that X is the projection of Z ⊂ Rn×Rm onto Rn. Let the set-valued
function U : Rn �Rm be defined by

U(x) := {u ∈ Rm | (x,u) ∈ Z}

The domain of V0(·) and of U(·) is X. The optimization problem may
be expressed as V0(x) = minu{V(x,u) | u ∈ U(x)}. Our first task is
establish the continuity of U : Rn �Rm.

Theorem C.33 (Continuity ofU(·)). Suppose Z is a polyhedron inRn×U
where U ⊂ Rm is a polytope. Then the set-valued function U : Rn �Rm

defined above is continuous in X.

Proof. By Proposition C.27, the set-valued map U(·) is outer semicon-
tinuous in X because its graph, Z, is closed. We establish inner semi-
continuity using Corollary C.32 above. Let x,x′ be arbitrary points in
X and U(x) and U(x′) the associated control constraint sets. Let S be
any open set such that U(x)∩ S ≠∅ and let u be an arbitrary point in
U(x)∩ S. Because S is open, there exist an ε > 0 such that u⊕ εB ⊂ S.
Let ε′ := ε/K where K is defined in Corollary 1. From Corollary C.32,
there exists a u′ ∈ U(x′) such that |u′ − u| ≤ K|x′ − x| which im-
plies |u′ − u| ≤ ε (u′ ∈ u ⊕ εB) for all x′ ∈ X such that |x′ − x| ≤ ε′
(x′ ∈ (x ⊕ ε′B) ∩X). This implies u ∈ U(x′) ∩ S for all x′ ∈ X such
that |x′ − x| ≤ ε′ (x′ ∈ (x ⊕ ε′B) ∩ X). Hence U(x′) ∩ S ≠ ∅ for all
x′ ∈ (x ⊕ ε′B) ∩X, so that U(·) is inner semicontinuous in X. Since
U(·) is both outer and inner semicontinuous in X, it is continuous in
X. �

We can now establish continuity of the value function.

Theorem C.34 (Continuity of the value function). Suppose that V : Rn×
Rm → R is continuous and thatZ is a polyhedron inRn×UwhereU ⊂ Rm

is a polytope. Then V0 : Rn → R is continuous and u0 : Rn � Rm is
outer semicontinuous inX. Moreover, if u0(x) is unique (not set-valued)
at each x ∈ X, then u0 : Rn → Rm is continuous in X.

Proof. Since the real-valued function V(·) is continuous (by assump-
tion) and since the set-valued function U(·) is continuous in X (by
Theorem C.33), it follows from Theorem C.28 that V0 : Rn → R is
continuous and u0 : Rn � Rm is outer semicontinuous in X; it also
follows that if u0(x) is unique (not set-valued) at each x ∈ X, then
u0 : Rn → Rm is continuous in X. �



664 Optimization

Lipschitz continuity when U(x) = {u | (x, u) ∈ Z}. Here we estab-
lish that V0(·) is Lipschitz continuous if V(·) is Lipschitz continuous
and U(x) := {u ∈ Rm | (x,u) ∈ Z}; this result is more general than
Theorem C.29 where it is assumed that U is constant.

Theorem C.35 (Lipschitz continuity of the value function). Suppose
that V : Rn × Rm → R is continuous, that Z is a polyhedron in Rn ×
U where U ⊂ Rm is a polytope. Suppose, in addition, that V : Rn ×
Rm → R is Lipschitz continuous on bounded sets.8 ThenV0(·) is Lipschitz
continuous on bounded sets.

Proof. Let S be an arbitrary bounded set in X, the domain of the value
function V0(·), and let R := S×U; R is a bounded subset of Z. Let x,x′

be two arbitrary points in S. Then

V0(x) = V(x, κ(x))
V0(x′) = V(x′, κ(x′))

where V(·) is the cost function, assumed to be Lipschitz continuous
on bounded sets, and κ(·), the optimal control law, satisfies κ(x) ∈
U(x) ⊂ U and κ(x′) ∈ U(x′) ⊂ U. It follows from Corollary C.32
that there exists a K > 0 such that for all x,x′ ∈ X, there exists a
u′ ∈ U(x′) ⊂ U such that |u′ − κ(x)| ≤ K|x′ − x|. Since κ(x) is
optimal for the problem P(x), and since (x, κ(x)) and (x′, u′) both lie
in R = S × U, there exists a constant LR such that

V0(x′)− V0(x) ≤ V(x′, u′)− V(x, κ(x))
≤ LR(|(x′, u′)− (x, κ(x))|)
≤ LR|x′ − x| + LRK|x′ − x|
≤ MS|x′ − x|, MS := LR(1+K)

Reversing the role of x and x′ we obtain the existence of a u ∈ U(x)
such that |u − κ(x′)| ≤ K|x − x′|; it follows from the optimality of
κ(x′) that

V0(x)− V0(x′) ≤ V(x,u)− V(x′, κ(x′))
≤ MS|x − x′|

where, now, u ∈ U(x) and κ(x′) ∈ U(x′). Hence |V0(x′) − V0(x)| ≤
MS|x − x′| for all x,x′ in S. Since S is an arbitrary bounded set in X,
V0(·) is Lipschitz continuous on bounded sets. �

8A function V(·) is Lipschitz continuous on bounded sets if, for any bounded set S,
there exists a constant LS ∈ [0,∞) such that |V(z′)−V(z)| ≤ LS |z−z′| for all z, z′ ∈ S.
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C.4 Exercises

Exercise C.1: Nested optimization and switching order of optimization

Consider the optimization problem in two variables

min
(x,y)∈Z

V(x,y)

in which x ∈ Rn, y ∈ Rm, and V : Rn ×Rm → R. Assume this problem has a solution.
This assumption is satisfied, for example, if V is continuous and Z is compact, but, in
general, we do not require either of these conditions.

Define the following four sets

X(y) = {x | (x,y) ∈ Z} Y(x) = {y | (x,y) ∈ Z}
B = {y | X(y) ≠∅} A = {x | Y(x) ≠∅}

Note that A and B are the projections of Z onto Rn and Rm, respectively. Projection
is defined in Section C.3. Show the solutions of the following two nested optimization
problems exist and are equal to the solution of the original problem

min
x∈A

(
min
y∈Y(x)

V(x,y)
)

min
y∈B

(
min
x∈X(y)

V(x,y)
)

Exercise C.2: DP nesting

Prove the assertion made in Section C.1.2 that ui = {u,ui+1} ∈ U(x, i) if and only if
(x,u) ∈ Z, f(x,u) ∈ X(i+ 1), and ui+1 ∈ U(f (x,u), i+ 1).

Exercise C.3: Recursive feasibility

Prove the assertion in the proof of Theorem C.2 that (x(j),u(j)) ∈ Z and that f(x(j),u(j)) ∈
X(j + 1).

Exercise C.4: Basic minmax result

Consider the following two minmax optimization problems in two variables

inf
x∈X

sup
y∈Y

V(x,y) sup
y∈Y

inf
x∈X

V(x,y)

in which x ∈ X ⊆ Rn, y ∈ Y ⊆ Rm, and V : X×Y→ R.

(a) Show that the values are ordered as follows

inf
x∈X

sup
y∈Y

V(x,y) ≥ sup
y∈Y

inf
x∈X

V(x,y)

or, if the solutions to the problems exist,

min
x∈X

max
y∈Y

V(x,y) ≥max
y∈Y

min
x∈X

V(x,y)

A handy mnemonic for this result is that the player who goes first (inner problem)
has the advantage.9

9Note that different conventions are in use. Boyd and Vandenberghe (2004, p. 240)
say that the player who “goes” second has the advantage, meaning that the inner prob-
lem is optimized after the outer problem has selected a value for its variable. We say
that since the inner optimization is solved first, this player “goes” first.
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(b) Use your results to order these three problems

sup
x∈X

inf
y∈Y

sup
z∈Z

V(x,y, z) inf
y∈Y

sup
z∈Z

sup
x∈X

V(x,y, z) sup
z∈Z

sup
x∈X

inf
y∈Y

V(x,y, z)

Exercise C.5: Lagrange multipliers and minmax

Consider the constrained optimization problem

min
x∈Rn

V(x) subject to g(x) = 0 (C.30)

in which V : Rn → R and g : Rn → Rm. Introduce the Lagrange multiplier λ ∈ Rm

and Lagrangian function L(x, λ) = V(x)− λ′g(x) and consider the following minmax
problem

min
x∈Rn

max
λ∈Rm

L(x, λ)

Show that if (x0, λ0) is a solution to this problem with finite L(x0, λ0), then x0 is also
a solution to the original constrained optimization (C.30).

Exercise C.6: Dual problems and duality gap

Consider again the constrained optimization problem of Exercise C.5

min
x∈Rn

V(x) subject to g(x) = 0

and its equivalent minmax formulation

min
x∈Rn

max
λ∈Rm

L(x, λ)

Switching the order of optimization gives the maxmin version of this problem

max
λ∈Rm

min
x∈Rn

L(x, λ)

Next define a new (dual) objective function q : Rm → R as the inner optimization

q(λ) = min
x∈Rn

L(x, λ)

Then the maxmin problem can be stated as

max
λ∈Rm

q(λ) (C.31)

Problem (C.31) is known as the dual of the original problem (C.30), and the original
problem (C.30) is then denoted as the primal problem in this context (Nocedal and
Wright, 2006, p. 343–345), (Boyd and Vandenberghe, 2004, p. 223).

(a) Show that the solution to the dual problem is a lower bound for the solution to
the primal problem

max
λ∈Rm

q(λ) ≤ min
x∈Rn

V(x) subject to g(x) = 0 (C.32)

This property is known as weak duality (Nocedal and Wright, 2006, p. 345),
(Boyd and Vandenberghe, 2004, p. 225).
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(b) The difference between the dual and the primal solutions is known as the duality
gap. Strong duality is defined as the property that equality is achieved in (C.32)
and the duality gap is zero (Boyd and Vandenberghe, 2004, p. 225).

max
λ∈Rm

q(λ) = min
x∈Rn

V(x) subject to g(x) = 0 (C.33)

Show that strong duality is equivalent to the existence of λ0 such that

min
x∈Rn

V(x)− λ′0g(x) = min
x∈Rn

V(x) subject to g(x) = 0 (C.34)

Characterize the set of all λ0 that satisfy this equation.

Exercise C.7: Example with duality gap

Consider the following function and sets (Peressini, Sullivan, and Uhl, Jr., 1988, p. 34)

V(x,y) = (y − x2)(y − 2x2) X = [−1,1] Y = [−1,1]

Make a contour plot of V(·) on X×Y and answer the following question. Which of the
following two minmax problems has a nonzero duality gap?

min
y∈Y

max
x∈X

V(x,y)

min
x∈X

max
y∈Y

V(x,y)

Notice that the two problems are different because the first one minimizes over y and
maximizes over x, and the second one does the reverse.

Exercise C.8: The Heaviside function and inner and outer semicontinuity

Consider the (set-valued) function

H(x) =

0, x < 0

1, x > 0

and you are charged with deciding how to define H(0).

(a) Characterize the choices of set H(0) that make H outer semicontinuous. Justify
your answer.

(b) Characterize the choices of set H(0) that make H inner semicontinuous. Justify
your answer.

(c) Can you define H(0) so that H is both outer and inner semicontinuous? Explain
why or why not.
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