TEMPO Summer School on Numerical Optimal Control and Embedded Optimization
University of Freiburg, July 27 - August 7, 2015

Exercise 9: Direct Multiple Shooting and Real-Time Iterations

with YALMIP

Rien Quirynen Dimitris Kouzoupis Moritz Diehl

http://syscop.de/teaching/numerical-optimal-control/

SQP and Gauss-Newton for direct multiple shooting Using the RK4 integrator from previous
exercises with sensitivity propagation, we will implement a simple SQP type method to solve a classical
optimal control problem from the NMPC literature [I]. For this aim, we will perform a direct multiple
shooting discretization in combination with the use of a Gauss-Newton Hessian approximation.

9.1

9.2

9.3

Consider the dynamic system described by the ODE

z2 +u(p+ (1 — p)ry)

z = f(x,u), with f(z,u)= 21+ u(it — 41 — p)z2)

and assume p = 0.5. Write a MATLAB function ode(t,x,u) to evaluate the function f(z,u),
which will be provided to the RK4 integrator to simulate the system for a time of Ty = 0.1 units by
using 2 integrator steps. The resulting nonlinear function ®(-) then forms the discrete time system

Tht1 = @((Ek, uk).

Now we want to solve the optimal control problem. After performing direct multiple shooting with
N = 15 time steps of length T = 0.1, the resulting NLP has the form

N-1
C 1 1
Hllr)l(l}[rjllze 3 kz_o T, (kaQ T + u;Ruk) + ix]TVP TN
subject to xp = [—~0.683; —0.864] ",
l'kJrl:q)({Ek,uk), Vk:07...,N—1,
-2 < u, <2, Vk=0,...,N —1,

m—l\r,PxN < a.

The parameters in the latter problem will be defined as

05 0 16.5926 11.5926
©= [0 0.5} o B=[10], P=11150% 165026 =0T
Derive on paper the linearization of the nonlinear equality constraints ryi1 = O(zp,ur) at a

trajectory X = (Zo,...,Zx) and U = (do, ..., Un_1).

Now use the environment YALMIP to formulate and solve the convex subproblem that results
from linearization at a certain trajectory guess X and U. For now, let us leave out the terminal
constraint x;Px ~ < a such that the resulting subproblem is a QP. Note that the objective function
can be taken directly from the above OCP formulation in case of a Gauss-Newton approximation of
the Hessian of the Lagrangian, since the objective is already a quadratic function. For this and the
following tasks, you can start from the provided template code in GN_SQP.m. TIP: The following
commands create an appropriate cell array of sdpvar objects for the states as well as the controls:

sdpvar (nuxones (1,N),ones (1,N));
sdpvar (nxxones (1,N+1),ones (1,N+1));

http://syscop.de/teaching/numerical-optimal-control/

This way, it is for example easy to access the states x{k} and controls u{k} at a specific node k.

9.4 Write the full SQP algorithm, i.e. update the linearization point in each iteration with the most
current solution guess. Note that most constraints do not change in each SQP iteration, so you
could restructure the code to only update the linearizations of the nonlinear (dynamic) constraints
within the loop. Decide on a suitable stopping criterion or simply perform a fixed number of SQP
iterations. Plot the solution trajectory in each iteration.

9.5 We will now close the Nonlinear MPC loop by applying the first control input ug to the “real”
system, which can be simulated again for the duration of T using the RK4 integrator (with possibly
a different amount of steps). Let us therefore write an outer loop around the previous algorithm,
which in each iteration can now start from the previous solution trajectories. At this point, we
already trust the SQP method which we wrote just now so we are more interested in the closed-
loop state trajectories and the applied control inputs, instead of the individual SQP iterations.
You should therefore plot and try to interpret the closed-loop behavior. Does the NMPC scheme
indeed manage to control the system to the origin?

9.6 As a final step, we will implement an online variant of the latter SQP type algorithm which is
known as the Real-Time Iteration (RTT) scheme [2]. Due to the facts that we already implemented
the direct multiple shooting method with Gauss-Newton Hessian and that the online data vector
xo enters the optimization problem formulation linearly, this only requires the following simple
change to our existing code:

e we will perform only one SQP iteration per time step, i.e. we change the problem specific
online data xg in each iteration

We will first implement this “RTT without shift” (for another variant, see the first extra question).
Plot the closed-loop state trajectories and the control inputs applied by the RTI scheme and
compare them with the ideal (fully converged) NMPC scheme. Is there a noticeable difference? If
yes, the following points are known to be important in order to make the RTI scheme work well:

(a) choose a good first initialization for the state and control trajectory when you start the real-
time iterations

(b) sample your system fast enough and make sure that the optimization problem data do not
make very large jumps from one problem to the next

(c) perform a good transition from one time step to the next. So far, we used “no shift”, but
alternatively, we can use a shift transition, which is important for time varying systems

9.7 Extra 1 (shift transition): Additionally, after each RTI, shift the current state and control
trajectories as an initial guess for the solution in the next time stepE| Implement the RTI with
shift and compare to the solution without shift.

9.8 Extra 2 (sequential convex programming): As a second extension to the RTI scheme, you
can implement a version of Sequential Convex Programming (SCP) by keeping the terminal con-
straint x;PI ~N < «a in the convex subproblem. Thus, a Quadratically Constrained Quadratic
Program (QCQP) needs to be solved in each iteration of this SCP-type algorithm, which is easily
implemented with YALMIP.

References

[1] H. Chen and F. Allgéwer. A quasi-infinite horizon nonlinear model predictive control scheme with
guaranteed stability. Automatica, 34(10):1205-1218, 1998.

[2] M. Diehl, H.G. Bock, J.P. Schloder, R. Findeisen, Z. Nagy, and F. Allgéwer. Real-time optimization
and Nonlinear Model Predictive Control of Processes governed by differential-algebraic equations.
Journal of Process Control, 12(4):577-585, 2002.

1The last node is just doubled by the shift. Alternatively, you could additionally initialize the last node using a
call to the RK4 integrator: input.x = X(:,N); input.u = U(:,N); output = RK4_integrator(@ode, input); X(:,N+1)
= output.value;

