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Linear MPC using qpOASES: inverted pendulum Let us look again at the example of an inverted
pendulum, mounted on top of a cart, of which the system dynamics are described by the same nonlinear
ODE system as in Exercise 1.

6.1 We will reuse the linearization of the discrete time RK4 system from Exercise 1 to make an
approximate system of the form xk+1 = Axk +B uk where the states are xk := (pk, θk, vk, ωk).

6.2 The task is to stabilize the pendulum in its unstable upward position, i.e. pref = 0 m and θref =
0 rad. Let us assume that the control input as well as the position of the cart are both bounded,
respectively by −10 ≤ F ≤ 10 and −1 ≤ p ≤ 1. The discrete time OCP formulation is the following

minimize
X,U

1

2

N−1∑
k=0

∥∥∥∥[xkuk
]
−
[
xrefk

urefk

]∥∥∥∥2
W

+ ‖xN − xrefN ‖2P (1a)

subject to x0 = x̄0, (1b)

0 = Axk +B uk − xk+1, ∀k = 0, . . . , N − 1, (1c)

− 2 ≤ pk ≤ 2, ∀k = 0, . . . , N, (1d)

− 10 ≤ uk ≤ 10, ∀k = 0, . . . , N − 1, (1e)

where the weighting matrixW := blkdiag(Q,R) and with state trajectoryX = [x>0 , . . . , x
>
N−1, x

>
N ]>

and control trajectory U = [u>0 , . . . , u
>
N−1]>. The problem formulation employs N = 40 intervals

over the control horizon T = 2 s.

6.3 Write (first on paper) the above Optimal Control Problem in the following Quadratic Program-
ming (QP) formulation, expected by qpOASES:

min
w

1

2
w>H w + w>g (2a)

s.t. lb ≤ w ≤ ub

lbA ≤ Aw ≤ ubA (2b)

where the optimization variables are defined as w = [x>0 , u
>
0 , . . . , x

>
N−1, u

>
N−1, x

>
N ]>.

NOTE: you can introduce equality constraints by making both bound values equal for the corre-
sponding inequality constraints. Therefore, the initial value condition x0 = x̄0 can for example
be written as simple bounds on the first state x̄0 ≤ x0 ≤ x̄0. For the case of the dynamics, the
equality constraints Aeq w = beq can be rewritten as inequality constraints beq ≤ Aeq w ≤ beq.

6.4 Based on the file closed loop.m, implement a closed-loop simulation of linear MPC using the
formulation above with qpOASES directly solving the QP at each sampling time. Note that
qpOASES has been especially developed to solve such a sequence of closely related parametric
optimization problems. Therefore, the first QP can be solved by calling:

1 [QP sparse,z sparse] = qpOASES sequence('i',H,g,Aeq,...
2 lb sparse,ub sparse,beq,beq,options);
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All subsequent QPs can then be solved in a much more efficient manner by calling:

1 [z sparse] = qpOASES sequence('h',QP sparse,g,...
2 lb sparse,ub sparse,beq,beq,options);

6.5 Compare the performance of the linear MPC scheme with the LQR controller from Exercise 1. For
this, it is important to choose the same weighting matrices for both schemes. Also, note that the
LQR controller needs to saturate the control inputs while MPC can directly take these constraints
into account. Do you observe any other differences in the closed-loop trajectories of both schemes?
Additionally, you should plot and compare the closed-loop cost for both controllers.

6.6 Condensing: It is well known that qpOASES is not an ideal solver to directly tackle the sparse
optimal control problem in Eq. (1). However, by eliminating the state variables using a procedure
called condensing, we can form an equivalent problem which is much smaller but dense:

min
U

1

2
U>Hc U + U>gc (3a)

s.t. lbu ≤ U ≤ ubu

lbA ≤ Ac U ≤ ubA (3b)

where again U = [u>0 , . . . , u
>
N−1]>. The latter problem is much more suitable for a dense linear

algebra solver like qpOASES. Note that the condensed Hessian Hc and the matrix Ac need to be
computed only once (offline) before we start the closed-loop simulation:

1 [Hc,gc0,gc1,lbU,ubU,Ac,lbA0,ubA0,bA1,AA,BB,CC] = ...
condensing(Q,R,P,g,A,B,lb,ub,beq);

2 gc = gc0 + gc1*x0;
3 lbA = lbA0 + bA1*x0;
4 ubA = ubA0 + bA1*x0;
5 [QP dense,u dense] = qpOASES sequence('i',Hc,gc,Ac,lbU,ubU,lbA,ubA,options);

The function condensing is part of the provided template code for this exercise and it allows one
to expand the control trajectory to obtain the state trajectory by evaluating x dense = AA*x0

+ BB*u dense + CC. In the following (online) iterations, one can update the gradient gc and the
bounds lbA and ubA given the new current state estimate x0:

1 gc = gc0 + gc1*x0;
2 lbA = lbA0 + bA1*x0;
3 ubA = ubA0 + bA1*x0;
4 [u dense] = qpOASES sequence('h',QP dense,gc,lbU,ubU,lbA,ubA,options);

Check whether the solution of the condensed QP is indeed equal to that of the original, sparse
problem. Finally, using the MATLAB routines tic/toc, you can measure the computation time
needed by qpOASES both with and without condensing.

6.7 Extra: You can also try to solve the same sparse optimal control problem from Eq. (1) using
YALMIP, similar to what you did in Exercise 5. For this, you can still use qpOASES as the
underlying solver. Note that YALMIP cannot use the qpOASES sequence feature for embedded
optimization. So even though your problem becomes much easier to formulate in the YALMIP
environment, the actual MPC simulation might slow down quite a bit.
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