
TEMPO Summer School on Numerical Optimal Control and Embedded Optimization
University of Freiburg, July 27 - August 7, 2015

Exercise 4: Direct single and multiple shooting
Rien Quirynen Dimitris Kouzoupis Moritz Diehl

http://syscop.de/teaching/numerical-optimal-control/

The inverted pendulum Let us look again at the example of an inverted pendulum, mounted on top
of a cart, of which the system dynamics are described by the same nonlinear ODE system as in Exercise 1.
We decide on the following continuous time OCP formulation for the swing-up of the inverted pendulum,
where the terminal constraint is defined by the upward configuration:

minimize
x(·),u(·)

∫ T

0

1

2
‖u(t)‖2R dt (1a)

subject to x(0) = x̄0, (1b)

ẋ(t) = f(x(t), u(t)), ∀t ∈ [0, T ], (1c)

x(T ) = xref, (1d)

− 20 ≤ u(t) ≤ 20, ∀t ∈ [0, T ], (1e)

where the states are defined x = (p, θ, v, ω) and the control input u = F . To keep the implementation of
this exercise simple, we have no stage cost on the differential states in the OCP formulation.

Single shooting method For the sake of simplicity, we also consider an equidistant grid over the
control horizon consisting in the collection of time points ti, where ti+1−ti = T

N =: Ts for i = 0, . . . , N−1.
Additionally, we consider a piecewise constant control parametrization u(τ) = ui for τ ∈ [ti, ti+1).
In the context of single shooting, let us define the function φsim(x̄0, U) which represents a numerical
approximation for the solution x(T ) of the following initial value problem:

ẋ(τ) = f(x(τ), u(τ)), where u(τ) = ui for τ ∈ [ti, ti+1) ∀i = 0, . . . , N − 1, (2)

where x(0) = x̄0. This function typically needs to be evaluated numerically using an integration method,
such as the RK4 integrator used in previous exercises. A single shooting discretization of the OCP in (1),
then results in the following Nonlinear Program (NLP):

min
U

1

2

N−1∑
k=0

Ts ‖uk‖2R (3a)

s.t. − 20 ≤ uk ≤ 20, k = 0, . . . , N − 1, (3b)

0 = φsim(x̄0, U)− xref, (3c)

with control trajectory U = [u>0 , . . . , u
>
N−1]>.

4.1 Try to complete the template code in the file swing up.m, implementing the single shooting method
as described above. For this, you mainly have to complete the MATLAB functions cost single.m

and constr single.m, respectively to evaluate the objective and the nonlinear terminal constraint.

4.2 Go through the code to make sure that you understand how it works. Note that, similar to the
previous exercise, first order derivatives are provided to fmincon in order to improve its convergence
behaviour. Run the script and interpret the obtained solution to the optimal control problem.
HINT: Always check the information which fmincon (or any other solver) outputs to you.

Note that the MATLAB function hessian single is provided to let fmincon use the Gauss-Newton
Hessian approximation (see lecture on ‘Newton-type optimization’).

1

http://syscop.de/teaching/numerical-optimal-control/


Multiple shooting method For various reasons, we typically prefer to apply a direct multiple shoot-
ing discretization instead. For this, let us define a local function φk(·) over each shooting interval which
represents a numerical approximation for the solution x(tk+1) of the following initial value problem:

ẋ(τ) = f(x(τ), uk), τ ∈ [tk, tk+1], (4)

where x(tk) = xk. The resulting NLP reads as follows

min
X,U

1

2

N−1∑
k=0

Ts ‖uk‖2R (5a)

s.t. 0 = x0 − x̄0, (5b)

0 = φ(xk, uk)− xk+1, k = 0, . . . , N − 1, (5c)

0 = xN − xref, (5d)

− 20 ≤ uk ≤ 20, k = 0, . . . , N − 1, (5e)

with state trajectory X = [x>0 , . . . , x
>
N ]> and control trajectory U = [u>0 , . . . , u

>
N−1]>.

4.3 Similar to the working code for single shooting, try to solve the same problem using direct mul-
tiple shooting. For this, you will have to make a new version of both the MATLAB functions
cost multiple.m and constr multiple.m, respectively for the objective and constraint functions.

For nonlinear optimization algorithms, it is generally important to have accurate (first and possibly
higher order) derivative information. In addition, the multiple shooting NLP from Eq. (5) has a
clear sparsity structure, which fmincon cannot detect automatically. It is this structure which
allows us in general to implement multiple shooting (nearly) as efficient as single shooting! It
is therefore important that these MATLAB functions additionally provide first order derivative
information. Try to complete the templates provided on our event webpage.

4.4 You can now call fmincon in the following way to solve the multiple shooting based NLP:

1 sol multiple = fmincon(@cost multiple,Z MS,[],[],[],[],...
2 LB MS,UB MS,@constr multiple,options);

Note that you will have to set up new bound values and define a proper initialization for the
multiple shooting optimization variables, which include all controls and states over the full hori-
zon Z MS = [x0, u0, . . . , xN−1, uN−1, xN ]. HINT: This order is important for the sparsity of the
problem, mentioned earlier.

4.5 Do you see any difference in the number of iterations needed by fmincon? Unlike for single shooting,
note that you could now additionally try out different initializations for the state trajectory X.

4.6 Extra: Instead of the rather restrictive terminal equality constraint, try to include a terminal
cost of the form x>NPxN (which dominates over the penalty on the control values). The terminal
constraint can be removed. For this task, you can restrict to the multiple shooting implementation
for which you will also need to update the function hessian multiple.

2


