
TEMPO Summer School on Numerical Optimal Control and Embedded Optimization
University of Freiburg, July 27 - August 7, 2015

Exercise 3: Newton’s method for optimization
Rien Quirynen Dimitris Kouzoupis Moritz Diehl

http://syscop.de/teaching/numerical-optimal-control/

Let us look into the minimization of Rosenbrock’s function:

f(x, y) = (x− 1)2 + 100(y − x2)2.

Newton’s method for root-finding We will first formulate and solve the Rosenbrock problem:

minimize
x,y

f(x, y) (1)

by implementing our own version of an unconstrained Newton-type optimization algorithm.

3.1 Write a MATLAB function f eval(z) to evaluate the Rosenbrock function f(z) where z = (x, y).

3.2 To solve the Rosenbrock problem, we are interested in the solution(s) to the following first order
necessary condition:

∇f(x?, y?) = 0. (2)

Write down the gradient on paper and make a MATLAB function Df eval(z) to evaluate it:

1 function [f,Df] = Df eval(z)
2

3 end

3.3 In order to implement an exact Newton scheme, we will additionally need to evaluate the Hessian
matrix ∇2f(·). Again, write this first down analytically on paper and then create a MATLAB
function D2f eval(z) to evaluate f(·), ∇f(·) and ∇2f(·) like this:

1 function [f,Df,D2f] = D2f eval(z)
2

3 end

3.4 Now, let us implement an exact Newton scheme to solve the nonlinear system ∇f(z?) = 0:

z[k+1] = z[k] −
(
∇2f(z[k])

)−1

∇f(z[k]) (3)

where z[k] = (x[k], y[k]) and k is the current iteration number. You can use (x[0], y[0]) = (0, 0) as a
starting point, and a possible stopping criterion for this scheme could be

∥∥∇f(z[k])
∥∥ < 10−10.

1

http://syscop.de/teaching/numerical-optimal-control/

Solving the NLP using fmincon

3.5 Let us first try to solve the unconstrained minimization problem above, but using fminunc instead:

1 options = optimoptions(@fminunc,'Display','iter', ...
2 'Algorithm','quasi−newton');
3 x sol = fminunc(@f eval,[0 0],options)

How do the iterations compare to our self-written Newton scheme? Let us provide fminunc with
the necessary derivative information as follows:

1 options = optimoptions(@fminunc,'Display','iter', ...
2 'Algorithm','trust−region','GradObj','on','Hessian','on');
3 x sol2 = fminunc(@D2f eval,[0 0],options)

Did the performance in number of iterations improve? It is important to note that fminunc

performs a step size selection, unlike our self-written scheme. In addition, the actual iterations of
a Quasi-Newton method are generally cheaper than for an exact Newton scheme.

3.6 Now formulate and solve the following constrained optimization problem:

minimize
x,y

f(x, y)

subject to x2 + y2 ≤ 1
(4)

You will need to write a MATLAB function Dc eval(z)

1 function [cineq, ceq, Dcineq, Dceq] = Dc eval(z)
2 cineq = ...;
3 ceq = [];
4 Dcineq = ...;
5 Dceq = [];
6 end

to evaluate the nonlinear (inequality and equality) constraints, which you then pass to the fmincon
solver:

1 options = optimoptions(@fmincon,'Display','iter', ...
2 'Algorithm','interior−point','GradObj','on', ...
3 'GradConstr','on','Hessian','bfgs');
4 x sol = fmincon(@Df eval,[0 0],[],[],[],[],[],[],@Dc eval,options)

3.7 Extra: Let us call fmincon with exact Hessian information by writing a MATLAB function to
evaluate the Hessian of the Lagrangian:

1 function [H] = hessian fun(z,lambda)
2 [¬,¬,D2f] = D2f eval(z);
3 D2c = ...; % TODO: Hessian inequality constraint
4 H = D2f + lambda.ineqnonlin*D2c;
5 end

Finally, the updated options to pass for exact Hessians are:

1 options = optimoptions(@fmincon,'Display','iter','Algorithm', ...
2 'interior−point','GradObj','on','GradConstr','on', ...
3 'Hessian','user−supplied','HessFcn',@hessian fun);

2

