TEMPO Summer School on Numerical Optimal Control and Embedded Optimization
University of Freiburg, July 27 - August 7, 2015

Exercise 2: Dynamic programming

Rien Quirynen Dimitris Kouzoupis Moritz Diehl

http://syscop.de/teaching/numerical-optimal-control/

Dynamic programming for a 1-state system Here we shall consider a simple OCP with one state
z and one control u: -
mi(n)im(i?e / (z(t)* + u(t)?) dt + Pa(T)?
(), ul- 0
subject to & = (1+z)x +2u, z(0) = —0.95,
“1<a2(t) <1, —1<u(t) <1,

(1)

with horizon length T' = 2. To be able to solve the problem using dynamic programming, we parameterize
the control trajectory into N = 20 piecewise constant intervals of size Ty := T//N = 0.1. On each interval,
we then take 1 step of the RK4 integrator in order to get a discrete-time OCP of the form:

N—
minimize (z7 +up) + Pa¥
r,u
k=0

Ju

2)
subject to zp41 = Fag,ur), Vk=0,...,N—1, x¢=—0.95
—1§£Ek§1, —1§uk§1 Vk.

2.1 Similar to previous exercise: Design an LQR controller for this 1-state system, to be used in
the terminal cost x\,Pxy. For this, you will need to linearize the discretized nonlinear system
Tp+1 = F(ag,ui) around the steady state point (z,u) = (0,0). Write a MATLAB function
ode (t,x,u) to evaluate the differential equation and use the provided RK4_integrator to simulate
the system. Important is that you will need both the optimal gain matrix K and the cost-to-go
matrix P:

‘ 1 [K,P] = dlgr(A,B,Q,R);

2.2 Based on the template code dynamic_programming.m on our course webpage, try to complete the
implementation of dynamic programming for the OCP formulation in . Implement the backward
pass (recursion) to calculate the cost-to-go function Ji(z) going from k = N to k = 1. For k = N,
the cost-to-go is initialized to x\, P xx as defined by the LQR cost. Fill in the missing lines in the
template file for this task. As we will eventually perform a closed-loop receding horizon simulation,
we are mainly interested in the cost-to-go Jy(z) and the first control input to be applied ug(x) as
a function of the state x.

NOTE: to be able to implement dynamic programming, one needs to discretize the control uy €
U :=[-1,1] and state space xy € X := [—1, 1]. For this, we will use the same equidistant grid for
both state and control values:

1 x_values

= linspace(—1,1,101);
2 u.values =

1
linspace(—1,1,101);

Using the provided function project.m, one can then project a certain value onto the grid of
admissible values in the following way:

index_x
2 index_u

-

project (x-value, x_values);
project (u-value, u.values);



http://syscop.de/teaching/numerical-optimal-control/

2.3 Plot and interpret the cost-to-go function Jy(x) and the feedback map u(z) as a function of z.
In the same figure, plot also the function 2" Pz and the feedback map v = —K z for the LQR
controller and compare with the result from dynamic programming.

2.4 Perform a closed-loop simulation (similar to the previous exercise) by completing the template file
closed_loop.m. Compare and interpret the performance of dynamic programming with the LQR
controller. Are the results as you would expect?

2.5 Extra: What happens if we instead choose a grid of 100 equidistant points for the state and control
values? You can quickly try this out using the same MATLAB code.



