
TEMPO Summer School on Numerical Optimal Control and Embedded Optimization
University of Freiburg, July 27 - August 7, 2015

Exercise 2: Dynamic programming
Rien Quirynen Dimitris Kouzoupis Moritz Diehl

http://syscop.de/teaching/numerical-optimal-control/

Dynamic programming for a 1-state system Here we shall consider a simple OCP with one state
x and one control u:

minimize
x(·),u(·)

∫ T

0

(
x(t)2 + u(t)2

)
dt + P x(T )2

subject to ẋ = (1 + x)x + 2u, x(0) = −0.95,
−1 ≤ x(t) ≤ 1, −1 ≤ u(t) ≤ 1,

(1)

with horizon length T = 2. To be able to solve the problem using dynamic programming, we parameterize
the control trajectory into N = 20 piecewise constant intervals of size Ts := T/N = 0.1. On each interval,
we then take 1 step of the RK4 integrator in order to get a discrete-time OCP of the form:

minimize
x,u

N−1∑
k=0

(
x2
k + u2

k

)
+ P x2

N

subject to xk+1 = F (xk, uk), ∀k = 0, . . . , N − 1, x0 = −0.95,
−1 ≤ xk ≤ 1, −1 ≤ uk ≤ 1 ∀k.

(2)

2.1 Similar to previous exercise: Design an LQR controller for this 1-state system, to be used in
the terminal cost x>NP xN . For this, you will need to linearize the discretized nonlinear system
xk+1 = F (xk, uk) around the steady state point (x̄, ū) = (0, 0). Write a MATLAB function
ode(t,x,u) to evaluate the differential equation and use the provided RK4 integrator to simulate
the system. Important is that you will need both the optimal gain matrix K and the cost-to-go
matrix P :

1 [K,P] = dlqr(A,B,Q,R);

2.2 Based on the template code dynamic programming.m on our course webpage, try to complete the
implementation of dynamic programming for the OCP formulation in (2). Implement the backward
pass (recursion) to calculate the cost-to-go function Jk(x) going from k = N to k = 1. For k = N ,
the cost-to-go is initialized to x>NP xN as defined by the LQR cost. Fill in the missing lines in the
template file for this task. As we will eventually perform a closed-loop receding horizon simulation,
we are mainly interested in the cost-to-go J0(x) and the first control input to be applied u0(x) as
a function of the state x.
NOTE: to be able to implement dynamic programming, one needs to discretize the control uk ∈
U := [−1, 1] and state space xk ∈ X := [−1, 1]. For this, we will use the same equidistant grid for
both state and control values:

1 x values = linspace(−1,1,101);
2 u values = linspace(−1,1,101);

Using the provided function project.m, one can then project a certain value onto the grid of
admissible values in the following way:

1 index x = project(x value, x values);
2 index u = project(u value, u values);

1

http://syscop.de/teaching/numerical-optimal-control/


2.3 Plot and interpret the cost-to-go function J0(x) and the feedback map u(x) as a function of x.
In the same figure, plot also the function x>P x and the feedback map u = −K x for the LQR
controller and compare with the result from dynamic programming.

2.4 Perform a closed-loop simulation (similar to the previous exercise) by completing the template file
closed loop.m. Compare and interpret the performance of dynamic programming with the LQR
controller. Are the results as you would expect?

2.5 Extra: What happens if we instead choose a grid of 100 equidistant points for the state and control
values? You can quickly try this out using the same MATLAB code.

2


