
TEMPO Summer School on Numerical Optimal Control and Embedded Optimization
University of Freiburg, July 27 - August 7, 2015

Exercise 1: Nonlinear simulation and the
linear-quadratic regulator

Rien Quirynen Dimitris Kouzoupis Moritz Diehl

http://syscop.de/teaching/numerical-optimal-control/

Guiding example: inverted pendulum The guiding example that will be used multiple times
throughout this course is the classical system of a pendulum, mounted on top of a cart as illustrated in
the figure below. It forms an ideal tutorial example for optimal control since it is simple and intuitive
but it can also exhibit rather fast dynamics and nonlinear behavior. The position of the cart will
be denoted by p and the pendulum configuration described by the angle θ, using the convention that
θ = π rad corresponds to the pendulum hanging down. The system dynamics are described by the
following explicit ODE system

ṗ = v,

θ̇ = ω,

v̇ =
−ml sin(θ)ω2 +mg cos(θ) sin(θ) + F

M +m−m(cos(θ))2
,

ω̇ =
−ml cos(θ) sin(θ)ω2 + F cos(θ) + (M +m)g sin(θ)

l(M +m−m(cos(θ))2)
,

θ

M

m

l

F

in which the parameter values are chosen to be equal to M = 1 kg, m = 0.1 kg, g = 9.81 m/s2 and
l = 0.8 m.

Numerical simulation and sensitivities

1.1 Write a MATLAB function ode(t,x,u) to define the continuous time ODE model in the form
dx
dt = f(x, u) where the states are x := (p, θ, v, ω) and the control input u := F

1 function dx = ode(t,x,u)
2

3 end

As a simple test, you should call your function with the inputs ode(0,[1 2 3 4],-1) and check
whether the result corresponds to [3, 4,−2.3415, 12.3683].

1.2 Convert the system to the discrete time form x(k + 1) = fd(x(k), u(k)), by calling the provided
Runge-Kutta integrator of order 4:

1 input.Ts = 0.05;
2 input.nSteps = 2;
3 input.u = ...;
4 input.x = ...;
5 output = RK4 integrator(@ode, input);

For this, the template code run simulation.m is provided which performs a simulation comparison
of the RK4 integrator with results from the MATLAB ode45 routine. Plot the resulting state
trajectory and check the results.

1

http://syscop.de/teaching/numerical-optimal-control/

1.3 Linearize the discrete time RK4 system to make an approximate system of the form

x(k + 1) ≈ fd(x̄, ū) +
∂fd
∂x

(x̄, ū)︸ ︷︷ ︸
A

(x(k)− x̄) +
∂fd
∂u

(x̄, ū)︸ ︷︷ ︸
B

(u(k)− ū) (1)

using a first order Taylor expansion around the point x̄ = [0, 0, 0, 0]> and ū = 0. When calling the
provided function RK4 integrator, the simulated values fd(·) as well as the sensitivity information
∂fd(·)
∂x , ∂fd(·)

∂u are provided in the output struct:

1 >> output =
2

3 value: [4x1 double]
4 sensX: [4x4 double]
5 sensU: [4x1 double]

Compute the eigenvalues of A = output.sensX using the MATLAB routine eig. Is the system
stable? NOTE: one can set input.sens to the value 0 in case no sensitivities are needed.

Linear-quadratic regulator Our aim now is to design and simulate an infinite horizon linear-quadratic
state-feedback regulator for the linearized discrete time system in Eq. (1):

min
x0,...,u0,...

∞∑
k=0

x>k Qxk + u>k Ruk (2a)

s.t. x0 = x̄0, (2b)

xk+1 = Axk +B uk, k = 0, . . . ,∞. (2c)

1.4 Choose weighting matrices Q and R and compute the corresponding optimal gain matrix K, by
solving the discrete time algebraic Riccati equation. HINT: type help dlqr

1.5 Based on the template file closed loop.m, let us first apply the offline optimal control values
directly to the nonlinear pendulum system x(k + 1) = fd(x(k), u(k)). Depending on the initial
states x0 = [0, θ0, 0, 0]>, does the controller bring the system to steady state? HINT: the offline
LQR optimal control trajectory can be obtained as follows:

1 state lin = x0;
2 for k = 1:N
3 u LQR(k) = −K*state lin;
4 state lin = A*state lin + B*u LQR(k);
5 end

1.6 Using the same template file, validate the performance of your LQR controller by closing the loop
with the nonlinear simulation. This means that the optimal control input to be applied, will be
determined based on the state feedback result in state sim. Does the controller bring the system
to steady state this time? In addition, try out different initial states for the closed-loop simulation
and look for a reasonable tuning of the Q and R weighting matrices (simply based on a visual
inspection of the pendulum’s behavior in this case).

1.7 Extra: In case you have already installed the ACADO Toolkit (installation instructions on our
course event page), you can additionally export efficient C-code for the RK4 integrator to be used
in this and following exercises. Have a look at the template file ACADO SIMexport.m and try to
complete it with the nonlinear pendulum dynamics. Using the MATLAB routines tic/toc, how
fast is the exported ACADO integrator compared to our original RK4 integrator in MATLAB?

2

