
TEMPO Summer School on Numerical Optimal Control and Embedded Optimization
University of Freiburg, July 27 - August 7, 2015

Exercise 11: Multi-Parametric Toolbox

Michal Kvasnica Colin Jones

http://syscop.de/teaching/numerical-optimal-control/

Short introduction to MPT MPT (Multi-Parametric Toolbox) is a an open-source, Matlab-based
toolbox for parametric optimization, computational geometry and model predictive control. Further
information at

http://control.ee.ethz.ch/˜mpt

Parametric optimization A company produces two products at quantities x1 and x2 at profits of 1
EUR and 6 EUR respectively, while consuming resources r1 and r2 according to the parametric linear
program (pLP) of the form

max
x1,x2

x1 + 6x2 (1a)

s.t. 0 ≤ x1 ≤ 200, (1b)

0 ≤ x2 ≤ r1, (1c)

x1 + x2 ≤ r2, (1d)

0 ≤ r1 ≤ 500, (1e)

0 ≤ r2 ≤ 700. (1f)

We want to determine the optimal solution x⋆
1, x

⋆
2 as a function of the resources r1 and r2.

11.1 First solve the problem numerically for r1 = 300 and r2 = 400. You can formulate the linear
program in YALMIP and solve it using linprog. Note: don’t forget that YALMIP minimizes by
default. Therefore we have to negate the objective function.

11.2 Use the YALMIP’s solvemp command to solve the parametric linear program. Hint: the syntax is
sol = solvemp(con, obj, [], params, decs). Here, params is the vector of parametric vari-
ables (composed of r1 and r2 in our case) and decs is the vector of decision variables (x1 and x2).
Convert the YALMIP’s solution to the MPT format via the sol = mpt_mpsol2pu(sol) command.

11.3 Obtain the values of the optimizer x⋆
1, x

⋆
2 for r1 = 300, r2 = 400 by evaluating the parametric

solution. Compare the result to the numerical solution obtained in the first task. Now repeat
the procedure for r1 = 200, r2 = 300. Measure the evaluation time and compare it to how long
it takes to solve the problem numerically. Hint: to evaluate the parametric solution, use the
sol.feval([r1;r2], ’primal’) method.

11.4 Plot the critical regions of the parametric solution and the piecewise affine dependence of x⋆
1 on r1

and r2. Determine the range of parameters r1 and r2 for which x⋆
1 = 0 is the optimal solution (i.e.,

no production of the first product). How does the function x⋆
2(r1, r2) look like in that region?

11.5 Modify the upper limit in (1b) from x1 ≤ 200 to x1 ≤ r3 with r3 being a new free parameter
bounded by 0 ≤ r3 ≤ 300. Obtain the parametric solution with respect to the vector of parameters
[r1 r2 r3]

T . Plot the critical regions of the parametric solution and evaluate it for various values of
r1, r2 and r3.

1

http://syscop.de/teaching/numerical-optimal-control/
http://control.ee.ethz.ch/~mpt


Explicit Model Predictive Control In these tasks we revisit Exercise 7 and obtain the explicit
representation of the MPC feedback law for the following problem:

u⋆(x0) = arg min
u

N−1∑

k=0

(xT
kQxk + uT

kRuk) + xT
NPxN (2a)

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1, (2b)

umin ≤ uk ≤ umax, k = 0, . . . , N − 1, (2c)

xmin ≤ xk ≤ xmax, k = 0, . . . , N − 1, (2d)

with

A =

[
0.7115 −0.4345
0.4345 0.8853

]
, B =

[
0.2173
0.0573

]
,

umin = −5, umax = 5, xmin =

[
−2.8
0

]
, xmax =

[
10
10

]
,

N = 5, Q =

[
10 0
0 10

]
, R = 1, P = PLQR.

11.6 Formulate the MPC problem in the MPT framework using the provided template. Obtain the
explicit solution u⋆

0(x0) as a piecewise affine function of the initial condition x0.

11.7 Obtain the value of u⋆
0 for x0 = [0 6]T by evaluating the explicit solution. Measure the evaluation

time and compare it to how long it takes to solve this particular problem instance numerically.

11.8 Plot the critical regions of the explicit solution along with the function u⋆
0(x0). Why are some parts

of the state constraints (e.g. the point x0 = [8 5]T ) not covered by any critical region? Plot the
feasible set of the MPC controller.

11.9 Create a closed-loop system composed of the explicit MPC controller and the prediction model.
Simulate the evolution of the closed-loop system starting from x0 = [0 6]T for 20 steps. Plot the
closed-loop profiles of states and control inputs. Are state and input constraints respected? Is the
closed loop stable? Repeat the task for x0 = [6 3]T . Are you able to find an initial condition for
which the loop would not be stable? (Hint: use the clicksim method). Verify closed-loop stability
by calculating a Lyapunov function.

11.10 Now create a different closed-loop system where the MPC controller controls the system xk+1 =

Ãxk +Buk with

Ã =

[
0.6404 −0.4345
0.4345 0.8853

]
.

Simulate the evolution of the closed loop from x0 = [0 6]T . Is the loop still stable? What if we

change Ã1,1 from 0.6404 to 0.7471?

11.11 Instead of regulating towards the origin, we want the MPC controller to steer the system’s states
to xref = [0 2]T . To do so, modify the stage cost to (xk − xref)

TQ(xk − xref)
T + uT

kRuk. Verify the
performance of the controller in a closed-loop simulation starting from x0 = [4 2]T . Is the state
reference tracked without a steady-state offset? Can you explain why?

11.12 To reject the steady-state offset, calculate the target control input uref such that xref = Axref+Buref

holds, and change the stage cost to (xk − xref)
TQ(xk − xref)

T + (uk − uref)
TR(uk − uref). Verify

the performance in a closed-loop simulation. Why is the steady-state offset rejected?

2


