
TEMPO Summer School on Numerical Optimal Control and Embedded Optimization
University of Freiburg, July 27 - August 7, 2015

Exercise 10: ACADO code generation
for Nonlinear MPC

Rien Quirynen Dimitris Kouzoupis Moritz Diehl

http://syscop.de/teaching/numerical-optimal-control/

In case you did not do this yet, go through the ACADO installation instructions on our course webpage.

Swing-up of an inverted pendulum

10.1 The task is to make the pendulum perform a full swing-up starting from the stable position de-
scribed by p = 0 m and θ = π rad while the reference point is unstable and corresponds to 0 m,
0 rad. Let us assume that the control input as well as the position of the cart are both bounded,
respectively by −20 ≤ F ≤ 20 and −2 ≤ p ≤ 2. The OCP formulation is the following

minimize
x(·),u(·)

∫ T

0

∥∥∥∥[x(t)
u(t)

]
− y(t)

∥∥∥∥2
W

dt + ‖x(T)− y(T)‖2WN
(1a)

subject to x(0) = x̄0, (1b)

ẋ(t) = f(x(t), u(t)), ∀t ∈ [0, T], (1c)

− 2 ≤ p(t) ≤ 2, ∀t ∈ [0, T], (1d)

− 20 ≤ F (t) ≤ 20, ∀t ∈ [0, T], (1e)

where y(t) denotes the reference trajectory, the states are defined as x = [p, θ, ṗ, θ̇]> and the horizon
length T = 2s. The used NMPC sampling time is equal to Ts = 0.05s, to be able to deal with
the fast nonlinear dynamics in the system. A multiple shooting discretization will be used with
N = 40 intervals over the control horizon. Go through the template code from our course website
and make sure you understand each part of it. You will quickly realize that the following sections
in the code are missing:

(a) Define the explicit system of ODE equations, describing our system’s dynamics. For this, we
need to define an ode object like this:

ode = [dot(x) == f(x,u)];

where dot is an ACADO defined operator which returns the time derivative and f denotes
the expressions from the right-hand side of our model, as defined in Exercise 1.

(b) Define the stage cost and terminal cost as follows

ocp.minimizeLSQ(W, h);

ocp.minimizeLSQEndTerm(WN, hN);

where the residual functions h and hN and the weighting matrices W and WN are needed
to define the discrete objective

∑N−1
k=0 ‖hk − yk‖Wk

+ ‖hN − yN‖WN
. Note that the reference

trajectory y will be defined after code generation.

(c) Define the constraints in the OCP, using for example the syntax:

ocp.subjectTo(xmin <= x <= xmax);

which defines a simple box constraint for a state called x on each stage.

(d) Define the remaining parameters to perform a closed-loop NMPC simulation:

• the initial downward position of the pendulum X0 and the unstable upward position Xref,
which forms the reference point to be tracked.

• choose a suitable initial state (input.x, [(N + 1)× nx]) and control (input.u, [N × nu])
trajectory to be passed to the RTI solver. A good choice here can be important for the
convergence of our scheme as we are solving a nonlinear OCP problem.

1

http://syscop.de/teaching/numerical-optimal-control/

• we also need to define the reference trajectory, which remains constant in our case. You
can use the matlab function repmat to define:
input.y = [repmat(Xref,N,1) repmat(Uref,N,1)];

NOTE: the dimension of input.yN must correspond to the residual function hN in the
terminal cost, which is typically different from the stage cost since the last node defines
no corresponding control variables.
input.yN = Xref.’;

Do you manage to get a closed-loop NMPC simulation running? If yes, does the pendulum reach
the reference point and how would you describe the performance?

NOTE: the flag EXPORT at the beginning of the script should be set to zero if one does not want
to rerun the code generation and compilation process.

10.2 Tuning: the performance of the NMPC scheme will strongly depend on the various parameters
in the OCP formulation such as the number of shooting intervals and the length of the horizon,
the number of integration steps and the weighting matrices defining the stage cost. Try to look
for values, especially of the weighting matrices, resulting in a satisfactory behavior of the NMPC
controller. To avoid the need to go through the code generation and compilation process each
single time we change our formulation, one can define e.g. the weighting matrices as

W = acado.BMatrix(eye(length(h))); WN = acado.BMatrix(eye(length(hN)));

ocp.minimizeLSQ(W, h); ocp.minimizeLSQEndTerm(WN, hN);

after which they can be defined and passed to the generated solver as

input.W = diag([...]); input.WN = diag([...]);

The BMatrix keyword stands for Boolean Matrix and defines the sparsity of the weighting matrix.

10.3 RTI: remember that ACADO generates a custom RTI scheme to solve each OCP instance, without
iterating the SQP method each time until convergence. As a result, the sampling time of the NMPC
scheme needs to be small enough to let the solver converge over time and result in a stabilizing
controller. Also the choice for the initialization and shifting procedure is typically very important.
Let ACADO shift the optimization trajectories after each call to the solver by setting

input.shifting.strategy = 1;

which means that the last state will be reused at the end of the horizon. You can also use different
ways of initializing the state trajectory

input.x = repmat(X0,N+1,1); (initialize in the initial state)

input.x = repmat(Xref,N+1,1); (initialize in the reference)

Try to get an idea of how these choices affect the convergence of the scheme and therefore the
closed-loop control performance. TIP: in case you make the ACADO solver crash such that it spits
out NaNs, you can reinitialize all its memory as follows:

input.control = 1; output = acado_MPCstep(input); input.control = 0;

10.4 Stability: one often defines a terminal cost and/or a terminal constraint for stability reasons of the
NMPC scheme. A simple example would be to impose the last state in the horizon to be equal to
our reference point. You can specifically define constraints on the last stage as follows:

ocp.subjectTo(’AT_END’, ...);

10.5 Extra: Let us go back to the OCP formulation without any terminal constraint and compare the
control feedback map by varying the initial states in the direction of the cart position p and this for
both RTI and a fully converged scheme (e.g. by doing 30 iterations). For this extra task, you can
look at the template file RTI compare.m. Try to understand this code and interpret the resulting
plots when running the script. It is known that the solution manifold is smooth when the active
set does not change, but non-differentiable points occur whenever the active set changes. Do you
observe this also here? Note that each RTI step for all position values uses the same linearization
point, while the resulting manifold follows the exact solution quite well even when active set changes
do occur. The latter is known as an (approximate) generalized tangential predictor.

2

