Il Jalkal por

Joachim Ferreau, ABB Corporate Research (Switzerland), TEMPO Summer School 2015

Embedded Quadratic Programming Using qpOASES

Outline

- Quadratic Programming (QP)
- Model Predictive Control (MPC)
- QP Formulations and Algorithms
- The Online QP Solver qpOASES
- Embedded Applications of qpOASES
- Using qpOASES

Outline

- Quadratic Programming (QP)
- Model Predictive Control (MPC)
- QP Formulations and Algorithms
- The Online QP Solver qpOASES
- Embedded Applications of qpOASES
- Using qpOASES

Quadratic Programming Definition

• A **QP problem** is an optimization problem of the form:

$$\min_{z} \frac{1}{2}z'Hz + g'z$$

s.t. $Az \ge b$

- Hessian matrix $H \in S^n \stackrel{\text{\tiny def}}{=} \{ M \in \mathbb{R}^{n \times n} \mid M = M' \}$
- gradient vector $g \in \mathbb{R}^n$
- constraint matrix $A \in \mathbb{R}^{m \times n}$
- constraint vector $b \in \mathbb{R}^m$
- Note: many equivalent formulations exists

Quadratic Programming Feasibility and Boundedness

- A QP problem is called **feasible** iff its feasible set

 $\mathcal{F} \stackrel{\text{\tiny def}}{=} \{ z \in \mathbb{R}^n \mid Az \ge b \}$

is non-empty and infeasible otherwise.

A QP problem is called **bounded (from below)** iff there exists a α ∈ ℝ such that

$$\alpha \leq \frac{1}{2}z'Hz + g'z \ \forall z \in \mathcal{F}$$

and unbounded otherwise.

Quadratic Programming Convexity

> A QP problem is called **convex** iff its Hessian matrix is symmetric positive semi-definite, i.e.

> > $H \in \mathcal{S}^n_+ \stackrel{\text{\tiny def}}{=} \{ M \in \mathcal{S}^n \mid x' M x \ge 0 \; \forall x \in \mathbb{R}^n \}$

 It is called strictly convex iff its Hessian matrix is symmetric positive definite, i.e.

 $H \in \mathcal{S}_{++}^n \stackrel{\text{\tiny def}}{=} \{ M \in \mathcal{S}^n \mid x'Mx > 0 \; \forall x \in \mathbb{R}^n \setminus \{0\} \}$

- Every strictly convex QP is bounded from below.
- Every strictly convex and feasible QP has a (unique) solution!

Quadratic Programming Constraints

unconstrained QP

 $\min_{z} \frac{1}{2}z'Hz + g'z$

QP with simple constraints

$$\min_{z} \frac{1}{2}z'Hz + g'z$$

s.t. $\underline{z} \le z \le \overline{z}$

• QP with general constraints $\min_{z} \frac{1}{2}z'Hz + g'z$ s.t. $\underline{z} \le Az \le \overline{z}$

Quadratic Programming Active constraints

- Let a feasible QP problem be given. A constraint $A'_i z \ge b_i$ is called **active at** \hat{z} iff $A'_i \hat{z} = b_i$ holds and inactive otherwise.
- We define the (disjoint) index sets:

 $\mathbb{A}(\hat{z}) \stackrel{\text{\tiny def}}{=} \{ i \in \{1, \dots, m\} \mid A'_i \hat{z} = b_i \}$

$$\mathbb{I}(\hat{z}) \stackrel{\text{\tiny def}}{=} \{ i \in \{1, \dots, m\} \mid A'_i \hat{z} > b_i \}$$

• At any solution z^{opt} we call $\mathbb{A}(z^{opt})$ the **optimal active set**.

Quadratic Programming Duality

The dual QP can be written as:

$$\max_{z,y} -\frac{1}{2}z'Hz + b'y$$

s.t. $Hz + g = A'y$
 $y \ge 0$

• **Theorem:** *Dorn* (1960)

Let a convex QP and its dual QP^{dual} be given, then

- if z^{opt} if a solution to QP, then there exists a solution (z^{opt}, y^{opt}) to QP^{dual},
- if a solution (z^{opt}, y^{opt}) to QP^{dual} exists, then a solution z^* to QP satisfying $Hz^* = Hz^{opt}$ exists,
- In either case, the following holds:

$$\frac{1}{2}z^{opt'}Hz^{opt} + g'z^{opt} = -\frac{1}{2}z^{opt'}Hz^{opt} + b'y^{opt}$$

Quadratic Programming Optimality conditions

• **Theorem:** *Karush (1939), Kuhn/Tucker (1951)* Let a strictly convex *QP* be given, then there exists a unique z^{opt} , an index set $A \subseteq A(z^{opt})$ and a vector y^{opt} such that:

$$\begin{aligned} Hz^{opt} + g - A'_{\mathbb{A}} y^{opt} &= 0\\ A_{\mathbb{A}} z^{opt} &= b_{\mathbb{A}}\\ A_{\mathbb{I}} z^{opt} &\geq b_{\mathbb{I}}\\ y^{opt}_{\mathbb{A}} &\geq 0\\ y^{opt}_{\mathbb{I}} &= 0 \end{aligned}$$

- Moreover,
 - z^{opt} is the unique global minimizer of QP,
 - (z^{opt}, y^{opt}) is an optimal solution to QP^{dual} ,
 - the optimal objective values of QP and QP^{dual} are equal.

Outline

- Quadratic Programming (QP)
- Model Predictive Control (MPC)
- QP Formulations and Algorithms
- The Online QP Solver qpOASES
- Embedded Applications of qpOASES
- Using qpOASES

• Predict future behaviour based on dynamic model ...

• ... and solve an **optimal control problem**:

$$OCP(x_0): \min_{x(\cdot),u(\cdot)} \int_{t_0}^{t_0+t_p} J(x(t),u(t)) dt + P(x(t_0+t_p))$$

s.t. $x(t_0) = x_0(t_0)$
 $\dot{x}(t) = f(x(t),u(t)) \quad \forall t \in [t_0,t_0+t_p]$
 $0 \leq c(x(t),u(t)) \quad \forall t \in [t_0,t_0+t_p]$
 $0 \leq \tilde{c}(x(t_0+t_p))$

© ABB Group July 29, 2015 | Slide 14

• Apply first piece of optimized control input ...

• ... obtain feedback from real process ...

• ... and solve **updated** optimal control problem:

$$\begin{array}{rcl} OCP(x_0) &: & \min_{x(\cdot),u(\cdot)} \ \int_{t_1}^{t_1+t_p} J\big(x(t),u(t)\big) \, dt + P\left(x\big(t_1+t_p\big)\big) \\ & \text{ s.t. } x(t_1) = x_0(t_1) \\ & \dot{x}(t) = f\big(x(t),u(t)\big) \ \forall \, t \in [t_1,t_1+t_p] \\ & 0 &\leq c\big(x(t),u(t)\big) \ \forall \, t \in [t_1,t_1+t_p] \\ & 0 &\leq \tilde{c}\left(x\big(t_1+t_p\big)\right) \end{array}$$

© ABB Group July 29, 2015 | Slide 17

© ABB Group July 29, 2015 | Slide 18

Model Predictive Control Why solving QP problems?

• Linear (possibly time-varying) MPC leads to QP problems:

$$QP(\mathbf{x}_{0}): \min_{X,U} x_{k_{0}+N}^{T} P x_{k_{0}+N} + \sum_{k_{0}}^{k_{0}+N-1} x_{k}^{T} Q_{k} x_{k} + u_{k}^{T} R_{k} u_{k}$$

$$s.t. \quad x_{k_{0}} = \mathbf{x}_{0}$$

$$x_{k+1} = A_{k} x_{k} + B_{k} u_{k} + c_{k} \quad \forall \ k \in \{k_{0}, \dots, k_{0}+N-1\}$$

$$d_{k} \leq C_{k} x_{k} + D_{k} u_{k} \qquad \forall \ k \in \{k_{0}, \dots, k_{0}+N-1\}$$

$$d_{k_{0}+N} \leq C_{k_{0}+N} x_{k_{0}+N}$$

- Linearizing a nonlinear MPC problem (as done in SQP-type methods) leads to similar (convex) QP problems
- QP solvers are at the core of most MPC implementations!

Model Predictive Control leads to specially structured QP problems

$$QP(\mathbf{x}_{0}): \min_{X,U} x_{k_{0}+N}^{T} P x_{k_{0}+N} + \sum_{k_{0}}^{k_{0}+N-1} x_{k}^{T} Q_{k} x_{k} + u_{k}^{T} R_{k} u_{k}$$

s.t. $x_{k_{0}} = \mathbf{x}_{0}$
 $x_{k+1} = A_{k} x_{k} + B_{k} u_{k} + c_{k} \quad \forall \ k \in \{k_{0}, \dots, k_{0}+N-1\}$
 $d_{k} \leq C_{k} x_{k} + D_{k} u_{k} \quad \forall \ k \in \{k_{0}, \dots, k_{0}+N-1\}$
 $d_{k_{0}+N} \leq C_{k_{0}+N} x_{k_{0}+N}$

Sparsity

- variables are very loosely coupled
- effect becomes the more pronounced the longer the horizon is

Parametric Dependency

- QP problems have strong similarity
- re-use of previous solution helps finding current one

Outline

- Quadratic Programming (QP)
- Model Predictive Control (MPC)
- QP Formulations and Algorithms
- The Online QP Solver qpOASES
- Embedded Applications of qpOASES
- Using qpOASES

QP Formulations Sparsity pattern

• An MPC-QP can be written as (with $Z = (x_{k_0}, u_{k_0}, x_{k_0+1}, u_{k_0+1}, ..., x_{k_0+N})$):

$$QP(\mathbf{x}_{0}): \min_{Z} Z' \begin{pmatrix} Q_{k_{0}} & & & \\ & R_{k_{0}} & & \\ & & Q_{k_{0}+N-1} & \\ & & & P \end{pmatrix} Z$$

$$s.t. \begin{pmatrix} Id & & & \\ A_{k_{0}} & B_{k_{0}} & -Id & & \\ & & A_{k_{0}+1} & B_{k_{0}+1} & -Id & \\ & & \ddots & \\ & & & A_{k_{0}+N-1} & B_{k_{0}+N-1} & -Id \end{pmatrix} Z = \begin{pmatrix} x_{0} & & \\ -C_{k_{0}} & & \\ -C_{k_{0}+1} & & \\ \vdots & & \\ -C_{k_{0}+N-1} & & \\ \vdots & & \\ & & & C_{k_{0}+N-1} & D_{k_{0}+N-1} \\ & & & & \\ & & & C_{k_{0}+N-1} & D_{k_{0}+N-1} \\ & & & & \\ & & & \\ & & & & \\ & &$$

© ABB Group

Month DD, Year | Slide 22

QP Formulations Sparsity pattern

• This can be re-written as (with $Z = (x_{k_0}, u_{k_0}, x_{k_0+1}, u_{k_0+1}, \dots, x_{k_0+N})$):

© ABB Group

Month DD, Year | Slide 23

QP Formulations Exploiting sparsity (using sparse solver)

Dimension: $((n_x + n_u)(N - 1) + n_x)^2$ #Nonzeros: $((n_x^2 + n_u^2)N + n_x^2)$

Dimension:
$$((n_x + n_u)(N - 1) + n_x) \cdot n_x N$$

#Nonzeros: $((n_x^2 + n_x n_u)(N - 1) + n_x N)$

Dimension:
$$((n_x + n_u)(N - 1) + n_x)^2$$

#Nonzeros: $((n_x + n_u)(N - 1) + n_x)$

Assumptions: 1) Q, R, P, A, B dense, 2) input/state bounds

 All states are uniquely determined by x₀ and U, thus they can be easily eliminated from the QP (condensing): Bock, Plitt (1984)

$$QP(\mathbf{x}_{0}): \min_{Z} Z' \begin{pmatrix} Q_{k_{0}} & & & \\ & R_{k_{0}} & & \\ & Q_{k_{0}+N-1} & & \\ & & P \end{pmatrix} Z$$

$$s.t. \begin{pmatrix} Id & & & \\ A_{k_{0}} & B_{k_{0}} & -Id & & \\ & A_{k_{0}+1} & B_{k_{0}+1} & -Id & & \\ & \ddots & & \\ & & A_{k_{0}+N-1} & B_{k_{0}+N-1} & -Id \end{pmatrix} Z = \begin{pmatrix} x_{0} & & \\ -C_{k_{0}} & & \\ -C_{k_{0}+1} & & \\ \vdots & & \\ -C_{k_{0}+N-1} & & \\ \vdots & & \\ & & C_{k_{0}+N-1} & D_{k_{0}+N-1} & \\ & & & C_{k_{0}+N-1} & & \\ & & & C_{k_{0}+N-1} & D_{k_{0}+N-1} & \\ & & & & \\ & & & & C_{k_{0}+N-1} & D_{k_{0}+N-1} & \\ & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

All states are uniquely determined by w₀ and U, thus they can be easily eliminated from the QP (condensing):

© ABB Group

Month DD, Year | Slide 26

All states are uniquely determined by w₀ and U, thus they can be easily eliminated from the QP (condensing):

$$QP(\mathbf{x}_{0}): \min_{U} U' E' HEU + 2 \cdot U' E' Hf(\mathbf{x}_{0})$$

$$R_{k_{0}+N-1} P$$

$$s.t. \begin{pmatrix} Id \\ A_{k_{0}} & B_{k_{0}} & -Id \\ & A_{k_{0}+1} & B_{k_{0}+1} & -Id \\ & \ddots & \\ & & A_{k_{0}+N-1} & B_{k_{0}+N-1} & -Id \end{pmatrix} Z = \begin{pmatrix} x_{0} \\ -C_{k_{0}} \\ -C_{k_{0}+1} \\ \vdots \\ -C_{k_{0}+N-1} \end{pmatrix}$$

$$\begin{pmatrix} C_{k_{0}} & D_{k_{0}} \\ & C_{k_{0}+1} & D_{k_{0}+1} \\ & & A_{ieq}EU \geq b_{ieq} \\ & C_{k_{0}+N-1} & C_{k_{0}+N} \end{pmatrix} A_{ieq} \begin{pmatrix} d_{k_{0}} \\ d_{k_{0}+N-1} \\ d_{k_{0}+N-1} \\ d_{k_{0}+N} \end{pmatrix}$$

All states are uniquely determined by w₀ and U, thus they can be easily eliminated from the QP (condensing):

$$QP(\mathbf{x}_{0}): \min_{U} U \begin{pmatrix} Q_{k_{0}} & R_{k_{0}} \\ H^{C}U + U'_{Q_{k_{0}+N-1}} & P \end{pmatrix} Z$$

$$s.t. \begin{pmatrix} Id & & & & \\ A_{k_{0}} & B_{k_{0}} & -Id & & \\ & A_{k_{0}+1} & B_{k_{0}+1} & -Id & \\ & \ddots & & \\ & & & A_{k_{0}+N-1} & B_{k_{0}+N-1} & -Id \end{pmatrix} Z = \begin{pmatrix} x_{0} & & \\ -C_{k_{0}} & -C_{k_{0}+1} \\ \vdots & & \\ -C_{k_{0}+N-1} \end{pmatrix} Z$$

$$\begin{pmatrix} C_{k_{0}} & D_{k_{0}} & & \\ & C_{k_{0}+1} & D_{k_{0}+1} & \\ & \ddots & & A^{C}U \ge b^{C}(x_{0}) \\ & & C_{k_{0}+N} \end{pmatrix} Z \ge \begin{pmatrix} d_{k_{0}} & & \\ d_{k_{0}+1} & \vdots & \\ d_{k_{0}+N-1} & d_{k_{0}+N} \end{pmatrix} Z$$

- Solving the MPC-QP problem:
 - 1. Eliminate states from QP (also called «condensing»)
 - 2. Solve smaller-scale QP with a dense QP solver
- Linear MPC: states can be eliminated offline!

ABB

© ABB Group

QP Formulations Number of nonzeros (sparse vs. dense QP)

• QP size for a MPC problem with 5 states, 2 inputs:

Ν	2	5	10	20	50
#Elements	$4.1 \cdot 10^2$	$3.0 \cdot 10^{3}$	$1.3 \cdot 10^{4}$	$5.2 \cdot 10^4$	$3.3 \cdot 10^{5}$
#Nonzeros (sparse QP)	$1.4 \cdot 10^2$	$3.7 \cdot 10^2$	$7.5 \cdot 10^2$	$1.5 \cdot 10^{3}$	$3.8 \cdot 10^3$
#Nonzeros (dense QP)	2.6 · 10 ¹	$2.0 \cdot 10^2$	$8.5 \cdot 10^2$	$3.5 \cdot 10^{3}$	$2.2 \cdot 10^4$

• QP size for a MPC problem with **30 states**, **5 inputs**:

Ν	2	5	10	20	50
#Elements	$1.2 \cdot 10^{4}$	$8.3 \cdot 10^{4}$	$3.4 \cdot 10^{5}$	$1.4 \cdot 10^{6}$	$8.7 \cdot 10^{6}$
#Nonzeros (sparse QP)	$3.9 \cdot 10^{3}$	$1.0 \cdot 10^{4}$	$2.0 \cdot 10^4$	$4.1 \cdot 10^4$	1.0 · 10 ⁵
#Nonzeros (dense QP)	$2.5 \cdot 10^2$	$2.1 \cdot 10^3$	$9.3 \cdot 10^3$	$3.9 \cdot 10^4$	$2.5 \cdot 10^{5}$

© ABB Group

QP Formulations Number of nonzeros (sparse vs. dense QP)

• QP size for a MPC problem with 5 states, 2 inputs:

• QP size for a MPC problem with 30 states, 5 inputs:

Ν	² n	5 10	20	50
	$1.2 \cdot 10^4$ X.3	2 3. N 05		
	3.9 · 1 n 1.0	$\cdot 10^4 2.0 \cdot 10^4$	$4.1 \cdot 10^{4}$	$1.0 \cdot 10^{5}$
	$2.5 \cdot 10^2$ 2.1			

© ABB Group

QP Formulations An example

- Nonlinear MPC example (spring-masses toy application)
- Red: Time for solving sparse QP using an auto-generated IP method (FORCES)
- Blue: Time for state-elimination and solving condensed QP using an efficient AS method (qpOASES)

Scenario 1: 9 states, 3 inputs

- Remarks:
 - worst-case execution times
 - severe disturbance, thus no QP warm-starting used

QP Algorithms Why is there a whole zoo of them?

Fast gradient	gradient method, primal FGM, dual FGM, GPAD, FiOrdOs
Active set	quadprog (primal), QLD (dual), qpOASES (parametric)
Interior point	primal barrier, CVXGEN (primal-dual), FORCES (primal-dual), HPMPC
Others	qpDUNES (Newton-type), PQP, splitting methods (e.g. ADMM), MPT (explicit methods)

- Tailored to different problem classes
- Different numerical properties
- Amount of sorce code
- Suitability for parallelization
- Suitability for FPGA implementations

QP Algorithms A limited and rough overview

- Fast gradient methods:

- compute step towards solution of unconstrained QP
- project to feasible set (difficult for general constraints)

Active-set methods:

- guess which inequalities hold with equality at solution
- solve resulting equality-constrained QP (almost trivial)
- check if guess was correct, update guess if not

Interior-point methods:

- remove inequalities, but penalize constraint violations in objective function (non-quadratic term, e.g. logarithmic)
- solve resulting equality-constrained NLP with Newton's method

Explicit methods and others

QP Algorithms Some Pros and Cons

- Fast gradient methods: (e.g. FiOrdOs)
 - plenty of cheap iterations, variants for both dense/sparse QPs
 - **Pros:** simple to code (no matrix inversion), easy to parallelize
 - Cons: sensitive to problem formulation, limited warm-starting
- Active set methods: (e.g. quadprog, qpOASES)
 - many cheap iterations, most efficient for dense QPs
 - **Pros:** efficient warm-starting, can be made very reliable
 - Cons: difficult to parallelize, only heuristic runtime bound
- Interior point methods: (e.g. IPOPT, OOQP, FORCES)
 - few expensive iterations, most efficient for sparse QPs
 - **Pros:** runtime guarantee, quite easy to parallelize
 - Cons: limited warm-starting

Outline

- Quadratic Programming (QP)
- Model Predictive Control (MPC)
- QP Formulations and Algorithms
- The Online QP Solver qpOASES
- Embedded Applications of qpOASES
- Using qpOASES

Parametric Quadratic Programming Definition

 A parametric QP problem is an optimization problem of the form:

$$QP(x_0): \min_{z} \frac{1}{2}z'Hz + g(x_0)'z$$

s.t. $Az \ge b(x_0)$

- gradient vector $g(x_0) = f + Fx_0$
- constraint vector $b(x_0) = e + Ex_0$
- parameter $x_0 \in \mathbb{R}^p$
- For a fixed x_0 , one yields a standard QP problem

Parametric Quadratic Programming Set of feasible parameters

• Recall the definition of the **feasible set** for $QP(x_0)$, x_0 given:

$$\mathcal{F}(x_0) \stackrel{\text{\tiny def}}{=} \{ z \in \mathbb{R}^n \mid Az \ge b(x_0) \}$$

• We define the set of feasible parameters as follows:

 $\mathcal{P} \stackrel{\text{\tiny def}}{=} \{ x_0 \in \mathbb{R}^p \mid \mathcal{F}(x_0) \neq \emptyset \}$

Theorem: Berkelaar, Roos, Terkaly (1997)
 The set *P* of feasible parameters is convex and closed.

Parametric Quadratic Programming Critical regions

- Let a strictly convex QP(x₀) be given. For each x₀ ∈ P let z^{opt}(x₀) denote the optimal solution with corresponding optimal active set A(z^{opt}(x₀)).
- Then, for every index set $\mathbb{A} \subseteq \{1, \dots, m\}$, the set

$$\mathcal{CR}_{\mathbb{A}} \stackrel{\text{\tiny def}}{=} \left\{ x_0 \in \mathcal{P} \mid \mathbb{A}\left(z^{opt}(x_0)\right) = \mathbb{A} \right\}$$

is called a critical region of \mathcal{P} .

 A critical region contains all parameters x₀ that lead to solutions of QP(x₀) with a certain optimal active set

Parametric Quadratic Programming Critical regions (cont.)

- **Theorem:** Bemporad, Morari, Dua, Pistikopoulos (2002) For a strictly convex $QP(x_0)$ the following holds:
 - all closures of critical regions are closed polyhedra with pairwise disjoint interiors;
 - the set of feasible parameters *P* can be subdivided into a finite number of closures of critical regions;
 - the optimal solution z^{opt}: P → ℝⁿ is a piecewise affine, continuous function. *Fiacco* (1983), *Zafiriou* (1990)
- Note: explicit MPC pre-computes
 this partition offline!

Online Active Set Strategy Main idea Ferreau et al. (2008), Best (1996)

 Let's assume we have solved the last QP(x₀), with optimal solution z^{opt}(x₀):

- $\min_{z} \frac{1}{2}z'Hz + g(x_0)'z$ s.t. $Az \ge b(x_0)$
- Now we want to solve the next one, $QP(x_0^{new})$: $s.t. Az \ge b(x_0^{new})$
- To this aim, we introduce the following homotopies:

$$\widetilde{x_0}: [0,1] \to \mathbb{R}^q, \qquad \widetilde{x_0}(\tau) \stackrel{\text{def}}{=} x_0 + \tau(x_0^{new} - x_0)$$
$$\widetilde{g}: [0,1] \to \mathbb{R}^n, \qquad \widetilde{g}(\tau) \stackrel{\text{def}}{=} g(x_0) + \tau(g(x_0^{new}) - g(x_0))$$
$$\widetilde{b}: [0,1] \to \mathbb{R}^m, \qquad \widetilde{b}(\tau) \stackrel{\text{def}}{=} b(x_0) + \tau(b(x_0^{new}) - b(x_0))$$

Online Active Set Strategy Main idea

- Let's assume we have solved the last $QP(x_0)$, with optimal solution $z^{opt}(x_0)$ and want to solve the next one, $QP(x_0^{new})$:
- To this aim, we introduce the following homotopies:

$$\begin{split} \widetilde{x_0}: & [0,1] \to \mathbb{R}^q, \qquad \widetilde{x_0}(\tau) \stackrel{\text{def}}{=} x_0 + \tau(x_0^{new} - x_0) \\ \widetilde{g}: & [0,1] \to \mathbb{R}^n, \qquad \widetilde{g}(\tau) \stackrel{\text{def}}{=} g(x_0) + \tau(g(x_0^{new}) - g(x_0)) \\ \widetilde{b}: & [0,1] \to \mathbb{R}^m, \qquad \widetilde{b}(\tau) \stackrel{\text{def}}{=} b(x_0) + \tau(b(x_0^{new}) - b(x_0)) \end{split}$$

And re-parametrize the parametric QP:

$$QP(\tau): \min_{z} \frac{1}{2}z'Hz + \tilde{g}(\tau)'z$$

s.t. $Az \ge \tilde{b}(\tau)$

Online Active Set Strategy Main idea (cont.)

 We aim at satisfying the KKT optimality conditions at each point along the homotopy path:

$$\begin{pmatrix} H & A'_{\widetilde{\mathbb{A}}(\tau)} \\ A_{\widetilde{\mathbb{A}}(\tau)} & 0 \end{pmatrix} \begin{pmatrix} \tilde{z}^{opt}(\tau) \\ -\tilde{y}^{opt}_{\widetilde{\mathbb{A}}(\tau)}(\tau) \end{pmatrix} = \begin{pmatrix} -\tilde{g}(\tau) \\ \tilde{b}_{\widetilde{\mathbb{A}}(\tau)}(\tau) \end{pmatrix}$$
$$A_{\widetilde{\mathbb{I}}(\tau)} \tilde{z}^{opt}(\tau) \ge \tilde{b}_{\widetilde{\mathbb{I}}(\tau)}(\tau)$$
$$\tilde{y}^{opt}_{\widetilde{\mathbb{A}}(\tau)}(\tau) \ge 0$$
$$\tilde{y}^{opt}_{\widetilde{\mathbb{I}}(\tau)}(\tau) = 0$$

• Since $\tilde{z}^{opt}(\tau)$ is continuous and piecewise affine, we search for **primal-dual step directions** (valid for $\tau \in [0, \tau_{max}]$):

$$\tilde{z}^{opt}(\tau) \stackrel{\text{\tiny def}}{=} z^{opt} + \tau \cdot \Delta z^{opt}, \qquad \tilde{y}^{opt}_{\mathbb{A}}(\tau) \stackrel{\text{\tiny def}}{=} y^{opt}_{\mathbb{A}} + \tau \cdot \Delta y^{opt}_{\mathbb{A}}$$

Online Active Set Strategy Main idea (cont.)

- This leads to the «local» KKT optimality conditions:

$$\begin{pmatrix} H & A'_{\mathbb{A}} \\ A_{\mathbb{A}} & 0 \end{pmatrix} \begin{pmatrix} \Delta z^{opt} \\ -\Delta y^{opt}_{\mathbb{A}} \end{pmatrix} = \begin{pmatrix} -g(x^{new}_0) + g(x_0) \\ b_{\mathbb{A}}(x^{new}_0) - b_{\mathbb{A}}(x_0) \end{pmatrix}$$

$$A_{\mathbb{I}}(z^{opt} + \tau \cdot \Delta z^{opt}) \ge b_{\mathbb{I}}(x^{new}_0) - b_{\mathbb{I}}(x_0)$$

$$y^{opt}_{\mathbb{A}} + \tau \cdot \Delta y^{opt}_{\mathbb{A}} \ge 0$$

$$y^{opt}_{\mathbb{I}} + \tau \cdot \Delta y^{opt}_{\mathbb{I}} = 0$$

- Solving the linear system yields the primal-dual step direction
- We follow this direction (i.e. move along the homotopy path) until any of KKT inequality conditions becomes violated

Online Active Set Strategy Main idea (cont.)

• The step length τ_{max} is computed as follows:

$$\tau_{max}^{prim} \stackrel{\text{def}}{=} \min_{i \in \mathbb{I}} \left\{ \frac{b_i(x_0) - A'_i z^{opt}}{A'_i \Delta z^{opt} - \Delta b_i} \mid A'_i \Delta z^{opt} < \Delta b_i \right\}$$
$$\tau_{max}^{dual} \stackrel{\text{def}}{=} \min_{i \in \mathbb{A}} \left\{ -\frac{y_i^{opt}}{\Delta y_i} \mid \Delta y_i < 0 \right\}$$

$$\tau_{max} \stackrel{\text{\tiny def}}{=} \min\{1, \tau_{max}^{prim}, \tau_{max}^{dual}\} \in [0, 1]$$

- If $\tau_{max} = 1$, the optimal solution of $QP(x_0^{new})$ has been found!
- Otherwise, at $\tau = \tau_{max}$ a constraint is added or removed from the working set and a new primal-dual step direction is computed

Online Active Set Strategy Advantages and Limitations

- Advantages:
 - Often fewer number of iterations by exploiting parametric nature of MPC problem
 - Hot-starts with full solution information of previous QP (including re-use of matrix factorizations)
 - **Real-time variant** if procedure has to stop prematurely
 - Homotopy helps to make implementation numerically robust

- Limitations:
 - Rather complex code (e.g. matrix factorizations/updates)
 - Difficult to parallelize

Online Active Set Strategy Initialization and Degeneracy handling

- Homotopy is started from a QP problem $\min_{z} \frac{1}{2}z'Hz + \mathbf{0}'z$ with known solution, e.g. $s.t. Az > -\mathbf{1}$
- During all iterations, A_A has to keep full row rank, i.e. constraints in working set must be linearly independent
- This can be easily done by solving an auxiliary linear system
- Infeasible QP problems are easily detected while moving along the homotopy path (recall that *P* is convex!)
- Homotopy is stopped until the next feasible QP appears

qpOASES

An implementation of the Online Active SEt Strategy

- qpOASES solves QP problems of the following form:
- $\min_{z} \frac{1}{2} z' H z + g(x_0)' z$ s.t. $\underline{b}(x_0) \le z \le \overline{b}(x_0)$ $\underline{c}(x_0) \le A z \le \overline{c}(x_0)$
- C/C++ implementation with dense linear algebra Ferreau, Kirches, Potschka, Bock, Diehl (2014)
- Reliable and efficient code for solving small- to medium-scale QPs (states eliminated from MPC problem)
- Self-contained code (optionally, LAPACK/BLAS can be linked)
- Distributed as open-source software (GNU LGPL), download at: https://projects.coin-or.org/qpOASES

qpOASES is reliable and efficient

Robust against bad conditioning of Hessian matrix:

- Overall computational performance on 14 MPC benchmark examples: *Kouzoupis et al. (2015)* more efficient
 - > 2500 QP instances
 - 2-12 states
 - 1-4 control inputs
 - 3-100 intervals
 - different constraints

qpOASES Further algorithmic features

- Handles semi-definite (even indefinite) Hessian matrices
- Structure exploitation for various QP variants, e.g.
 - box constraints
 - varying matrices
 - limited sparsity support
- Reliable detection of infeasible QP problems
- Start from arbitrary initial guesses (without Phase I)
- Choose between **double and single precision arithmetic**

qpOASES Offers various interfaces to third-party software

Matlab / Octave / Scilab

[x,fval,exitflag,iter,lambda] = qpOASES(H,g,A,lb,ub,lbA,ubA)

- Simulink
 - dSPACE
 - xPC Target

Python

YALMIP / ACADO Toolkit / MUSCOD-II / CasADi

Outline

- Quadratic Programming (QP)
- Model Predictive Control (MPC)
- QP Formulations and Algorithms
- The Online QP Solver qpOASES
- Embedded Applications of qpOASES
- Using qpOASES

Using qpOASES as algorithmic building block

- ACADO Code Generation Tool uses qpOASES within an
 SQP-type algorithm for nonlinear MPC Houska et al. (2011)
- If MPC horizon becomes long, **block condensing** may be applied to adjust the sparsity level of the QP problem *Axehill (2015)*
- Recently proposed dual Newton strategy shows promising performance combining block condensing and qpOASES *Kouzoupis et al. (2015a), Frasch et al. (2014)*
- Optimum experimental design problems often lead to nonconvex NLPs with block-diagonal Hessian matrix
- A filter line-search SQP method using SR1/BFGS updates
 based on qpOASES has been proposed Janka et al. (2015)

Using qpOASES for Real-World Applications

© ABB Group July 29, 2015 | Slide 67

Using qpOASES to Control a 48 Megawatt Drive!

- Load commutated inverters (LCIs) play an important role in powering electrically-driven compressor stations
- MPC can help LCIs to ride through partial loss of grid voltage
- qpOASES solves a small-scale
 QP problem every millisecond
 on embedded hardware
- Successfully tested on a 48 MW pilot plant installation

Besselmann et al. (to appear)

Outline

- Quadratic Programming (QP)
- Model Predictive Control (MPC)
- QP Formulations and Algorithms
- The Online QP Solver qpOASES
- Embedded Applications of qpOASES
- Using qpOASES

Using qpOASES for your own project

- Matlab interface offers basically the complete functionality of the C++ core
- qpOASES can be called either in offline mode or online mode
- Offline mode: initialize each QP problem from scratch

```
[x,fval,exitflag,iter,lambda,auxOutput] = ...
qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput );
```

- Online mode: use hotstarts to speed-up solution


```
Using qpOASES for your own project (cont.)
```

- If no options are passed, default options are used that are typically slower but more reliable
- Enable MPC options by calling

```
myOptions = qpOASES_options( 'mpc');
```

 Options can also be used to specify maximum number of iterations (or CPU time limit)

Type

help qpOASES help qpOASES_sequence help qpOASES_options help qpOASES_auxInput

for more information

Summary

- qpOASES is a reliable, self-contained, open-source
 QP solver, also for embedded optimization
- Efficient due to plenty of structure-exploiting features
- Successfully used in numerous real-world applications

https://projects.coin-or.org/qpOASES

(thanks to Christian Kirches, Andreas Potschka, Alexander Buchner, Manuel Kudruss, Sebastian Walter and all the other contributors)

Power and productivity for a better world[™]

