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Quadratic Programming
Definition

- A QP problem is an optimization problem of the form:

1

- !/ /
min 5z Hz+ gz

Z

s.t. Az>b

« Hessianmatrix HeS"E {M e R™"|M =M'}
- gradient vector g € R"
= constraint matrix A € R™*"

= constraint vector b € R™

Note: many equivalent formulations exists
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Quadratic Programming
Feasibility and Boundedness

- A QP problem is called feasible iff its feasible set
FE{zeR"|Az= b}

is non-empty and infeasible otherwise.

- A QP problem is called bounded (from below) iff there
exists a a € R such that

1.7 !/
a<>zHz+gzVzeF

and unbounded otherwise.
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Quadratic Programming
Convexity

- A QP problem is called convex iff its Hessian matrix is
symmetric positive semi-definite, i.e.

HeSlP Y {MesS"|x'Mx>0Vx eR"}
= It is called strictly convex iff its Hessian matrix is
symmetric positive definite, i.e.

HeSl, “{MesS"|x'Mx >0Vx € R"\{0}}

- Every strictly convex QP is bounded from below.

- Every strictly convex and feasible QP has a (unique)
solution!
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Quadratic Programming
Constraints

- unconstrained QP

1

- ! !
min 3z Hz+ gz

zZ

- QP with simple constraints

min %
VA

ZHz+ g'z

s.t. z<z<z

- QP with general constraints

1

. !/ !/
mzlnzsz+gz

s.t. z<Az<z
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Quadratic Programming
Active constraints
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- Let a feasible QP problem be given. A constraint Az > b; is

called active at Z iff A;Z2 = b; holds and inactive otherwise.

= We define the (disjoint) index sets:

AR = {iefl,..,m}|A2=b;)}

1(2) = {i € {1,..,m} | Aiz > b; }

- At any solution z°Pt we call A(z°P!) the optimal active set.



Quadratic Programming
Duality

- The dual QP can be written as: max 2z Hz+b'y

s.t. Hz+g=A"y
y=0

= Theorem: Dorn (1960)
Let a convex QP and its dual QP4 be given, then

- if z°Pt if a solution to QP, then there exists a solution
(Zopt’yopt) to Q'Ddual,

- if a solution (z°Pt,y°Pt) to QPal exists, then a
solution z* to QP satisfying Hz* = Hz°Pt exists,

= in either case, the following holds:
1 t’ t t — 1 tr t / t
5z°PP HzP" + g'z%P" = - zOPY"HzOP" + b'y°P
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Quadratic Programming
Optimality conditions

« Theorem: Karush (1939), Kuhn/Tucker (1951)
Let a strictly convex QP be given, then there exists a unique
z°Pt an index set A € A(z°P!) and a vector y°Pt such that:
HzO%t 4+ g — AQy°Pt = 0
Apz%Pt = by
Apz°Pt > by
Yol

opt
VI

v I

0
0
- Moreover,

- z°Pt is the unique global minimizer of QP,
- (z°Pt yoPt) is an optimal solution to QPve!

- the optimal objective values of QP and QP94 are equal.
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Model Predictive Control
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Model Predictive Control

to tgttp t

- Predict future behaviour based on dynamic model ...
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Model Predictive Control

to*tp

ty

= ... and solve an optimal control problem:

to+tp
OCP(x,): x{.ﬁliur%.) j J(x(©),u(t))dt + P (x(to + tp))
, t
s.t. x(ty) = xo(ty)
() = f(x(©,u®) Yte|tyto+ty]
0 < c(x(®),u(®)) Vte [t ty+ty]
0 5 clxltors) AR
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Model Predictive Control

to*tp

- Apply first piece of optimized control input ...
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Model Predictive Control

tg* tp

= ... obtain feedback from real process ...
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Model Predictive Control

~

UIﬂL

ty t

= ... and solve updated optimal control problem:

[

t1+tp
OCP(x,): x{.ﬁliur%.) j J(x(©),u(t))dt + P (x(t1 + tp))
, )
S.t. x(tl) = XO(tl)
x(t) = f(x(®),u®) Ve t,t +t,)
0 < c(x(0),u(®) Vte|ty,t;+1,]
0 <¢ (x(t1 + tp)) "“====
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Model Predictive Control

repeat
online

optimal con

lem:

... and solve u

OCP(x¢): x(rr)lhr%) dt + P (x(t1 + tp))
s.t. x(t;) = xo(ty)
x(t) = f(x@®),u(®) Vte|ty,t +t,]

0 < c(x(®),u®) Vte|t,t+1ty]
0 <¢ (X(t1 + tp)) A D
M
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Model Predictive Control
Why solving QP problems?

- Linear (possibly time-varying) MPC leads to QP problems:

ko+N—1

Cmi T T T
QP (xo): Min Xy, 4N PXio+n + z X' QrXp + U Rpuy
) kO

S.t. xko = Xp
Xk+1 = Akxk + Bkuk + Ck Vke {ko, ...,ko + N — 1}
dk < Ckxk + Dkuk Vke {ko, ...,ko + N — 1}

Akg+N < CrotN Xk +N

= Linearizing a nonlinear MPC problem (as done in SQP-type
methods) leads to similar (convex) QP problems

- QP solvers are at the core of most MPC implementations!
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Model Predictive Control
leads to specially structured QP problems

ko+N—1

i T T T
QP (xo): min X, +n' Pxig4n + 2 X QrXr + U Rpug
, ~

s. t. xko = Xp
Xk+1 = Akxk + Bkuk + ¢ Vke {ko, ...,ko +N — 1}
dk < Ckxk + Dkuk Vke {ko, ...,ko +N — 1}

Ako+N < Cro+N Xk +N

- Sparsity
= variables are very loosely coupled

- effect becomes the more pronounced the longer the horizon is

- Parametric Dependency
= QP problems have strong similarity

= re-use of previous solution helps finding current one
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QP Formulations
Sparsity pattern

© ABB Group

Month DD, Year

- An MPC-QP can be written as (with Z = (xy_, uk,, Xiy 1 Ukg+1, - » Xig+8)):

Qk,
Ry

0
QP(xp): min VA Qeornos VA
Rig+n-1
P
Id X0
Ako Bko —Id —Ck,
s.t. Agye1 Brg+1 —1d Z = | TCko+1

Aggen-1 Brgin-1 —Id ~Cko+N-1

Ck DkO dko

Cro+1 Dyy+1 Aig+1

0

Cro+tN-1  Dig+n-1 dko+N—1
Ck0+N dk0+N
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QP Formulations
Sparsity pattern

- This can be re-written as (with Z = (x,, uk,, X+ 1, Uiy 10 - » Xkg+n) )

QP(xp): mZin Z’HZ

s.t. Aqu - beq(x())



QP Formulations
Exploiting sparsity (using sparse solver)

Aieq

AF

Dimension: ((n, +n,)(N — 1) + Tlx)z

#Nonzeros: ((n,? + ny 2N + n,?)

Dimension: ((n, +n,)(N —1) +ny)-n, N

#Nonzeros: ((n,? + nyn,)(N — 1) + nyN)

Dimension: ((n, +n,)(N — 1) + nx)z

#Nonzeros: ((n, +n,)(N — 1) + ny)

Assumptions: 1) Q, R, P, A, B dense, 2) input/state bounds



QP Formulations
Exploiting sparsity (using state-elimination)

- All states are uniquely determined by x, and U, thus they
can be easily eliminated from the QP (condensing): Bock, Plitt (1984)

Qk,
Ry

0

QP(x,): min Z' A
0 z Qro+N-1

Ry 4n-1

P
Id X

Ay, By, —Id —Ci,
s.t. Ak0+1 Bko+1 _Id Z = _Ck0+1

Agg+n-1 Brgin-1 —Id “Cko+N-1

Ck Dko dk

Cro+1 Diy+1 Aiy+1

0

Ck0+N—1 Dyy+n-1 dko+N—1
Ck0+N dk0+N
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QP Formulations
Exploiting sparsity (using state-elimination)

- All states are uniquely determined by w, and U, thus they
can be easily eliminated from the QP (condensing):

o

0 Dko d
Cro+1 Diy+1 Aiy+1

Ck0+N—1 Dyy+n-1 dko+N—1
Ck0+N dk0+N
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QP Formulations
Exploiting sparsity (using state-elimination)

- All states are uniquely determined by w, and U, thus they
can be easily eliminated from the QP (condensing):

ortor mn U'E'HEU + 2 - U'E'Hf (x,)

s.t.

A

lquU = bieq T Aieqf(xO)

© ABB Group “ I. I.
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QP Formulations
Exploiting sparsity (using state-elimination)

- All states are uniquely determined by w, and U, thus they
can be easily eliminated from the QP (condensing):

oreo: min U'HU + U'g°(xq)

s.t.

AU = bc(xo)

BBBBBBBBB



QP Formulations
Exploiting sparsity (using state-elimination)

#Nonzeros: (n,N)?

HC'

N(N-1)
2

AC

#Nonzeros: ny,n,

= Solving the MPC-QP problem:
1. Eliminate states from QP (also called «condensing»)

2. Solve smaller-scale QP with a dense QP solver

Linear MPC: states can be eliminated offline!

© ABB Group
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QP Formulations
Number of nonzeros (sparse vs. dense QP)
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= QP size for a MPC problem with 5 states, 2 inputs:

M
O
#Elements 41-10% 3.0-10® 1.3-10* 5.2-10* 3.3-10° %
@©
NPT 14-102 3.7-10%2 7.5-10®> 1.5-103 3.8-103 5
(sparse QP) *g
#Nonzeros e 102 . 102 . 103 .10% 2
(dense QP) 2.6-10' 2.0-10®> 85-10%> 3.5-10% 2.2-10 g
- QP size for a MPC problem with 30 states, 5 inputs:
#Elements 1.2-10* 8.3-10* 3.4-10°5 1.4-10° 8.7-10°
GNUTEIEE 39.103 1.0-10* 2.0-10* 4.1-10* 1.0-10°
(sparse QP)
#Nonzeros ) 103 .103 . 104 .105
(dense QP) 2.5-10% 2.1-10% 9.3-10% 3.9-10* 2.5-10
A DD
FRIPIP



QP Formulations
Number of nonzeros (sparse vs. dense QP)

Sparse formulation is
advantageous whenever
n,

— KN
ny



QP Formulations
An example

Scenario 1: 9 states, 3 inputs

L ]

» Nonlinear MPC example

(spring-masses toy application) 7o ’ “g
N
- Red: Time for solving sparse QP ; 3
using an auto-generated IP method *° ‘oz
(FORCES) - S
" 3

= Blue: Time for state-elimination et et

# b

and solving condensed QP using SR W

an efficient AS method (QPOASES)  gcenario 2: 21 states, 3 inputs

% Conoansed OP
& Soanes 0P

- Remarks: _ ] '
= worst-case execution times

- severe disturbance, thus | e .
no QP warm-starting used ‘ .
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QP Algorithms

Why is there a whole zoo of them?

Fast gradient

gradient method, primal FGM, dual FGM, GPAD, FiOrdOs

Active set

quadprog (primal), QLD (dual), gpOASES (parametric)

Interior point

primal barrier, CVXGEN (primal-dual), FORCES (primal-dual), HPMPC

Others

gpDUNES (Newton-type), PQP, splitting methods (e.g. ADMM),
MPT (explicit methods)
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Tailored to different problem classes
Different numerical properties 1
Amount of sorce code

Suitability for parallelization

\\\\\\\
S

ill-conditioned
problem

NG
......

~~~~~~
~

Suitability for FPGA implementations



QP Algorithms
A limited and rough overview

Fast gradient methods:
= compute step towards solution of unconstrained QP
= project to feasible set (difficult for general constraints)

Active-set methods:
= guess which inequalities hold with equality at solution
= solve resulting equality-constrained QP (almost trivial)
= check if guess was correct, update guess if not

Interior-point methods:

= remove inequalities, but penalize constraint violations in
objective function (non-quadratic term, e.g. logarithmic)

= solve resulting equality-constrained NLP with Newton’s method

Explicit methods and others

13
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QP Algorithms
Some Pros and Cons

- Fast gradient methods: (e.g. FiOrdOs)
= plenty of cheap iterations, variants for both dense/sparse QPs
« Pros: simple to code (no matrix inversion), easy to parallelize

- Cons: sensitive to problem formulation, limited warm-starting

- Active set methods: (e.g. quadprog, gqpOASES)
= many cheap iterations, most efficient for dense QPs
« Pros: efficient warm-starting, can be made very reliable

= Cons: difficult to parallelize, only heuristic runtime bound

= Interior point methods: (e.g. IPOPT, OOQP, FORCES)
- few expensive iterations, most efficient for sparse QPs
= Pros: runtime guarantee, quite easy to parallelize

= Cons: limited warm-starting

£k
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Parametric Quadratic Programming
Definition

- A parametric QP problem is an optimization problem of
the form:

QP (xy): mzin %Z'HZ + g(xy) 'z

s.t. Az >b(x,)

= gradient vector g(xy) = f + Fx,
= constraint vector b(x,) = e + Ex,

= parameter x, € RP

For a fixed x,, one yields a standard QP problem

© ABB
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Parametric Quadratic Programming
Set of feasible parameters

- Recall the definition of the feasible set for QP(x,), x, given:

F(xy) “{zeR"| Az = b(x,) }

- We define the set of feasible parameters as follows:

?dzef{XOE]RplT(X()):rtQ}

« Theorem: Berkelaar, Roos, Terkaly (1997)
The set P of feasible parameters is convex and closed.

A b
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Parametric Quadratic Programming
Critical regions

- Let a strictly convex QP (x,) be given. For each x, € P let
z°Pt(x,) denote the optimal solution with corresponding
optimal active set A(z°P(x,)).

= Then, for every index set A c {1, ..., m}, the set
CRp = {xy €P | A(zP(xy)) = A}

is called a critical region of 7.

= A critical region contains all parameters x, that lead to
solutions of QP(x,) with a certain optimal active set

© ABB
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Parametric Quadratic Programming
Critical regions (cont.)

« Theorem: Bemporad, Morari, Dua, Pistikopoulos (2002)
For a strictly convex QP(x,) the following holds:

- all closures of critical regions are closed polyhedra
with pairwise disjoint interiors;

= the set of feasible parameters P can be subdivided into
a finite number of closures of critical regions;

- the optimal solution z°Pt: P - R"
is a piecewise affine, continuous
function. Fiacco (1983), Zafiriou (1990)

= Note: explicit MPC pre-computes
this partition offline!

A b
©
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Online Active Set Strategy

Main idea Frerreau et ai. (2008), Best (1996)

- Let’'s assume we have solved min %z’Hz + g(xg)'z
the last QP (x,), with optimal ’

: >
solution zPt(x,): s.t. Az 2 b(xo)

- Now we want to solve the next min ;z'Hz + g(x§¢")'z
Z

one, QP (x¢"):
QP (xg s.t. Az =b(xy°")

= To this aim, we introduce the following homotopies:
Xo: [0,1] » RY, Xo(T) & xp + T(xg®” — x¢)
g: [01]1 >R, g0 & g(xo) + t(gxF") — g(x0))

~

b: [0,1] > R™,  b(z) & b(xy) + t(b(xF") — b(xy))

A
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Online Active Set Strategy
Main idea

- Let’'s assume we have solved the last QP (x,), with optimal
solution z°Pt(x,) and want to solve the next one, QP (x{¢"):

- To this aim, we introduce the following homotopies:

Xo: [0,1] - RY, Xo(T) & xo + (23 — x¢)
g: [0,1] - R™, (D) & g(xo) + t(g(x§®) — g(x0))
b: [0,1] > R™,  B(1) & b(xo) + t(b(x2™) — b(x,))

- And re-parametrize the parametric QP:

QP(7): mzin %Z'HZ + g(1)'z

s.t. Az >b(7)

A
©ABB .
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Online Active Set Strategy
Main idea (cont.)

- We aim at satisfying the KKT optimality conditions at
each point along the homotopy path:

H Ay ( Z°P (1) > ~ ( —g(7) )
Agy 0 J\Titn@®)  \bgey®

A2t (1) 2 BE(T) (1)

Ve (@ 20
37 ﬁ()(};i)f (T) =0

- Since Z°Pt(7) is continuous and piecewise affine, we search
for primal-dual step directions (valid for 7 € [0, 7,,,4.]):

ZOPt () &f Z0Pt 4 7. AZzOPE ygpt(r) def ygpt +T- Aylgpt

A
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Online Active Set Strategy
Main idea (cont.)

© ABB
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= This leads to the «local» KKT optimality conditions:

H Ap\( Az°Pt\  [(—g(xF™) + g(xo)

Ay 0 )\=Dy"" )~ \ba(xi®) — by(xo)

Ay (z°P + 7 - AzPY) = by(xg®") — by(xo)
opt opt

Yy TT-Ay," =0

W+t AP =0

- Solving the linear system yields the primal-dual step direction

- We follow this direction (i.e. move along the homotopy path)

until any of KKT inequality conditions becomes violated



Online Active Set Strategy
Main idea (cont.)

- The step length 7,,,,,, is computed as follows:

b;(xg) — AQZOPt

| AlAZOPt < Ab; }

prim ges
max — e \ A;Azopt_Abi
( yopt
Tl & min{ —=— |Ay; <0
LEA Ayl
\

Tmax = min{l, rﬁ{jﬁ", Tﬁl%‘,‘f} € [0,1]

« If 7,4 = 1, the optimal solution of QP (x{*") has been found!

- Otherwise, at T = 1,4, @ constraint is added or removed from
the working set and a new primal-dual step direction is computed

©ABB | Slide 45 "“== ==
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Online Active Set Strategy
lllustration
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Online Active Set Strategy
lllustration
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Online Active Set Strategy
lllustration
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Online Active Set Strategy
lllustration
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Online Active Set Strategy
lllustration
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Online Active Set Strategy
lllustration
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Online Active Set Strategy
lllustration
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Online Active Set Strategy
Advantages and Limitations

- Advantages:

- Often fewer number of iterations by exploiting parametric
nature of MPC problem

- Hot-starts with full solution information of previous QP
(including re-use of matrix factorizations)

- Real-time variant if procedure has to stop prematurely

- Homotopy helps to make implementation numerically robust

= Limitations:
- Rather complex code (e.g. matrix factorizations/updates)

= Difficult to parallelize

© ABB Group
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Online Active Set Strategy
Real-time variant
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Online Active Set Strategy
Real-time variant
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Online Active Set Strategy
Real-time variant
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Online Active Set Strategy
Real-time variant

_— Ann
July 29, 2015p Slide 57 ‘l.



Online Active Set Strategy
Real-time variant
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Online Active Set Strategy
Real-time variant
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Online Active Set Strategy
Initialization and Degeneracy handling

© ABB
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- Homotopy is started from a QP problem min 1z’Hz+0'z

7 2

with known solution, e.g. t Az >—1
s.t. Az >—

- During all iterations, A, has to keep full row rank;, i.e.

constraints in working set must be linearly independent

= This can be easily done by solving an auxiliary linear system

- Infeasible QP problems are easily detected while moving

along the homotopy path (recall that P is convex!)

- Homotopy is stopped until the next feasible QP appears



gpOASES
An implementation of the Online Active SEt Strategy

© ABB Group
Slide 61

- gpOASES solves QP problems

. 1 7 !
min zz'Hz + g(xy)'z
of the following form: z 2 Jio

s.t. b(xg) <z < b(xp)

c(xg) <Az < ¢(x)

- C/C++ implementation with dense linear algebra

Ferreau, Kirches, Potschka, Bock, Diehl (2014)

- Reliable and efficient code for solving small- to medium-scale

QPs (states eliminated from MPC problem)

- Self-contained code (optionally, LAPACK/BLAS can be linked)

- Distributed as open-source software (GNU LGPL),

download at: https://projects.coin-or.org/qpOASES



gpOASES
IS reliable and efficient

- Robust against bad conditioning of Hessian matrix:

— gpoases_cnd

10} i A :

H:G FM:—H’HHVM“U i
o 108 A ' |
~ ‘]H-” _._______,_..--
g 102 |
&) IIJ;% r— |

Tk

0 20 40 @l &0 100 120 140 |60

QP instance

= Overall computational performance on 14 MPC benchmark
examples: Kouzoupis et al. (2015)

more efficient

- >2500 QP instances T

- 2-12 states il

= 1-4 control inputs £

. 3-100 intervals ¢

- different constraints )

© ABB
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Vukov (2015)

more reliable




gpOASES
Further algorithmic features

- Handles semi-definite (even indefinite) Hessian matrices

- Structure exploitation for various QP variants, e.g.
= box constraints
= varying matrices

= limited sparsity support

- Reliable detection of infeasible QP problems
= Start from arbitrary initial guesses (without Phase I)

- Choose between double and single precision arithmetic

ik
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gpOASES
Offers various interfaces to third-party software

© ABB Group
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= Simulink :Ij
-

- Matlab / Octave / Scilab

[x,fval,exitflag,iter,lambda] = qpOASES( H,g,A,1b,ub,1bA,ubA )

] . .
. dSPACE o : -
- XPC Target =1

- Python

- YALMIP / ACADO Toolkit / MUSCOD-II / CasADi
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Using gpOASES
as algorithmic building block

= ACADO Code Generation Tool uses qpOASES within an
SQP-type algorithm for nonlinear MPC Houska et al. (2011)

= If MPC horizon becomes long, block condensing may be
applied to adjust the sparsity level of the QP problem Axehill (2015)

- Recently proposed dual Newton strategy shows promising
performance combining block condensing and gpOASES
Kouzoupis et al. (2015a), Frasch et al. (2014)

- Optimum experimental design problems often lead to
nonconvex NLPs with block-diagonal Hessian matrix

- Afilter line-search SQP method using SR1/BFGS updates
based on gpOASES has been proposed Janka et al. (2015)
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Using gpOASES
for Real-World Applications
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Using gpOASES
to Control a 48 Megawatt Drive!
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Load commutated inverters (LCIs) play an important role
in powering electrically-driven compressor stations

- MPC can help LClIs to ride through e i e B O

partial loss of grid voltage (~mmromom oo .

=3 [¥
-l o1
- gqpOASES solves a small-scale | :

= Successfully tested on a 48 MW
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12112 - pulse configuration

QP problem every millisecond
on embedded hardware

pilot plant installation
Besselmann et al. (to appear)
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Using gpOASES
for your own project

Matlab interface offers basically the complete functionality of
the C++ core

gpOASES can be called either in offline mode or online mode

Offline mode: initialize each QP problem from scratch

[x,fval,exitflag,iter, lambda, auxOutput] = .
qpOASES ( H,g,A,lb,ub, 1bA,ubA, options, auxInput );

Online mode: use hotstarts to speed-up solution

[QP, x, fval,..] = gpOASES sequence( ‘i’,H,qg,A,lb,ub,.. );
[x, fval, ..] = gpOASES sequence( ‘h’,QP,qg,l1lb,ub,.. );
gpOASES sequence( ‘c’,QP );
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Using gpOASES
for your own project (cont.)
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= If no options are passed, default options are used that are

typically slower but more reliable

- Enable MPC options by calling

myOptions = gpOASES options( ‘mpc’ );

= Options can also be used to specify maximum number of

iterations (or CPU time limit)

= Type

help gpOASES

help gpOASES sequence
help gpOASES options
help gpOASES auxInput

for more information



Summary

= gpOASES is a reliable, self-contained, open-source
QP solver, also for embedded optimization

- Efficient due to plenty of structure-exploiting features

= Successfully used in numerous real-world applications

https://projects.coin-or.org/qpOASES

(thanks to Christian Kirches, Andreas Potschka, Alexander Buchner,
Manuel Kudruss, Sebastian Walter and all the other contributors)
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