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 A QP problem is an optimization problem of the form:

 Hessian matrix 𝐻 ∈ 𝒮𝑛 ≝ 𝑀 ∈ ℝ𝑛×𝑛 | 𝑀 = 𝑀′

 gradient vector 𝑔 ∈ ℝ𝑛

 constraint matrix 𝐴 ∈ ℝ𝑚×𝑛

 constraint vector 𝑏 ∈ ℝ𝑚

 Note: many equivalent formulations exists

min
𝑧

1
2 𝑧′𝐻𝑧 + 𝑔′𝑧

𝑠. 𝑡. 𝐴𝑧 ≥𝑏



Quadratic Programming
Feasibility and Boundedness
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 A QP problem is called feasible iff its feasible set

is non-empty and infeasible otherwise.

 A QP problem is called bounded (from below) iff there 

exists a  𝛼 ∈ ℝ such that

and unbounded otherwise.

ℱ ≝ 𝑧 ∈ ℝ𝑛 | 𝐴𝑧 ≥ 𝑏

𝛼 ≤ 1

2
𝑧′𝐻𝑧 + 𝑔′𝑧 ∀𝑧 ∈ ℱ
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Convexity
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 A QP problem is called convex iff its Hessian matrix is 

symmetric positive semi-definite, i.e.

 It is called strictly convex iff its Hessian matrix is 

symmetric positive definite, i.e.

 Every strictly convex QP is bounded from below.

 Every strictly convex and feasible QP has a (unique) 

solution!

𝐻 ∈ 𝒮+
𝑛 ≝ 𝑀 ∈ 𝒮𝑛 | 𝑥′𝑀𝑥 ≥ 0 ∀𝑥 ∈ ℝ𝑛

𝐻 ∈ 𝒮++
𝑛 ≝ 𝑀 ∈ 𝒮𝑛 | 𝑥′𝑀𝑥 > 0 ∀𝑥 ∈ ℝ𝑛\ 0
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 unconstrained QP

 QP with simple constraints

 QP with general constraints

min
𝑧

1
2
𝑧′𝐻𝑧 + 𝑔′𝑧

min
𝑧

1
2 𝑧′𝐻𝑧 + 𝑔′𝑧

𝑠. 𝑡. 𝑧 ≤ 𝑧 ≤ 𝑧

min
𝑧

1
2
𝑧′𝐻𝑧 + 𝑔′𝑧

𝑠. 𝑡. 𝑧 ≤𝐴𝑧 ≤ 𝑧



Quadratic Programming
Active constraints
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 Let a feasible QP problem be given. A constraint  𝐴𝑖
′𝑧 ≥ 𝑏𝑖 is 

called active at  𝒛 iff 𝐴𝑖
′  𝑧 = 𝑏𝑖 holds and inactive otherwise.

 We define the (disjoint) index sets:

 At any solution 𝑧𝑜𝑝𝑡 we call 𝔸 𝑧𝑜𝑝𝑡 the optimal active set.

𝔸  𝑧 ≝ 𝑖 ∈ 1,… ,𝑚 | 𝐴𝑖
′  𝑧 = 𝑏𝑖

𝕀  𝑧 ≝ 𝑖 ∈ 1,… ,𝑚 | 𝐴𝑖
′  𝑧 > 𝑏𝑖



Quadratic Programming
Duality
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 The dual QP can be written as:

 Theorem: Dorn (1960)

Let a convex QP and its dual QPdual be given, then

 if 𝑧𝑜𝑝𝑡 if a solution to QP, then there exists a solution 

𝑧𝑜𝑝𝑡, 𝑦𝑜𝑝𝑡 to QPdual,

 if a solution 𝑧𝑜𝑝𝑡, 𝑦𝑜𝑝𝑡 to QPdual exists, then a 

solution 𝑧∗ to QP satisfying 𝐻𝑧∗ = 𝐻𝑧𝑜𝑝𝑡 exists,

 in either case, the following holds:

max
𝑧,𝑦

−
1
2 𝑧′𝐻𝑧 + 𝑏′𝑦

𝑠. 𝑡. 𝐻𝑧 + 𝑔 =𝐴′𝑦

𝑦 ≥ 0

1
2 𝑧

𝑜𝑝𝑡′𝐻𝑧𝑜𝑝𝑡 + 𝑔′𝑧𝑜𝑝𝑡 = −
1
2 𝑧

𝑜𝑝𝑡′𝐻𝑧𝑜𝑝𝑡 + 𝑏′𝑦𝑜𝑝𝑡



Quadratic Programming
Optimality conditions
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 Theorem: Karush (1939), Kuhn/Tucker (1951)

Let a strictly convex QP be given, then there exists a unique 

𝑧𝑜𝑝𝑡, an index set 𝔸 ⊆ 𝔸 𝑧𝑜𝑝𝑡 and a vector 𝑦𝑜𝑝𝑡 such that:

 Moreover, 

 𝑧𝑜𝑝𝑡 is the unique global minimizer of QP,

 𝑧𝑜𝑝𝑡, 𝑦𝑜𝑝𝑡 is an optimal solution to QPdual,

 the optimal objective values of QP and QPdual are equal.

𝐻𝑧𝑜𝑝𝑡 + 𝑔 − 𝐴𝔸
′ 𝑦𝑜𝑝𝑡 = 0

𝐴𝔸𝑧
𝑜𝑝𝑡 = 𝑏𝔸

𝐴𝕀𝑧
𝑜𝑝𝑡 ≥ 𝑏𝕀
𝑦𝔸
𝑜𝑝𝑡

≥ 0

𝑦𝕀
𝑜𝑝𝑡

= 0
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Model Predictive Control
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 Predict future behaviour based on dynamic model …



Model Predictive Control
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 … and solve an optimal control problem:

𝑂𝐶𝑃 𝑥0 : min
𝑥 ∙ ,𝑢 ∙

 
𝑡0

𝑡0+𝑡𝑝

𝐽 𝑥 𝑡 , 𝑢 𝑡 𝑑𝑡 + 𝑃 𝑥 𝑡0 + 𝑡𝑝

𝑠. 𝑡. 𝑥 𝑡0 = x0 𝑡0
 𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝
0 ≤ 𝑐 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝

0 ≤  𝑐 𝑥 𝑡0 + 𝑡𝑝



Model Predictive Control
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 Apply first piece of optimized control input …



Model Predictive Control
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 … obtain feedback from real process …



Model Predictive Control

July 29, 2015 | Slide 17

© ABB Group

 … and solve updated optimal control problem:

𝑂𝐶𝑃 𝑥0 : min
𝑥 ∙ ,𝑢 ∙

 
𝑡1

𝑡1+𝑡𝑝

𝐽 𝑥 𝑡 , 𝑢 𝑡 𝑑𝑡 + 𝑃 𝑥 𝑡1 + 𝑡𝑝

𝑠. 𝑡. 𝑥 𝑡1 = x0 𝑡1
 𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡1, 𝑡1 + 𝑡𝑝
0 ≤ 𝑐 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡1, 𝑡1 + 𝑡𝑝

0 ≤  𝑐 𝑥 𝑡1 + 𝑡𝑝



Model Predictive Control
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 … and solve updated optimal control problem:

𝑂𝐶𝑃 x0 : min
𝑥 ∙ ,𝑢 ∙

 
𝑡1

𝑡1+𝑡𝑝

𝐽 𝑥 𝑡 , 𝑢 𝑡 𝑑𝑡 + 𝑃 𝑥 𝑡1 + 𝑡𝑝

𝑠. 𝑡. 𝑥 𝑡1 = 𝑥0 𝑡1
 𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡1, 𝑡1 + 𝑡𝑝
0 ≤ 𝑐 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡1, 𝑡1 + 𝑡𝑝

0 ≤  𝑐 𝑥 𝑡1 + 𝑡𝑝

repeat

online



Model Predictive Control
Why solving QP problems?
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 Linear (possibly time-varying) MPC leads to QP problems:

 Linearizing a nonlinear MPC problem (as done in SQP-type 

methods) leads to similar (convex) QP problems

 QP solvers are at the core of most MPC implementations!

𝑄𝑃 x0 : min
𝑋, 𝑈

𝑥𝑘0+𝑁
𝑇𝑃𝑥𝑘0+𝑁 +  

𝑘0

𝑘0+𝑁−1

𝑥𝑘
𝑇𝑄𝑘𝑥𝑘 + 𝑢𝑘

𝑇𝑅𝑘𝑢𝑘

𝑠. 𝑡. 𝑥𝑘0 = x0

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝑐𝑘 ∀ 𝑘 ∈ 𝑘0, … , 𝑘0 + 𝑁 − 1

𝑑𝑘 ≤ 𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 ∀ 𝑘 ∈ 𝑘0, … , 𝑘0 + 𝑁 − 1

𝑑𝑘0+𝑁 ≤ 𝐶𝑘0+𝑁 𝑥𝑘0+𝑁



Model Predictive Control
leads to specially structured QP problems
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 Sparsity

 variables are very loosely coupled 

 effect becomes the more pronounced the longer the horizon is

 Parametric Dependency

 QP problems have strong similarity

 re-use of previous solution helps finding current one

𝑄𝑃 x0 : min
𝑋, 𝑈

𝑥𝑘0+𝑁
𝑇𝑃𝑥𝑘0+𝑁 +  

𝑘0

𝑘0+𝑁−1

𝑥𝑘
𝑇𝑄𝑘𝑥𝑘 + 𝑢𝑘

𝑇𝑅𝑘𝑢𝑘

𝑠. 𝑡. 𝑥𝑘0 = x0

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝑐𝑘 ∀ 𝑘 ∈ 𝑘0, … , 𝑘0 +𝑁 − 1

𝑑𝑘 ≤ 𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 ∀ 𝑘 ∈ 𝑘0, … , 𝑘0 + 𝑁 − 1

𝑑𝑘0+𝑁 ≤ 𝐶𝑘0+𝑁 𝑥𝑘0+𝑁
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QP Formulations

 An MPC-QP can be written as (with 𝑍 = 𝑥𝑘0 , 𝑢𝑘0 , 𝑥𝑘0+1, 𝑢𝑘0+1, … , 𝑥𝑘0+𝑁 ):

Sparsity pattern
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𝑄𝑃 x0 : min
𝑍

𝑍′

𝑄𝑘0
𝑅𝑘0

⋱
𝑄𝑘0+𝑁−1

𝑅𝑘0+𝑁−1

𝑃

𝑍

𝑠. 𝑡.

𝐼𝑑
𝐴𝑘0 𝐵𝑘0 −𝐼𝑑

𝐴𝑘0+1 𝐵𝑘0+1 −𝐼𝑑

⋱
𝐴𝑘0+𝑁−1 𝐵𝑘0+𝑁−1 −𝐼𝑑

𝑍 =

𝑥0
−𝑐𝑘0
−𝑐𝑘0+1

⋮
−𝑐𝑘0+𝑁−1

𝐶𝑘0 𝐷𝑘0
𝐶𝑘0+1 𝐷𝑘0+1

⋱
𝐶𝑘0+𝑁−1 𝐷𝑘0+𝑁−1

𝐶𝑘0+𝑁

𝑍 ≥

𝑑𝑘0
𝑑𝑘0+1
⋮

𝑑𝑘0+𝑁−1
𝑑𝑘0+𝑁



QP Formulations

 This can be re-written as (with 𝑍 = 𝑥𝑘0 , 𝑢𝑘0 , 𝑥𝑘0+1, 𝑢𝑘0+1, … , 𝑥𝑘0+𝑁 ):
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𝑄𝑃 x0 : min
𝑍

𝑍′

𝑄𝑘0
𝑅𝑘0

⋱
𝑄𝑘0+𝑁−1

𝑅𝑘0+𝑁−1

𝑃

𝑍

𝑠. 𝑡.

𝐼𝑑
𝐴𝑘0 𝐵𝑘0 −𝐼𝑑

𝐴𝑘0+1 𝐵𝑘0+1 −𝐼𝑑

⋱
𝐴𝑘0+𝑁−1 𝐵𝑘0+𝑁−1 −𝐼𝑑

𝑍 =

𝑥0
−𝑐𝑘0
−𝑐𝑘0+1

⋮
−𝑐𝑘0+𝑁−1

𝐶𝑘0 𝐷𝑘0
𝐶𝑘0+1 𝐷𝑘0+1

⋱
𝐶𝑘0+𝑁−1 𝐷𝑘0+𝑁−1

𝐶𝑘0+𝑁

𝑍 ≥

𝑑𝑘0
𝑑𝑘0+1
⋮

𝑑𝑘0+𝑁−1
𝑑𝑘0+𝑁

𝑍′𝑯𝑍

𝑨𝒊𝒆𝒒𝑍 ≥ 𝒃𝒊𝒆𝒒

𝑨𝒆𝒒𝑍 = 𝒃𝒆𝒒 𝒙𝟎



QP Formulations
Exploiting sparsity (using sparse solver)
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𝑯 =

𝑨𝒆𝒒 =

𝑨𝒊𝒆𝒒 =

Dimension:   𝑛𝑥 + 𝑛𝑢 𝑁 − 1 + 𝑛𝑥
2

#Nonzeros:  𝑛𝑥
2 + 𝑛𝑢

2 𝑁 + 𝑛𝑥
2

Dimension:   𝑛𝑥 + 𝑛𝑢 𝑁 − 1 + 𝑛𝑥 ∙ 𝑛𝑥 𝑁

#Nonzeros:  𝑛𝑥
2 + 𝑛𝑥𝑛𝑢 𝑁 − 1 + 𝑛𝑥𝑁

Dimension:   𝑛𝑥 + 𝑛𝑢 𝑁 − 1 + 𝑛𝑥
2

#Nonzeros:  𝑛𝑥 + 𝑛𝑢 𝑁 − 1 + 𝑛𝑥

Assumptions:  1) 𝑄, 𝑅, 𝑃, 𝐴, 𝐵 dense,  2) input/state bounds



QP Formulations

 All states are uniquely determined by 𝑥0 and 𝑈, thus they 

can be easily eliminated from the QP (condensing):

Exploiting sparsity (using state-elimination)
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𝑄𝑃 x0 : min
𝑍

𝑍′

𝑄𝑘0
𝑅𝑘0

⋱
𝑄𝑘0+𝑁−1

𝑅𝑘0+𝑁−1

𝑃

𝑍

𝑠. 𝑡.

𝐼𝑑
𝐴𝑘0 𝐵𝑘0 −𝐼𝑑

𝐴𝑘0+1 𝐵𝑘0+1 −𝐼𝑑

⋱
𝐴𝑘0+𝑁−1 𝐵𝑘0+𝑁−1 −𝐼𝑑

𝑍 =

𝑥0
−𝑐𝑘0
−𝑐𝑘0+1

⋮
−𝑐𝑘0+𝑁−1

𝐶𝑘0 𝐷𝑘0
𝐶𝑘0+1 𝐷𝑘0+1

⋱
𝐶𝑘0+𝑁−1 𝐷𝑘0+𝑁−1

𝐶𝑘0+𝑁

𝑍 ≥

𝑑𝑘0
𝑑𝑘0+1
⋮

𝑑𝑘0+𝑁−1
𝑑𝑘0+𝑁

Bock, Plitt (1984)
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𝑄𝑃 x0 : min
𝑍

𝑍′

𝑄𝑘0
𝑅𝑘0

⋱
𝑄𝑘0+𝑁−1

𝑅𝑘0+𝑁−1

𝑃

𝑍

𝑠. 𝑡.

𝐼𝑑
𝐴𝑘0 𝐵𝑘0 −𝐼𝑑

𝐴𝑘0+1 𝐵𝑘0+1 −𝐼𝑑

⋱
𝐴𝑘0+𝑁−1 𝐵𝑘0+𝑁−1 −𝐼𝑑

𝑍 =

𝑥0
−𝑐𝑘0
−𝑐𝑘0+1

⋮
−𝑐𝑘0+𝑁−1

𝐶𝑘0 𝐷𝑘0
𝐶𝑘0+1 𝐷𝑘0+1

⋱
𝐶𝑘0+𝑁−1 𝐷𝑘0+𝑁−1

𝐶𝑘0+𝑁

𝑍 ≥

𝑑𝑘0
𝑑𝑘0+1
⋮

𝑑𝑘0+𝑁−1
𝑑𝑘0+𝑁

𝑍 = 𝑬𝑈 + 𝒇 𝒙𝟎
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can be easily eliminated from the QP (condensing):

Exploiting sparsity (using state-elimination)
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𝑄𝑃 x0 : min
𝑈

𝑍′

𝑄𝑘0
𝑅𝑘0

⋱
𝑄𝑘0+𝑁−1

𝑅𝑘0+𝑁−1

𝑃

𝑍

𝑠. 𝑡.

𝐼𝑑
𝐴𝑘0 𝐵𝑘0 −𝐼𝑑

𝐴𝑘0+1 𝐵𝑘0+1 −𝐼𝑑

⋱
𝐴𝑘0+𝑁−1 𝐵𝑘0+𝑁−1 −𝐼𝑑

𝑍 =

𝑥0
−𝑐𝑘0
−𝑐𝑘0+1

⋮
−𝑐𝑘0+𝑁−1

𝐶𝑘0 𝐷𝑘0
𝐶𝑘0+1 𝐷𝑘0+1

⋱
𝐶𝑘0+𝑁−1 𝐷𝑘0+𝑁−1

𝐶𝑘0+𝑁

𝑍 ≥

𝑑𝑘0
𝑑𝑘0+1
⋮

𝑑𝑘0+𝑁−1
𝑑𝑘0+𝑁

𝑈′𝑬′𝑯𝑬𝑈 + 2 ∙ 𝑈′𝑬′𝑯𝒇 𝒙𝟎

𝑨𝒊𝒆𝒒𝑬𝑈 ≥ 𝒃𝒊𝒆𝒒 − 𝑨𝒊𝒆𝒒𝒇 𝒙𝟎
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 All states are uniquely determined by 𝑤0 and 𝑈, thus they 

can be easily eliminated from the QP (condensing):

Exploiting sparsity (using state-elimination)
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𝑄𝑃 x0 : min
𝑈

𝑍′

𝑄𝑘0
𝑅𝑘0

⋱
𝑄𝑘0+𝑁−1

𝑅𝑘0+𝑁−1

𝑃

𝑍

𝑠. 𝑡.

𝐼𝑑
𝐴𝑘0 𝐵𝑘0 −𝐼𝑑

𝐴𝑘0+1 𝐵𝑘0+1 −𝐼𝑑

⋱
𝐴𝑘0+𝑁−1 𝐵𝑘0+𝑁−1 −𝐼𝑑

𝑍 =

𝑥0
−𝑐𝑘0
−𝑐𝑘0+1

⋮
−𝑐𝑘0+𝑁−1

𝐶𝑘0 𝐷𝑘0
𝐶𝑘0+1 𝐷𝑘0+1

⋱
𝐶𝑘0+𝑁−1 𝐷𝑘0+𝑁−1

𝐶𝑘0+𝑁

𝑍 ≥

𝑑𝑘0
𝑑𝑘0+1
⋮

𝑑𝑘0+𝑁−1
𝑑𝑘0+𝑁

𝑈′𝑯𝒄𝑈 + 𝑈′𝒈𝒄 𝒙𝟎

𝑨𝒄𝑈 ≥ 𝒃𝒄 𝒙𝟎



QP Formulations
Exploiting sparsity (using state-elimination)
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𝑯𝒄 =

𝑨𝒄 =

#Nonzeros:  𝑛𝑢𝑁
2

#Nonzeros:   𝑛𝑥𝑛𝑢
𝑁 𝑁−1

2

 Solving the MPC-QP problem:

1. Eliminate states from QP (also called «condensing»)

2. Solve smaller-scale QP with a dense QP solver

 Linear MPC: states can be eliminated offline!
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QP Formulations

 QP size for a MPC problem with 5 states, 2 inputs:

 QP size for a MPC problem with 30 states, 5 inputs:

N 2 5 10 20 50

#Elements 4.1 ∙ 102 3.0 ∙ 103 1.3 ∙ 104 5.2 ∙ 104 3.3 ∙ 105

#Nonzeros 

(sparse QP)
1.4 ∙ 102 3.7 ∙ 102 7.5 ∙ 102 1.5 ∙ 103 3.8 ∙ 103

#Nonzeros 

(dense QP)
2.6 ∙ 101 2.0 ∙ 102 8.5 ∙ 102 3.5 ∙ 103 2.2 ∙ 104

Number of nonzeros (sparse vs. dense QP)
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N 2 5 10 20 50

#Elements 1.2 ∙ 104 8.3 ∙ 104 3.4 ∙ 105 1.4 ∙ 106 8.7 ∙ 106

#Nonzeros 

(sparse QP)
3.9 ∙ 103 1.0 ∙ 104 2.0 ∙ 104 4.1 ∙ 104 1.0 ∙ 105

#Nonzeros 

(dense QP)
2.5 ∙ 102 2.1 ∙ 103 9.3 ∙ 103 3.9 ∙ 104 2.5 ∙ 105
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QP Formulations

 QP size for a MPC problem with 5 states, 2 inputs:

 QP size for a MPC problem with 30 states, 5 inputs:

N 2 5 10 20 50

#Elements 4.1 ∙ 102 3.0 ∙ 103 1.3 ∙ 104 5.2 ∙ 104 3.3 ∙ 105

#Nonzeros 

(sparse QP)
1.4 ∙ 102 3.7 ∙ 102 7.5 ∙ 102 1.5 ∙ 103 3.8 ∙ 103

#Nonzeros 

(dense QP)
2.6 ∙ 101 2.0 ∙ 102 8.5 ∙ 102 3.5 ∙ 103 2.2 ∙ 104

Number of nonzeros (sparse vs. dense QP)
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N 2 5 10 20 50

#Elements 1.2 ∙ 104 8.3 ∙ 104 3.4 ∙ 105 1.4 ∙ 106 8.7 ∙ 106

#Nonzeros 

(sparse QP)
3.9 ∙ 103 1.0 ∙ 104 2.0 ∙ 104 4.1 ∙ 104 1.0 ∙ 105

#Nonzeros 

(dense QP)
2.5 ∙ 102 2.1 ∙ 103 9.3 ∙ 103 3.9 ∙ 104 2.5 ∙ 105

(a
s
s
u

m
p

ti
o
n

s
 a

s
 b

e
fo

re
)

Sparse formulation is 

advantageous whenever

𝒏𝒙
𝒏𝒖

≪ 𝑵



QP Formulations
An example
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 Nonlinear MPC example 

(spring-masses toy application)

 Red: Time for solving sparse QP 

using an auto-generated IP method 

(FORCES)

 Blue: Time for state-elimination 

and solving condensed QP using 

an efficient AS method (qpOASES)

 Remarks:

 worst-case execution times

 severe disturbance, thus 

no QP warm-starting used

Scenario 1: 9 states, 3 inputs

Scenario 2: 21 states, 3 inputs
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QP Algorithms
Why is there a whole zoo of them?
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 Tailored to different problem classes

 Different numerical properties

 Amount of sorce code

 Suitability for parallelization

 Suitability for FPGA implementations

Fast gradient gradient method, primal FGM, dual FGM, GPAD, FiOrdOs

Active set quadprog (primal), QLD (dual), qpOASES (parametric)

Interior point primal barrier, CVXGEN (primal-dual), FORCES (primal-dual), HPMPC

Others qpDUNES (Newton-type), PQP, splitting methods (e.g. ADMM), 

MPT (explicit methods)

ill-conditioned

problem



QP Algorithms
A limited and rough overview
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 Fast gradient methods:

 compute step towards solution of unconstrained QP

 project to feasible set (difficult for general constraints)

 Active-set methods: 

 guess which inequalities hold with equality at solution

 solve resulting equality-constrained QP (almost trivial)

 check if guess was correct, update guess if not

 Interior-point methods:

 remove inequalities, but penalize constraint violations in 

objective function (non-quadratic term, e.g. logarithmic)

 solve resulting equality-constrained NLP with Newton’s method

 Explicit methods and others



QP Algorithms

 Fast gradient methods: (e.g. FiOrdOs)

 plenty of cheap iterations, variants for both dense/sparse QPs

 Pros: simple to code (no matrix inversion), easy to parallelize

 Cons: sensitive to problem formulation, limited warm-starting

 Active set methods: (e.g. quadprog, qpOASES)

 many cheap iterations, most efficient for dense QPs

 Pros: efficient warm-starting, can be made very reliable

 Cons: difficult to parallelize, only heuristic runtime bound

 Interior point methods: (e.g. IPOPT, OOQP, FORCES)

 few expensive iterations, most efficient for sparse QPs

 Pros: runtime guarantee, quite easy to parallelize

 Cons: limited warm-starting

Some Pros and Cons
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Outline
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 Quadratic Programming (QP)

 Model Predictive Control (MPC)

 QP Formulations and Algorithms

 The Online QP Solver qpOASES

 Embedded Applications of qpOASES

 Using qpOASES



Parametric Quadratic Programming
Definition
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 A parametric QP problem is an optimization problem of 

the form:

 gradient vector 𝑔 𝑥0 = 𝑓 + 𝐹𝑥0

 constraint vector 𝑏 𝑥0 = 𝑒 + 𝐸𝑥0

 parameter 𝑥0 ∈ ℝ𝑝

 For a fixed 𝑥0, one yields a standard QP problem

𝑄𝑃 𝑥0 : min
𝑧

1
2
𝑧′𝐻𝑧 + 𝑔 𝑥0 ′𝑧

𝑠. 𝑡. 𝐴𝑧 ≥𝑏 𝑥0



Parametric Quadratic Programming
Set of feasible parameters
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 Recall the definition of the feasible set for 𝑄𝑃 𝑥0 , 𝑥0 given:

 We define the set of feasible parameters as follows:

 Theorem: Berkelaar, Roos, Terkaly (1997)

The set 𝒫 of feasible parameters is convex and closed.

ℱ 𝑥0 ≝ 𝑧 ∈ ℝ𝑛 | 𝐴𝑧 ≥ 𝑏 𝑥0

𝒫 ≝ 𝑥0 ∈ ℝ𝑝 | ℱ 𝑥0 ≠ ∅



Parametric Quadratic Programming
Critical regions
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 Let a strictly convex 𝑄𝑃 𝑥0 be given. For each 𝑥0 ∈ 𝒫 let 

𝑧𝑜𝑝𝑡 𝑥0 denote the optimal solution with corresponding 

optimal active set 𝔸 𝑧𝑜𝑝𝑡 𝑥0 .

 Then, for every index set 𝔸 ⊆ 1,… ,𝑚 , the set

is called a critical region of 𝒫.

 A critical region contains all parameters 𝑥0 that lead to 

solutions of 𝑄𝑃 𝑥0 with a certain optimal active set

𝒞ℛ𝔸 ≝ 𝑥0 ∈ 𝒫 | 𝔸 𝑧𝑜𝑝𝑡 𝑥0 = 𝔸



Parametric Quadratic Programming
Critical regions (cont.)
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 Theorem: Bemporad, Morari, Dua, Pistikopoulos (2002)

For a strictly convex 𝑄𝑃 𝑥0 the following holds:

 all closures of critical regions are closed polyhedra 

with pairwise disjoint interiors;

 the set of feasible parameters 𝓟 can be subdivided into 

a finite number of closures of critical regions;

 the optimal solution 𝑧𝑜𝑝𝑡: 𝒫 → ℝ𝑛

is a piecewise affine, continuous 

function. Fiacco (1983), Zafiriou (1990)

 Note: explicit MPC pre-computes

this partition offline!



Online Active Set Strategy
Main idea
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 Let’s assume we have solved 

the last 𝑄𝑃 𝑥0 , with optimal

solution 𝑧𝑜𝑝𝑡 𝑥0 :

 Now we want to solve the next 

one, 𝑄𝑃 𝑥0
𝑛𝑒𝑤 :

 To this aim, we introduce the following homotopies:

min
𝑧

1
2 𝑧′𝐻𝑧 + 𝑔 𝑥0 ′𝑧

𝑠. 𝑡. 𝐴𝑧 ≥𝑏 𝑥0

min
𝑧

1
2 𝑧′𝐻𝑧 + 𝑔 𝑥0

𝑛𝑒𝑤 ′𝑧

𝑠. 𝑡. 𝐴𝑧 ≥𝑏 𝑥0
𝑛𝑒𝑤

 𝑥0: 0,1 → ℝ𝑞,  𝑥0 𝜏 ≝ 𝑥0 + 𝜏 𝑥0
𝑛𝑒𝑤 − 𝑥0

 𝑔: 0,1 → ℝ𝑛,  𝑔 𝜏 ≝ 𝑔 𝑥0 + 𝜏 𝑔 𝑥0
𝑛𝑒𝑤 − 𝑔 𝑥0

 𝑏: 0,1 → ℝ𝑚,  𝑏 𝜏 ≝ 𝑏 𝑥0 + 𝜏 𝑏 𝑥0
𝑛𝑒𝑤 − 𝑏 𝑥0

Ferreau et al. (2008), Best (1996)



Online Active Set Strategy
Main idea
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 Let’s assume we have solved the last 𝑄𝑃 𝑥0 , with optimal

solution 𝑧𝑜𝑝𝑡 𝑥0 and want to solve the next one, 𝑄𝑃 𝑥0
𝑛𝑒𝑤 :

 To this aim, we introduce the following homotopies:

 And re-parametrize the parametric QP:

 𝑥0: 0,1 → ℝ𝑞,  𝑥0 𝜏 ≝ 𝑥0 + 𝜏 𝑥0
𝑛𝑒𝑤 − 𝑥0

 𝑔: 0,1 → ℝ𝑛,  𝑔 𝜏 ≝ 𝑔 𝑥0 + 𝜏 𝑔 𝑥0
𝑛𝑒𝑤 − 𝑔 𝑥0

 𝑏: 0,1 → ℝ𝑚,  𝑏 𝜏 ≝ 𝑏 𝑥0 + 𝜏 𝑏 𝑥0
𝑛𝑒𝑤 − 𝑏 𝑥0

𝑄𝑃 𝜏 : min
𝑧

1
2 𝑧′𝐻𝑧 +  𝑔 𝜏 ′𝑧

𝑠. 𝑡. 𝐴𝑧 ≥  𝑏 𝜏



Online Active Set Strategy
Main idea (cont.)
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 We aim at satisfying the KKT optimality conditions at 

each point along the homotopy path:

 Since  𝑧𝑜𝑝𝑡 𝜏 is continuous and piecewise affine, we search 

for primal-dual step directions (valid for 𝜏 ∈ 0, 𝜏𝑚𝑎𝑥 ):

𝐻 𝐴 𝔸 𝜏
′

𝐴 𝔸 𝜏 0

 𝑧𝑜𝑝𝑡 𝜏

− 𝑦 𝔸 𝜏

𝑜𝑝𝑡
𝜏

=
−  𝑔 𝜏

 𝑏 𝔸 𝜏 𝜏

𝐴 𝕀 𝜏  𝑧𝑜𝑝𝑡 𝜏 ≥  𝑏 𝕀 𝜏 𝜏

 𝑦 𝕀 𝜏
𝑜𝑝𝑡

𝜏 = 0

 𝑦 𝔸 𝜏

𝑜𝑝𝑡
𝜏 ≥ 0

 𝑧𝑜𝑝𝑡 𝜏 ≝ 𝑧𝑜𝑝𝑡 + 𝜏 ∙ Δ𝑧𝑜𝑝𝑡,  𝑦𝔸
𝑜𝑝𝑡

𝜏 ≝ 𝑦𝔸
𝑜𝑝𝑡

+ 𝜏 ∙ Δ𝑦𝔸
𝑜𝑝𝑡



Online Active Set Strategy
Main idea (cont.)
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 This leads to the «local» KKT optimality conditions:

 Solving the linear system yields the primal-dual step direction

 We follow this direction (i.e. move along the homotopy path) 

until any of KKT inequality conditions becomes violated

𝐻 𝐴𝔸
′

𝐴𝔸 0

Δ𝑧𝑜𝑝𝑡

−Δ𝑦𝔸
𝑜𝑝𝑡 =

−𝑔 𝑥0
𝑛𝑒𝑤 + 𝑔 𝑥0

𝑏𝔸 𝑥0
𝑛𝑒𝑤 − 𝑏𝔸 𝑥0

𝐴𝕀 𝑧
𝑜𝑝𝑡 + 𝜏 ∙ Δ𝑧𝑜𝑝𝑡 ≥ 𝑏𝕀 𝑥0

𝑛𝑒𝑤 − 𝑏𝕀 𝑥0

𝑦𝕀
𝑜𝑝𝑡

+ 𝜏 ∙ Δ𝑦𝕀
𝑜𝑝𝑡

= 0

𝑦𝔸
𝑜𝑝𝑡

+ 𝜏 ∙ Δ𝑦𝔸
𝑜𝑝𝑡

≥ 0



Online Active Set Strategy
Main idea (cont.)
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 The step length 𝜏𝑚𝑎𝑥 is computed as follows:

 If 𝜏𝑚𝑎𝑥 = 1, the optimal solution of 𝑄𝑃 𝑥0
𝑛𝑒𝑤 has been found!

 Otherwise, at 𝜏 = 𝜏𝑚𝑎𝑥 a constraint is added or removed from 

the working set and a new primal-dual step direction is computed

𝜏𝑚𝑎𝑥
𝑝𝑟𝑖𝑚

≝ min
𝑖∈𝕀

𝑏𝑖 𝑥0 − 𝐴𝑖
′𝑧𝑜𝑝𝑡

𝐴𝑖
′Δ𝑧𝑜𝑝𝑡 − Δ𝑏𝑖

| 𝐴𝑖
′Δ𝑧𝑜𝑝𝑡 < Δ𝑏𝑖

𝜏𝑚𝑎𝑥
𝑑𝑢𝑎𝑙 ≝ min

𝑖∈𝔸
−
𝑦𝑖
𝑜𝑝𝑡

Δ𝑦𝑖
|Δ𝑦𝑖 < 0

𝜏𝑚𝑎𝑥 ≝ min 1, 𝜏𝑚𝑎𝑥
𝑝𝑟𝑖𝑚

, 𝜏𝑚𝑎𝑥
𝑑𝑢𝑎𝑙 ∈ 0,1



Online Active Set Strategy
Illustration
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Online Active Set Strategy
Illustration
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Online Active Set Strategy

 Advantages:

 Often fewer number of iterations by exploiting parametric 

nature of MPC problem

 Hot-starts with full solution information of previous QP 

(including re-use of matrix factorizations)

 Real-time variant if procedure has to stop prematurely

 Homotopy helps to make implementation numerically robust

 Limitations:

 Rather complex code (e.g. matrix factorizations/updates)

 Difficult to parallelize

Advantages and Limitations
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Online Active Set Strategy
Real-time variant
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Online Active Set Strategy
Real-time variant
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Online Active Set Strategy
Real-time variant
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Online Active Set Strategy
Real-time variant
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Online Active Set Strategy
Real-time variant
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Online Active Set Strategy
Real-time variant
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Online Active Set Strategy
Initialization and Degeneracy handling
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 Homotopy is started from a QP problem 

with known solution, e.g.

 During all iterations, 𝑨𝔸 has to keep full row rank, i.e. 

constraints in working set must be linearly independent

 This can be easily done by solving an auxiliary linear system

 Infeasible QP problems are easily detected while moving 

along the homotopy path (recall that 𝒫 is convex!)

 Homotopy is stopped until the next feasible QP appears

min
𝑧

1
2 𝑧′𝐻𝑧 + 𝟎′𝑧

𝑠. 𝑡. 𝐴𝑧 ≥−𝟏



qpOASES

 qpOASES solves QP problems 

of the following form:

 C/C++ implementation with dense linear algebra

 Reliable and efficient code for solving small- to medium-scale 

QPs (states eliminated from MPC problem)

 Self-contained code (optionally, LAPACK/BLAS can be linked)

 Distributed as open-source software (GNU LGPL),

download at: https://projects.coin-or.org/qpOASES

© ABB Group 

Slide 61

min
𝑧

1
2 𝑧

′𝐻𝑧 +𝑔 𝑥0
′𝑧

𝑠. 𝑡. 𝑏 𝑥0 ≤ 𝑧 ≤  𝑏 𝑥0

𝑐 𝑥0 ≤𝐴𝑧 ≤  𝑐 𝑥0

Ferreau, Kirches, Potschka, Bock, Diehl (2014)

An implementation of the Online Active SEt Strategy



qpOASES
is reliable and efficient
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Kouzoupis et al. (2015)

 Robust against bad conditioning of Hessian matrix:

 Overall computational performance on 14 MPC benchmark 

examples:

 > 2500 QP instances

 2-12 states

 1- 4 control inputs

 3-100 intervals

 different constraints

V
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qpOASES
Further algorithmic features
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 Handles semi-definite (even indefinite) Hessian matrices

 Structure exploitation for various QP variants, e.g.

 box constraints

 varying matrices

 limited sparsity support

 Reliable detection of infeasible QP problems

 Start from arbitrary initial guesses (without Phase I)

 Choose between double and single precision arithmetic



qpOASES

 Matlab / Octave / Scilab

 Simulink

 dSPACE

 xPC Target

 Python

 YALMIP / ACADO Toolkit / MUSCOD-II / CasADi

Offers various interfaces to third-party software
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Outline
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 Quadratic Programming (QP)

 Model Predictive Control (MPC)

 QP Formulations and Algorithms

 The Online QP Solver qpOASES

 Embedded Applications of qpOASES

 Using qpOASES



Using qpOASES

 ACADO Code Generation Tool uses qpOASES within an 

SQP-type algorithm for nonlinear MPC

 If MPC horizon becomes long, block condensing may be 

applied to adjust the sparsity level of the QP problem

 Recently proposed dual Newton strategy shows promising 

performance combining block condensing and qpOASES

 Optimum experimental design problems often lead to 

nonconvex NLPs with block-diagonal Hessian matrix

 A filter line-search SQP method using SR1/BFGS updates 

based on qpOASES has been proposed

as algorithmic building block
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Houska et al. (2011)

Axehill (2015)

Kouzoupis et al. (2015a), Frasch et al. (2014)

Janka et al. (2015)



Using qpOASES
for Real-World Applications

July 29, 2015 | Slide 67

© ABB Group

beam tip vibrations

Diesel engine airpath

machine tools

humanoid NAO robot

integral gas engine

race car driving

gasoline engine

badminton robot

autonomous tractor

cranevideo.mp4
cranevideo.mp4


Using qpOASES
to Control a 48 Megawatt Drive!
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 Load commutated inverters (LCIs) play an important role 

in powering electrically-driven compressor stations

 MPC can help LCIs to ride through 

partial loss of grid voltage

 qpOASES solves a small-scale

QP problem every millisecond

on embedded hardware

 Successfully tested on a 48 MW 

pilot plant installation

Besselmann et al. (to appear)



Outline

July 29, 2015 | Slide 69

© ABB

 Quadratic Programming (QP)

 Model Predictive Control (MPC)

 QP Formulations and Algorithms

 The Online QP Solver qpOASES

 Embedded Applications of qpOASES

 Using qpOASES



Using qpOASES

 Matlab interface offers basically the complete functionality of 

the C++ core

 qpOASES can be called either in offline mode or online mode

 Offline mode: initialize each QP problem from scratch

 Online mode: use hotstarts to speed-up solution

for your own project
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[x,fval,exitflag,iter,lambda,auxOutput] = ...

qpOASES( H,g,A,lb,ub,lbA,ubA,options,auxInput );

[QP,x,fval,…] = qpOASES_sequence( ‘i’,H,g,A,lb,ub,… );

[x,fval,…] = qpOASES_sequence( ‘h’,QP,g,lb,ub,… );

qpOASES_sequence( ‘c’,QP );



Using qpOASES

 If no options are passed, default options are used that are 

typically slower but more reliable 

 Enable MPC options by calling

 Options can also be used to specify maximum number of 

iterations (or CPU time limit)

 Type

for more information

for your own project (cont.)
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myOptions = qpOASES_options( ‘mpc’ );

help qpOASES

help qpOASES_sequence

help qpOASES_options

help qpOASES_auxInput



Summary

 qpOASES is a reliable, self-contained, open-source 

QP solver, also for embedded optimization

 Efficient due to plenty of structure-exploiting features

 Successfully used in numerous real-world applications

https://projects.coin-or.org/qpOASES

(thanks to Christian Kirches, Andreas Potschka, Alexander Buchner, 

Manuel Kudruss, Sebastian Walter and all the other contributors)
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