
Embedded Quadratic Programming
Using qpOASES

Joachim Ferreau, ABB Corporate Research (Switzerland), TEMPO Summer School 2015

Outline

July 29, 2015 | Slide 2

© ABB

 Quadratic Programming (QP)

 Model Predictive Control (MPC)

 QP Formulations and Algorithms

 The Online QP Solver qpOASES

 Embedded Applications of qpOASES

 Using qpOASES

Outline

July 29, 2015 | Slide 3

© ABB

 Quadratic Programming (QP)

 Model Predictive Control (MPC)

 QP Formulations and Algorithms

 The Online QP Solver qpOASES

 Embedded Applications of qpOASES

 Using qpOASES

Quadratic Programming
Definition

July 29, 2015 | Slide 4

© ABB

 A QP problem is an optimization problem of the form:

 Hessian matrix 𝐻 ∈ 𝒮𝑛 ≝ 𝑀 ∈ ℝ𝑛×𝑛 | 𝑀 = 𝑀′

 gradient vector 𝑔 ∈ ℝ𝑛

 constraint matrix 𝐴 ∈ ℝ𝑚×𝑛

 constraint vector 𝑏 ∈ ℝ𝑚

 Note: many equivalent formulations exists

min
𝑧

1
2 𝑧′𝐻𝑧 + 𝑔′𝑧

𝑠. 𝑡. 𝐴𝑧 ≥𝑏

Quadratic Programming
Feasibility and Boundedness

July 29, 2015 | Slide 5

© ABB

 A QP problem is called feasible iff its feasible set

is non-empty and infeasible otherwise.

 A QP problem is called bounded (from below) iff there

exists a 𝛼 ∈ ℝ such that

and unbounded otherwise.

ℱ ≝ 𝑧 ∈ ℝ𝑛 | 𝐴𝑧 ≥ 𝑏

𝛼 ≤ 1

2
𝑧′𝐻𝑧 + 𝑔′𝑧 ∀𝑧 ∈ ℱ

Quadratic Programming
Convexity

July 29, 2015 | Slide 6

© ABB

 A QP problem is called convex iff its Hessian matrix is

symmetric positive semi-definite, i.e.

 It is called strictly convex iff its Hessian matrix is

symmetric positive definite, i.e.

 Every strictly convex QP is bounded from below.

 Every strictly convex and feasible QP has a (unique)

solution!

𝐻 ∈ 𝒮+
𝑛 ≝ 𝑀 ∈ 𝒮𝑛 | 𝑥′𝑀𝑥 ≥ 0 ∀𝑥 ∈ ℝ𝑛

𝐻 ∈ 𝒮++
𝑛 ≝ 𝑀 ∈ 𝒮𝑛 | 𝑥′𝑀𝑥 > 0 ∀𝑥 ∈ ℝ𝑛\ 0

Quadratic Programming
Constraints

July 29, 2015 | Slide 7

© ABB

 unconstrained QP

 QP with simple constraints

 QP with general constraints

min
𝑧

1
2
𝑧′𝐻𝑧 + 𝑔′𝑧

min
𝑧

1
2 𝑧′𝐻𝑧 + 𝑔′𝑧

𝑠. 𝑡. 𝑧 ≤ 𝑧 ≤ 𝑧

min
𝑧

1
2
𝑧′𝐻𝑧 + 𝑔′𝑧

𝑠. 𝑡. 𝑧 ≤𝐴𝑧 ≤ 𝑧

Quadratic Programming
Active constraints

July 29, 2015 | Slide 8

© ABB

 Let a feasible QP problem be given. A constraint 𝐴𝑖
′𝑧 ≥ 𝑏𝑖 is

called active at 𝒛 iff 𝐴𝑖
′ 𝑧 = 𝑏𝑖 holds and inactive otherwise.

 We define the (disjoint) index sets:

 At any solution 𝑧𝑜𝑝𝑡 we call 𝔸 𝑧𝑜𝑝𝑡 the optimal active set.

𝔸 𝑧 ≝ 𝑖 ∈ 1,… ,𝑚 | 𝐴𝑖
′ 𝑧 = 𝑏𝑖

𝕀 𝑧 ≝ 𝑖 ∈ 1,… ,𝑚 | 𝐴𝑖
′ 𝑧 > 𝑏𝑖

Quadratic Programming
Duality

July 29, 2015 | Slide 9

© ABB

 The dual QP can be written as:

 Theorem: Dorn (1960)

Let a convex QP and its dual QPdual be given, then

 if 𝑧𝑜𝑝𝑡 if a solution to QP, then there exists a solution

𝑧𝑜𝑝𝑡, 𝑦𝑜𝑝𝑡 to QPdual,

 if a solution 𝑧𝑜𝑝𝑡, 𝑦𝑜𝑝𝑡 to QPdual exists, then a

solution 𝑧∗ to QP satisfying 𝐻𝑧∗ = 𝐻𝑧𝑜𝑝𝑡 exists,

 in either case, the following holds:

max
𝑧,𝑦

−
1
2 𝑧′𝐻𝑧 + 𝑏′𝑦

𝑠. 𝑡. 𝐻𝑧 + 𝑔 =𝐴′𝑦

𝑦 ≥ 0

1
2 𝑧

𝑜𝑝𝑡′𝐻𝑧𝑜𝑝𝑡 + 𝑔′𝑧𝑜𝑝𝑡 = −
1
2 𝑧

𝑜𝑝𝑡′𝐻𝑧𝑜𝑝𝑡 + 𝑏′𝑦𝑜𝑝𝑡

Quadratic Programming
Optimality conditions

July 29, 2015 | Slide 10

© ABB

 Theorem: Karush (1939), Kuhn/Tucker (1951)

Let a strictly convex QP be given, then there exists a unique

𝑧𝑜𝑝𝑡, an index set 𝔸 ⊆ 𝔸 𝑧𝑜𝑝𝑡 and a vector 𝑦𝑜𝑝𝑡 such that:

 Moreover,

 𝑧𝑜𝑝𝑡 is the unique global minimizer of QP,

 𝑧𝑜𝑝𝑡, 𝑦𝑜𝑝𝑡 is an optimal solution to QPdual,

 the optimal objective values of QP and QPdual are equal.

𝐻𝑧𝑜𝑝𝑡 + 𝑔 − 𝐴𝔸
′ 𝑦𝑜𝑝𝑡 = 0

𝐴𝔸𝑧
𝑜𝑝𝑡 = 𝑏𝔸

𝐴𝕀𝑧
𝑜𝑝𝑡 ≥ 𝑏𝕀
𝑦𝔸
𝑜𝑝𝑡

≥ 0

𝑦𝕀
𝑜𝑝𝑡

= 0

Outline

July 29, 2015 | Slide 11

© ABB

 Quadratic Programming (QP)

 Model Predictive Control (MPC)

 QP Formulations and Algorithms

 The Online QP Solver qpOASES

 Embedded Applications of qpOASES

 Using qpOASES

Model Predictive Control

July 29, 2015 | Slide 12

© ABB Group

Model Predictive Control

July 29, 2015 | Slide 13

© ABB Group

 Predict future behaviour based on dynamic model …

Model Predictive Control

July 29, 2015 | Slide 14

© ABB Group

 … and solve an optimal control problem:

𝑂𝐶𝑃 𝑥0 : min
𝑥 ∙ ,𝑢 ∙

𝑡0

𝑡0+𝑡𝑝

𝐽 𝑥 𝑡 , 𝑢 𝑡 𝑑𝑡 + 𝑃 𝑥 𝑡0 + 𝑡𝑝

𝑠. 𝑡. 𝑥 𝑡0 = x0 𝑡0
 𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝
0 ≤ 𝑐 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡0, 𝑡0 + 𝑡𝑝

0 ≤ 𝑐 𝑥 𝑡0 + 𝑡𝑝

Model Predictive Control

July 29, 2015 | Slide 15

© ABB Group

 Apply first piece of optimized control input …

Model Predictive Control

July 29, 2015 | Slide 16

© ABB Group

 … obtain feedback from real process …

Model Predictive Control

July 29, 2015 | Slide 17

© ABB Group

 … and solve updated optimal control problem:

𝑂𝐶𝑃 𝑥0 : min
𝑥 ∙ ,𝑢 ∙

𝑡1

𝑡1+𝑡𝑝

𝐽 𝑥 𝑡 , 𝑢 𝑡 𝑑𝑡 + 𝑃 𝑥 𝑡1 + 𝑡𝑝

𝑠. 𝑡. 𝑥 𝑡1 = x0 𝑡1
 𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡1, 𝑡1 + 𝑡𝑝
0 ≤ 𝑐 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡1, 𝑡1 + 𝑡𝑝

0 ≤ 𝑐 𝑥 𝑡1 + 𝑡𝑝

Model Predictive Control

July 29, 2015 | Slide 18

© ABB Group

 … and solve updated optimal control problem:

𝑂𝐶𝑃 x0 : min
𝑥 ∙ ,𝑢 ∙

𝑡1

𝑡1+𝑡𝑝

𝐽 𝑥 𝑡 , 𝑢 𝑡 𝑑𝑡 + 𝑃 𝑥 𝑡1 + 𝑡𝑝

𝑠. 𝑡. 𝑥 𝑡1 = 𝑥0 𝑡1
 𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡1, 𝑡1 + 𝑡𝑝
0 ≤ 𝑐 𝑥 𝑡 , 𝑢 𝑡 ∀ 𝑡 ∈ 𝑡1, 𝑡1 + 𝑡𝑝

0 ≤ 𝑐 𝑥 𝑡1 + 𝑡𝑝

repeat

online

Model Predictive Control
Why solving QP problems?

July 29, 2015 | Slide 19

© ABB

 Linear (possibly time-varying) MPC leads to QP problems:

 Linearizing a nonlinear MPC problem (as done in SQP-type

methods) leads to similar (convex) QP problems

 QP solvers are at the core of most MPC implementations!

𝑄𝑃 x0 : min
𝑋, 𝑈

𝑥𝑘0+𝑁
𝑇𝑃𝑥𝑘0+𝑁 +

𝑘0

𝑘0+𝑁−1

𝑥𝑘
𝑇𝑄𝑘𝑥𝑘 + 𝑢𝑘

𝑇𝑅𝑘𝑢𝑘

𝑠. 𝑡. 𝑥𝑘0 = x0

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝑐𝑘 ∀ 𝑘 ∈ 𝑘0, … , 𝑘0 + 𝑁 − 1

𝑑𝑘 ≤ 𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 ∀ 𝑘 ∈ 𝑘0, … , 𝑘0 + 𝑁 − 1

𝑑𝑘0+𝑁 ≤ 𝐶𝑘0+𝑁 𝑥𝑘0+𝑁

Model Predictive Control
leads to specially structured QP problems

July 29, 2015 | Slide 20

© ABB

 Sparsity

 variables are very loosely coupled

 effect becomes the more pronounced the longer the horizon is

 Parametric Dependency

 QP problems have strong similarity

 re-use of previous solution helps finding current one

𝑄𝑃 x0 : min
𝑋, 𝑈

𝑥𝑘0+𝑁
𝑇𝑃𝑥𝑘0+𝑁 +

𝑘0

𝑘0+𝑁−1

𝑥𝑘
𝑇𝑄𝑘𝑥𝑘 + 𝑢𝑘

𝑇𝑅𝑘𝑢𝑘

𝑠. 𝑡. 𝑥𝑘0 = x0

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝑐𝑘 ∀ 𝑘 ∈ 𝑘0, … , 𝑘0 +𝑁 − 1

𝑑𝑘 ≤ 𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 ∀ 𝑘 ∈ 𝑘0, … , 𝑘0 + 𝑁 − 1

𝑑𝑘0+𝑁 ≤ 𝐶𝑘0+𝑁 𝑥𝑘0+𝑁

Outline

July 29, 2015 | Slide 21

© ABB

 Quadratic Programming (QP)

 Model Predictive Control (MPC)

 QP Formulations and Algorithms

 The Online QP Solver qpOASES

 Embedded Applications of qpOASES

 Using qpOASES

QP Formulations

 An MPC-QP can be written as (with 𝑍 = 𝑥𝑘0 , 𝑢𝑘0 , 𝑥𝑘0+1, 𝑢𝑘0+1, … , 𝑥𝑘0+𝑁):

Sparsity pattern

Month DD, Year | Slide 22

© ABB Group

𝑄𝑃 x0 : min
𝑍

𝑍′

𝑄𝑘0
𝑅𝑘0

⋱
𝑄𝑘0+𝑁−1

𝑅𝑘0+𝑁−1

𝑃

𝑍

𝑠. 𝑡.

𝐼𝑑
𝐴𝑘0 𝐵𝑘0 −𝐼𝑑

𝐴𝑘0+1 𝐵𝑘0+1 −𝐼𝑑

⋱
𝐴𝑘0+𝑁−1 𝐵𝑘0+𝑁−1 −𝐼𝑑

𝑍 =

𝑥0
−𝑐𝑘0
−𝑐𝑘0+1

⋮
−𝑐𝑘0+𝑁−1

𝐶𝑘0 𝐷𝑘0
𝐶𝑘0+1 𝐷𝑘0+1

⋱
𝐶𝑘0+𝑁−1 𝐷𝑘0+𝑁−1

𝐶𝑘0+𝑁

𝑍 ≥

𝑑𝑘0
𝑑𝑘0+1
⋮

𝑑𝑘0+𝑁−1
𝑑𝑘0+𝑁

QP Formulations

 This can be re-written as (with 𝑍 = 𝑥𝑘0 , 𝑢𝑘0 , 𝑥𝑘0+1, 𝑢𝑘0+1, … , 𝑥𝑘0+𝑁):

Sparsity pattern

Month DD, Year | Slide 23

© ABB Group

𝑄𝑃 x0 : min
𝑍

𝑍′

𝑄𝑘0
𝑅𝑘0

⋱
𝑄𝑘0+𝑁−1

𝑅𝑘0+𝑁−1

𝑃

𝑍

𝑠. 𝑡.

𝐼𝑑
𝐴𝑘0 𝐵𝑘0 −𝐼𝑑

𝐴𝑘0+1 𝐵𝑘0+1 −𝐼𝑑

⋱
𝐴𝑘0+𝑁−1 𝐵𝑘0+𝑁−1 −𝐼𝑑

𝑍 =

𝑥0
−𝑐𝑘0
−𝑐𝑘0+1

⋮
−𝑐𝑘0+𝑁−1

𝐶𝑘0 𝐷𝑘0
𝐶𝑘0+1 𝐷𝑘0+1

⋱
𝐶𝑘0+𝑁−1 𝐷𝑘0+𝑁−1

𝐶𝑘0+𝑁

𝑍 ≥

𝑑𝑘0
𝑑𝑘0+1
⋮

𝑑𝑘0+𝑁−1
𝑑𝑘0+𝑁

𝑍′𝑯𝑍

𝑨𝒊𝒆𝒒𝑍 ≥ 𝒃𝒊𝒆𝒒

𝑨𝒆𝒒𝑍 = 𝒃𝒆𝒒 𝒙𝟎

QP Formulations
Exploiting sparsity (using sparse solver)

Month DD, Year | Slide 24

© ABB Group

𝑯 =

𝑨𝒆𝒒 =

𝑨𝒊𝒆𝒒 =

Dimension: 𝑛𝑥 + 𝑛𝑢 𝑁 − 1 + 𝑛𝑥
2

#Nonzeros: 𝑛𝑥
2 + 𝑛𝑢

2 𝑁 + 𝑛𝑥
2

Dimension: 𝑛𝑥 + 𝑛𝑢 𝑁 − 1 + 𝑛𝑥 ∙ 𝑛𝑥 𝑁

#Nonzeros: 𝑛𝑥
2 + 𝑛𝑥𝑛𝑢 𝑁 − 1 + 𝑛𝑥𝑁

Dimension: 𝑛𝑥 + 𝑛𝑢 𝑁 − 1 + 𝑛𝑥
2

#Nonzeros: 𝑛𝑥 + 𝑛𝑢 𝑁 − 1 + 𝑛𝑥

Assumptions: 1) 𝑄, 𝑅, 𝑃, 𝐴, 𝐵 dense, 2) input/state bounds

QP Formulations

 All states are uniquely determined by 𝑥0 and 𝑈, thus they

can be easily eliminated from the QP (condensing):

Exploiting sparsity (using state-elimination)

Month DD, Year | Slide 25

© ABB Group

𝑄𝑃 x0 : min
𝑍

𝑍′

𝑄𝑘0
𝑅𝑘0

⋱
𝑄𝑘0+𝑁−1

𝑅𝑘0+𝑁−1

𝑃

𝑍

𝑠. 𝑡.

𝐼𝑑
𝐴𝑘0 𝐵𝑘0 −𝐼𝑑

𝐴𝑘0+1 𝐵𝑘0+1 −𝐼𝑑

⋱
𝐴𝑘0+𝑁−1 𝐵𝑘0+𝑁−1 −𝐼𝑑

𝑍 =

𝑥0
−𝑐𝑘0
−𝑐𝑘0+1

⋮
−𝑐𝑘0+𝑁−1

𝐶𝑘0 𝐷𝑘0
𝐶𝑘0+1 𝐷𝑘0+1

⋱
𝐶𝑘0+𝑁−1 𝐷𝑘0+𝑁−1

𝐶𝑘0+𝑁

𝑍 ≥

𝑑𝑘0
𝑑𝑘0+1
⋮

𝑑𝑘0+𝑁−1
𝑑𝑘0+𝑁

Bock, Plitt (1984)

QP Formulations

 All states are uniquely determined by 𝑤0 and 𝑈, thus they

can be easily eliminated from the QP (condensing):

Exploiting sparsity (using state-elimination)

Month DD, Year | Slide 26

© ABB Group

𝑄𝑃 x0 : min
𝑍

𝑍′

𝑄𝑘0
𝑅𝑘0

⋱
𝑄𝑘0+𝑁−1

𝑅𝑘0+𝑁−1

𝑃

𝑍

𝑠. 𝑡.

𝐼𝑑
𝐴𝑘0 𝐵𝑘0 −𝐼𝑑

𝐴𝑘0+1 𝐵𝑘0+1 −𝐼𝑑

⋱
𝐴𝑘0+𝑁−1 𝐵𝑘0+𝑁−1 −𝐼𝑑

𝑍 =

𝑥0
−𝑐𝑘0
−𝑐𝑘0+1

⋮
−𝑐𝑘0+𝑁−1

𝐶𝑘0 𝐷𝑘0
𝐶𝑘0+1 𝐷𝑘0+1

⋱
𝐶𝑘0+𝑁−1 𝐷𝑘0+𝑁−1

𝐶𝑘0+𝑁

𝑍 ≥

𝑑𝑘0
𝑑𝑘0+1
⋮

𝑑𝑘0+𝑁−1
𝑑𝑘0+𝑁

𝑍 = 𝑬𝑈 + 𝒇 𝒙𝟎

QP Formulations

 All states are uniquely determined by 𝑤0 and 𝑈, thus they

can be easily eliminated from the QP (condensing):

Exploiting sparsity (using state-elimination)

Month DD, Year | Slide 27

© ABB Group

𝑄𝑃 x0 : min
𝑈

𝑍′

𝑄𝑘0
𝑅𝑘0

⋱
𝑄𝑘0+𝑁−1

𝑅𝑘0+𝑁−1

𝑃

𝑍

𝑠. 𝑡.

𝐼𝑑
𝐴𝑘0 𝐵𝑘0 −𝐼𝑑

𝐴𝑘0+1 𝐵𝑘0+1 −𝐼𝑑

⋱
𝐴𝑘0+𝑁−1 𝐵𝑘0+𝑁−1 −𝐼𝑑

𝑍 =

𝑥0
−𝑐𝑘0
−𝑐𝑘0+1

⋮
−𝑐𝑘0+𝑁−1

𝐶𝑘0 𝐷𝑘0
𝐶𝑘0+1 𝐷𝑘0+1

⋱
𝐶𝑘0+𝑁−1 𝐷𝑘0+𝑁−1

𝐶𝑘0+𝑁

𝑍 ≥

𝑑𝑘0
𝑑𝑘0+1
⋮

𝑑𝑘0+𝑁−1
𝑑𝑘0+𝑁

𝑈′𝑬′𝑯𝑬𝑈 + 2 ∙ 𝑈′𝑬′𝑯𝒇 𝒙𝟎

𝑨𝒊𝒆𝒒𝑬𝑈 ≥ 𝒃𝒊𝒆𝒒 − 𝑨𝒊𝒆𝒒𝒇 𝒙𝟎

QP Formulations

 All states are uniquely determined by 𝑤0 and 𝑈, thus they

can be easily eliminated from the QP (condensing):

Exploiting sparsity (using state-elimination)

Month DD, Year | Slide 28

© ABB Group

𝑄𝑃 x0 : min
𝑈

𝑍′

𝑄𝑘0
𝑅𝑘0

⋱
𝑄𝑘0+𝑁−1

𝑅𝑘0+𝑁−1

𝑃

𝑍

𝑠. 𝑡.

𝐼𝑑
𝐴𝑘0 𝐵𝑘0 −𝐼𝑑

𝐴𝑘0+1 𝐵𝑘0+1 −𝐼𝑑

⋱
𝐴𝑘0+𝑁−1 𝐵𝑘0+𝑁−1 −𝐼𝑑

𝑍 =

𝑥0
−𝑐𝑘0
−𝑐𝑘0+1

⋮
−𝑐𝑘0+𝑁−1

𝐶𝑘0 𝐷𝑘0
𝐶𝑘0+1 𝐷𝑘0+1

⋱
𝐶𝑘0+𝑁−1 𝐷𝑘0+𝑁−1

𝐶𝑘0+𝑁

𝑍 ≥

𝑑𝑘0
𝑑𝑘0+1
⋮

𝑑𝑘0+𝑁−1
𝑑𝑘0+𝑁

𝑈′𝑯𝒄𝑈 + 𝑈′𝒈𝒄 𝒙𝟎

𝑨𝒄𝑈 ≥ 𝒃𝒄 𝒙𝟎

QP Formulations
Exploiting sparsity (using state-elimination)

Month DD, Year | Slide 29

© ABB Group

𝑯𝒄 =

𝑨𝒄 =

#Nonzeros: 𝑛𝑢𝑁
2

#Nonzeros: 𝑛𝑥𝑛𝑢
𝑁 𝑁−1

2

 Solving the MPC-QP problem:

1. Eliminate states from QP (also called «condensing»)

2. Solve smaller-scale QP with a dense QP solver

 Linear MPC: states can be eliminated offline!

(a
s
s
u

m
p

ti
o
n

s
 a

s
 b

e
fo

re
)

QP Formulations

 QP size for a MPC problem with 5 states, 2 inputs:

 QP size for a MPC problem with 30 states, 5 inputs:

N 2 5 10 20 50

#Elements 4.1 ∙ 102 3.0 ∙ 103 1.3 ∙ 104 5.2 ∙ 104 3.3 ∙ 105

#Nonzeros

(sparse QP)
1.4 ∙ 102 3.7 ∙ 102 7.5 ∙ 102 1.5 ∙ 103 3.8 ∙ 103

#Nonzeros

(dense QP)
2.6 ∙ 101 2.0 ∙ 102 8.5 ∙ 102 3.5 ∙ 103 2.2 ∙ 104

Number of nonzeros (sparse vs. dense QP)

Month DD, Year | Slide 30

© ABB Group

N 2 5 10 20 50

#Elements 1.2 ∙ 104 8.3 ∙ 104 3.4 ∙ 105 1.4 ∙ 106 8.7 ∙ 106

#Nonzeros

(sparse QP)
3.9 ∙ 103 1.0 ∙ 104 2.0 ∙ 104 4.1 ∙ 104 1.0 ∙ 105

#Nonzeros

(dense QP)
2.5 ∙ 102 2.1 ∙ 103 9.3 ∙ 103 3.9 ∙ 104 2.5 ∙ 105

(a
s
s
u

m
p

ti
o
n

s
 a

s
 b

e
fo

re
)

QP Formulations

 QP size for a MPC problem with 5 states, 2 inputs:

 QP size for a MPC problem with 30 states, 5 inputs:

N 2 5 10 20 50

#Elements 4.1 ∙ 102 3.0 ∙ 103 1.3 ∙ 104 5.2 ∙ 104 3.3 ∙ 105

#Nonzeros

(sparse QP)
1.4 ∙ 102 3.7 ∙ 102 7.5 ∙ 102 1.5 ∙ 103 3.8 ∙ 103

#Nonzeros

(dense QP)
2.6 ∙ 101 2.0 ∙ 102 8.5 ∙ 102 3.5 ∙ 103 2.2 ∙ 104

Number of nonzeros (sparse vs. dense QP)

Month DD, Year | Slide 31

© ABB Group

N 2 5 10 20 50

#Elements 1.2 ∙ 104 8.3 ∙ 104 3.4 ∙ 105 1.4 ∙ 106 8.7 ∙ 106

#Nonzeros

(sparse QP)
3.9 ∙ 103 1.0 ∙ 104 2.0 ∙ 104 4.1 ∙ 104 1.0 ∙ 105

#Nonzeros

(dense QP)
2.5 ∙ 102 2.1 ∙ 103 9.3 ∙ 103 3.9 ∙ 104 2.5 ∙ 105

(a
s
s
u

m
p

ti
o
n

s
 a

s
 b

e
fo

re
)

Sparse formulation is

advantageous whenever

𝒏𝒙
𝒏𝒖

≪ 𝑵

QP Formulations
An example

Month DD, Year | Slide 32

© ABB Group

 Nonlinear MPC example

(spring-masses toy application)

 Red: Time for solving sparse QP

using an auto-generated IP method

(FORCES)

 Blue: Time for state-elimination

and solving condensed QP using

an efficient AS method (qpOASES)

 Remarks:

 worst-case execution times

 severe disturbance, thus

no QP warm-starting used

Scenario 1: 9 states, 3 inputs

Scenario 2: 21 states, 3 inputs

V
u

k
o

v
 e

t
a

l.
 (

2
0

1
3

)

QP Algorithms
Why is there a whole zoo of them?

July 29, 2015 | Slide 33

© ABB

 Tailored to different problem classes

 Different numerical properties

 Amount of sorce code

 Suitability for parallelization

 Suitability for FPGA implementations

Fast gradient gradient method, primal FGM, dual FGM, GPAD, FiOrdOs

Active set quadprog (primal), QLD (dual), qpOASES (parametric)

Interior point primal barrier, CVXGEN (primal-dual), FORCES (primal-dual), HPMPC

Others qpDUNES (Newton-type), PQP, splitting methods (e.g. ADMM),

MPT (explicit methods)

ill-conditioned

problem

QP Algorithms
A limited and rough overview

July 29, 2015 | Slide 34© ABB Group

 Fast gradient methods:

 compute step towards solution of unconstrained QP

 project to feasible set (difficult for general constraints)

 Active-set methods:

 guess which inequalities hold with equality at solution

 solve resulting equality-constrained QP (almost trivial)

 check if guess was correct, update guess if not

 Interior-point methods:

 remove inequalities, but penalize constraint violations in

objective function (non-quadratic term, e.g. logarithmic)

 solve resulting equality-constrained NLP with Newton’s method

 Explicit methods and others

QP Algorithms

 Fast gradient methods: (e.g. FiOrdOs)

 plenty of cheap iterations, variants for both dense/sparse QPs

 Pros: simple to code (no matrix inversion), easy to parallelize

 Cons: sensitive to problem formulation, limited warm-starting

 Active set methods: (e.g. quadprog, qpOASES)

 many cheap iterations, most efficient for dense QPs

 Pros: efficient warm-starting, can be made very reliable

 Cons: difficult to parallelize, only heuristic runtime bound

 Interior point methods: (e.g. IPOPT, OOQP, FORCES)

 few expensive iterations, most efficient for sparse QPs

 Pros: runtime guarantee, quite easy to parallelize

 Cons: limited warm-starting

Some Pros and Cons

Month DD, Year | Slide 35

© ABB Group

Outline

July 29, 2015 | Slide 36

© ABB

 Quadratic Programming (QP)

 Model Predictive Control (MPC)

 QP Formulations and Algorithms

 The Online QP Solver qpOASES

 Embedded Applications of qpOASES

 Using qpOASES

Parametric Quadratic Programming
Definition

July 29, 2015 | Slide 37

© ABB

 A parametric QP problem is an optimization problem of

the form:

 gradient vector 𝑔 𝑥0 = 𝑓 + 𝐹𝑥0

 constraint vector 𝑏 𝑥0 = 𝑒 + 𝐸𝑥0

 parameter 𝑥0 ∈ ℝ𝑝

 For a fixed 𝑥0, one yields a standard QP problem

𝑄𝑃 𝑥0 : min
𝑧

1
2
𝑧′𝐻𝑧 + 𝑔 𝑥0 ′𝑧

𝑠. 𝑡. 𝐴𝑧 ≥𝑏 𝑥0

Parametric Quadratic Programming
Set of feasible parameters

July 29, 2015 | Slide 38

© ABB

 Recall the definition of the feasible set for 𝑄𝑃 𝑥0 , 𝑥0 given:

 We define the set of feasible parameters as follows:

 Theorem: Berkelaar, Roos, Terkaly (1997)

The set 𝒫 of feasible parameters is convex and closed.

ℱ 𝑥0 ≝ 𝑧 ∈ ℝ𝑛 | 𝐴𝑧 ≥ 𝑏 𝑥0

𝒫 ≝ 𝑥0 ∈ ℝ𝑝 | ℱ 𝑥0 ≠ ∅

Parametric Quadratic Programming
Critical regions

July 29, 2015 | Slide 39

© ABB

 Let a strictly convex 𝑄𝑃 𝑥0 be given. For each 𝑥0 ∈ 𝒫 let

𝑧𝑜𝑝𝑡 𝑥0 denote the optimal solution with corresponding

optimal active set 𝔸 𝑧𝑜𝑝𝑡 𝑥0 .

 Then, for every index set 𝔸 ⊆ 1,… ,𝑚 , the set

is called a critical region of 𝒫.

 A critical region contains all parameters 𝑥0 that lead to

solutions of 𝑄𝑃 𝑥0 with a certain optimal active set

𝒞ℛ𝔸 ≝ 𝑥0 ∈ 𝒫 | 𝔸 𝑧𝑜𝑝𝑡 𝑥0 = 𝔸

Parametric Quadratic Programming
Critical regions (cont.)

July 29, 2015 | Slide 40

© ABB

 Theorem: Bemporad, Morari, Dua, Pistikopoulos (2002)

For a strictly convex 𝑄𝑃 𝑥0 the following holds:

 all closures of critical regions are closed polyhedra

with pairwise disjoint interiors;

 the set of feasible parameters 𝓟 can be subdivided into

a finite number of closures of critical regions;

 the optimal solution 𝑧𝑜𝑝𝑡: 𝒫 → ℝ𝑛

is a piecewise affine, continuous

function. Fiacco (1983), Zafiriou (1990)

 Note: explicit MPC pre-computes

this partition offline!

Online Active Set Strategy
Main idea

July 29, 2015
| Slide 41

© ABB

 Let’s assume we have solved

the last 𝑄𝑃 𝑥0 , with optimal

solution 𝑧𝑜𝑝𝑡 𝑥0 :

 Now we want to solve the next

one, 𝑄𝑃 𝑥0
𝑛𝑒𝑤 :

 To this aim, we introduce the following homotopies:

min
𝑧

1
2 𝑧′𝐻𝑧 + 𝑔 𝑥0 ′𝑧

𝑠. 𝑡. 𝐴𝑧 ≥𝑏 𝑥0

min
𝑧

1
2 𝑧′𝐻𝑧 + 𝑔 𝑥0

𝑛𝑒𝑤 ′𝑧

𝑠. 𝑡. 𝐴𝑧 ≥𝑏 𝑥0
𝑛𝑒𝑤

 𝑥0: 0,1 → ℝ𝑞, 𝑥0 𝜏 ≝ 𝑥0 + 𝜏 𝑥0
𝑛𝑒𝑤 − 𝑥0

 𝑔: 0,1 → ℝ𝑛, 𝑔 𝜏 ≝ 𝑔 𝑥0 + 𝜏 𝑔 𝑥0
𝑛𝑒𝑤 − 𝑔 𝑥0

 𝑏: 0,1 → ℝ𝑚, 𝑏 𝜏 ≝ 𝑏 𝑥0 + 𝜏 𝑏 𝑥0
𝑛𝑒𝑤 − 𝑏 𝑥0

Ferreau et al. (2008), Best (1996)

Online Active Set Strategy
Main idea

July 29, 2015
| Slide 42

© ABB

 Let’s assume we have solved the last 𝑄𝑃 𝑥0 , with optimal

solution 𝑧𝑜𝑝𝑡 𝑥0 and want to solve the next one, 𝑄𝑃 𝑥0
𝑛𝑒𝑤 :

 To this aim, we introduce the following homotopies:

 And re-parametrize the parametric QP:

 𝑥0: 0,1 → ℝ𝑞, 𝑥0 𝜏 ≝ 𝑥0 + 𝜏 𝑥0
𝑛𝑒𝑤 − 𝑥0

 𝑔: 0,1 → ℝ𝑛, 𝑔 𝜏 ≝ 𝑔 𝑥0 + 𝜏 𝑔 𝑥0
𝑛𝑒𝑤 − 𝑔 𝑥0

 𝑏: 0,1 → ℝ𝑚, 𝑏 𝜏 ≝ 𝑏 𝑥0 + 𝜏 𝑏 𝑥0
𝑛𝑒𝑤 − 𝑏 𝑥0

𝑄𝑃 𝜏 : min
𝑧

1
2 𝑧′𝐻𝑧 + 𝑔 𝜏 ′𝑧

𝑠. 𝑡. 𝐴𝑧 ≥ 𝑏 𝜏

Online Active Set Strategy
Main idea (cont.)

July 29, 2015
| Slide 43

© ABB

 We aim at satisfying the KKT optimality conditions at

each point along the homotopy path:

 Since 𝑧𝑜𝑝𝑡 𝜏 is continuous and piecewise affine, we search

for primal-dual step directions (valid for 𝜏 ∈ 0, 𝜏𝑚𝑎𝑥):

𝐻 𝐴 𝔸 𝜏
′

𝐴 𝔸 𝜏 0

 𝑧𝑜𝑝𝑡 𝜏

− 𝑦 𝔸 𝜏

𝑜𝑝𝑡
𝜏

=
− 𝑔 𝜏

 𝑏 𝔸 𝜏 𝜏

𝐴 𝕀 𝜏 𝑧𝑜𝑝𝑡 𝜏 ≥ 𝑏 𝕀 𝜏 𝜏

 𝑦 𝕀 𝜏
𝑜𝑝𝑡

𝜏 = 0

 𝑦 𝔸 𝜏

𝑜𝑝𝑡
𝜏 ≥ 0

 𝑧𝑜𝑝𝑡 𝜏 ≝ 𝑧𝑜𝑝𝑡 + 𝜏 ∙ Δ𝑧𝑜𝑝𝑡, 𝑦𝔸
𝑜𝑝𝑡

𝜏 ≝ 𝑦𝔸
𝑜𝑝𝑡

+ 𝜏 ∙ Δ𝑦𝔸
𝑜𝑝𝑡

Online Active Set Strategy
Main idea (cont.)

July 29, 2015
| Slide 44

© ABB

 This leads to the «local» KKT optimality conditions:

 Solving the linear system yields the primal-dual step direction

 We follow this direction (i.e. move along the homotopy path)

until any of KKT inequality conditions becomes violated

𝐻 𝐴𝔸
′

𝐴𝔸 0

Δ𝑧𝑜𝑝𝑡

−Δ𝑦𝔸
𝑜𝑝𝑡 =

−𝑔 𝑥0
𝑛𝑒𝑤 + 𝑔 𝑥0

𝑏𝔸 𝑥0
𝑛𝑒𝑤 − 𝑏𝔸 𝑥0

𝐴𝕀 𝑧
𝑜𝑝𝑡 + 𝜏 ∙ Δ𝑧𝑜𝑝𝑡 ≥ 𝑏𝕀 𝑥0

𝑛𝑒𝑤 − 𝑏𝕀 𝑥0

𝑦𝕀
𝑜𝑝𝑡

+ 𝜏 ∙ Δ𝑦𝕀
𝑜𝑝𝑡

= 0

𝑦𝔸
𝑜𝑝𝑡

+ 𝜏 ∙ Δ𝑦𝔸
𝑜𝑝𝑡

≥ 0

Online Active Set Strategy
Main idea (cont.)

July 29, 2015
| Slide 45

© ABB

 The step length 𝜏𝑚𝑎𝑥 is computed as follows:

 If 𝜏𝑚𝑎𝑥 = 1, the optimal solution of 𝑄𝑃 𝑥0
𝑛𝑒𝑤 has been found!

 Otherwise, at 𝜏 = 𝜏𝑚𝑎𝑥 a constraint is added or removed from

the working set and a new primal-dual step direction is computed

𝜏𝑚𝑎𝑥
𝑝𝑟𝑖𝑚

≝ min
𝑖∈𝕀

𝑏𝑖 𝑥0 − 𝐴𝑖
′𝑧𝑜𝑝𝑡

𝐴𝑖
′Δ𝑧𝑜𝑝𝑡 − Δ𝑏𝑖

| 𝐴𝑖
′Δ𝑧𝑜𝑝𝑡 < Δ𝑏𝑖

𝜏𝑚𝑎𝑥
𝑑𝑢𝑎𝑙 ≝ min

𝑖∈𝔸
−
𝑦𝑖
𝑜𝑝𝑡

Δ𝑦𝑖
|Δ𝑦𝑖 < 0

𝜏𝑚𝑎𝑥 ≝ min 1, 𝜏𝑚𝑎𝑥
𝑝𝑟𝑖𝑚

, 𝜏𝑚𝑎𝑥
𝑑𝑢𝑎𝑙 ∈ 0,1

Online Active Set Strategy
Illustration

July 29, 2015 | Slide 46

© ABB Group

Online Active Set Strategy
Illustration

July 29, 2015 | Slide 47

© ABB Group

Online Active Set Strategy
Illustration

July 29, 2015 | Slide 48

© ABB Group

Online Active Set Strategy
Illustration

July 29, 2015 | Slide 49

© ABB Group

Online Active Set Strategy
Illustration

July 29, 2015 | Slide 50

© ABB Group

Online Active Set Strategy
Illustration

July 29, 2015 | Slide 51

© ABB Group

Online Active Set Strategy
Illustration

July 29, 2015 | Slide 52

© ABB Group

Online Active Set Strategy

 Advantages:

 Often fewer number of iterations by exploiting parametric

nature of MPC problem

 Hot-starts with full solution information of previous QP

(including re-use of matrix factorizations)

 Real-time variant if procedure has to stop prematurely

 Homotopy helps to make implementation numerically robust

 Limitations:

 Rather complex code (e.g. matrix factorizations/updates)

 Difficult to parallelize

Advantages and Limitations

July 29, 2015 | Slide 53

© ABB Group

Online Active Set Strategy
Real-time variant

July 29, 2015 | Slide 54

© ABB Group

Online Active Set Strategy
Real-time variant

July 29, 2015 | Slide 55

© ABB Group

Online Active Set Strategy
Real-time variant

July 29, 2015 | Slide 56

© ABB Group

Online Active Set Strategy
Real-time variant

July 29, 2015 | Slide 57

© ABB Group

Online Active Set Strategy
Real-time variant

July 29, 2015 | Slide 58

© ABB Group

Online Active Set Strategy
Real-time variant

July 29, 2015 | Slide 59

© ABB Group

Online Active Set Strategy
Initialization and Degeneracy handling

July 29, 2015
| Slide 60

© ABB

 Homotopy is started from a QP problem

with known solution, e.g.

 During all iterations, 𝑨𝔸 has to keep full row rank, i.e.

constraints in working set must be linearly independent

 This can be easily done by solving an auxiliary linear system

 Infeasible QP problems are easily detected while moving

along the homotopy path (recall that 𝒫 is convex!)

 Homotopy is stopped until the next feasible QP appears

min
𝑧

1
2 𝑧′𝐻𝑧 + 𝟎′𝑧

𝑠. 𝑡. 𝐴𝑧 ≥−𝟏

qpOASES

 qpOASES solves QP problems

of the following form:

 C/C++ implementation with dense linear algebra

 Reliable and efficient code for solving small- to medium-scale

QPs (states eliminated from MPC problem)

 Self-contained code (optionally, LAPACK/BLAS can be linked)

 Distributed as open-source software (GNU LGPL),

download at: https://projects.coin-or.org/qpOASES

© ABB Group

Slide 61

min
𝑧

1
2 𝑧

′𝐻𝑧 +𝑔 𝑥0
′𝑧

𝑠. 𝑡. 𝑏 𝑥0 ≤ 𝑧 ≤ 𝑏 𝑥0

𝑐 𝑥0 ≤𝐴𝑧 ≤ 𝑐 𝑥0

Ferreau, Kirches, Potschka, Bock, Diehl (2014)

An implementation of the Online Active SEt Strategy

qpOASES
is reliable and efficient

July 29, 2015 | Slide 62

© ABB

Kouzoupis et al. (2015)

 Robust against bad conditioning of Hessian matrix:

 Overall computational performance on 14 MPC benchmark

examples:

 > 2500 QP instances

 2-12 states

 1- 4 control inputs

 3-100 intervals

 different constraints

V
u

k
o

v
 (

2
0

1
5

)

co
n

d
(H

)

QP instance

m
o

re
 r

e
lia

b
le

more efficient

qpOASES
Further algorithmic features

July 29, 2015 | Slide 63

© ABB Group

 Handles semi-definite (even indefinite) Hessian matrices

 Structure exploitation for various QP variants, e.g.

 box constraints

 varying matrices

 limited sparsity support

 Reliable detection of infeasible QP problems

 Start from arbitrary initial guesses (without Phase I)

 Choose between double and single precision arithmetic

qpOASES

 Matlab / Octave / Scilab

 Simulink

 dSPACE

 xPC Target

 Python

 YALMIP / ACADO Toolkit / MUSCOD-II / CasADi

Offers various interfaces to third-party software

July 29, 2015 | Slide 64

© ABB Group

Outline

July 29, 2015 | Slide 65

© ABB

 Quadratic Programming (QP)

 Model Predictive Control (MPC)

 QP Formulations and Algorithms

 The Online QP Solver qpOASES

 Embedded Applications of qpOASES

 Using qpOASES

Using qpOASES

 ACADO Code Generation Tool uses qpOASES within an

SQP-type algorithm for nonlinear MPC

 If MPC horizon becomes long, block condensing may be

applied to adjust the sparsity level of the QP problem

 Recently proposed dual Newton strategy shows promising

performance combining block condensing and qpOASES

 Optimum experimental design problems often lead to

nonconvex NLPs with block-diagonal Hessian matrix

 A filter line-search SQP method using SR1/BFGS updates

based on qpOASES has been proposed

as algorithmic building block

July 29, 2015 | Slide 66

© ABB Group

Houska et al. (2011)

Axehill (2015)

Kouzoupis et al. (2015a), Frasch et al. (2014)

Janka et al. (2015)

Using qpOASES
for Real-World Applications

July 29, 2015 | Slide 67

© ABB Group

beam tip vibrations

Diesel engine airpath

machine tools

humanoid NAO robot

integral gas engine

race car driving

gasoline engine

badminton robot

autonomous tractor

cranevideo.mp4
cranevideo.mp4

Using qpOASES
to Control a 48 Megawatt Drive!

July 29, 2015 | Slide 68

© ABB Group

 Load commutated inverters (LCIs) play an important role

in powering electrically-driven compressor stations

 MPC can help LCIs to ride through

partial loss of grid voltage

 qpOASES solves a small-scale

QP problem every millisecond

on embedded hardware

 Successfully tested on a 48 MW

pilot plant installation

Besselmann et al. (to appear)

Outline

July 29, 2015 | Slide 69

© ABB

 Quadratic Programming (QP)

 Model Predictive Control (MPC)

 QP Formulations and Algorithms

 The Online QP Solver qpOASES

 Embedded Applications of qpOASES

 Using qpOASES

Using qpOASES

 Matlab interface offers basically the complete functionality of

the C++ core

 qpOASES can be called either in offline mode or online mode

 Offline mode: initialize each QP problem from scratch

 Online mode: use hotstarts to speed-up solution

for your own project

July 29, 2015 | Slide 70

© ABB Group

[x,fval,exitflag,iter,lambda,auxOutput] = ...

qpOASES(H,g,A,lb,ub,lbA,ubA,options,auxInput);

[QP,x,fval,…] = qpOASES_sequence(‘i’,H,g,A,lb,ub,…);

[x,fval,…] = qpOASES_sequence(‘h’,QP,g,lb,ub,…);

qpOASES_sequence(‘c’,QP);

Using qpOASES

 If no options are passed, default options are used that are

typically slower but more reliable

 Enable MPC options by calling

 Options can also be used to specify maximum number of

iterations (or CPU time limit)

 Type

for more information

for your own project (cont.)

July 29, 2015 | Slide 71

© ABB Group

myOptions = qpOASES_options(‘mpc’);

help qpOASES

help qpOASES_sequence

help qpOASES_options

help qpOASES_auxInput

Summary

 qpOASES is a reliable, self-contained, open-source

QP solver, also for embedded optimization

 Efficient due to plenty of structure-exploiting features

 Successfully used in numerous real-world applications

https://projects.coin-or.org/qpOASES

(thanks to Christian Kirches, Andreas Potschka, Alexander Buchner,

Manuel Kudruss, Sebastian Walter and all the other contributors)

July 29, 2015 | Slide 72

© ABB Group

