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Convex Optimization is the Workhorse

‣ Many problems can be boiled down to solving

• Linear constrained optimal control
• Nonlinear programming: sequential quadratic programming
• Mixed-integer problems: convex relaxations
• Stochastic optimization: sampling

‣ In fact, this is what we can solve reliably
‣ In real-time control: parametric convex problems

2

Bounds, polytopes,
second-order cones, 
2-norm balls, 
exponential cones, ...
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Methods & Tools for Parametric Problems
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• Fixed complexity
• Simple to evaluate
• < μs sampling
• LPs/QPs only
• small problems only

Precompute controller
• Any size
• Very fast for problems

with simple sets
• μs – ms sampling
• Certification

First order methods

EXPLICIT ITERATIVE METHODS

• Any size & problem
• Robust to conditioning
• ms sampling

Second order methods

Speed

Flexibility

Parametric Programming Gradient Methods
Operator Splitting (ADMM)

Active Set Methods
Interior Point Methods
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• Fixed complexity
• Simple to evaluate
• < μs sampling
• LPs/QPs only
• small problems only

Precompute controller
• Any size
• Very fast for problems

with simple sets
• μs – ms sampling
• Certification

First order methods

EXPLICIT ITERATIVE METHODS

• Any size & problem
• Robust to conditioning
• ms sampling

Second order methods

Multi-Parametric Toolbox 3.0
[Kvasnica, Herceg, Jones, 2012]

• QPC [Wills, 2008]
• qpOASES [Ferreau & Diehl, 2008]
• “Fast MPC” [Wang & Boyd 2008]
• CVXGEN [Mattingley & Boyd 2010]
• FORCES [Domahidi et al., 2012]
• ECOS [Domahidi et al., 2013]
• HPMPC [Frison et al, 2014]

• µAO-MPC
[Zometa et al., 2013]

• FiOrdOs [Richter et al., 2012]
• QPgen [Giselsson, 2015]
• SPLIT Toolbox [Jones, 2015]

Software
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Precompute controller First order methods

EXPLICIT ITERATIVE METHODS

Interior-point methods

• QPC [Wills, 2008]
• qpOASES [Ferreau & Diehl, 2008]
• “Fast MPC” [Wang & Boyd 2008]
• CVXGEN [Mattingley & Boyd 2010]
• FORCES [Domahidi et al., 2012]
• ECOS [Domahidi et al., 2013]
• HPMPC [Frison et al, 2014]
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Constrained Minimization Problem
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Constrained Optimization Interior Point Methods

Constrained Minimization Problem

Consider the following problem with inequality constraints

min f (x)

s.t. g
i

(x) Æ 0, i = 1, . . . , m

Assumptions:
f , g

i

convex, twice continuously di�erentiable
f (xú

) is finite and attained
strict feasibility: there exists a x̃ with

x̃ œ dom f , g
i

(x̃) < 0, i = 1, . . . , m

feasible set is closed and compact

Idea: There exist many methods for unconstrained minimization
∆ Reformulate problem as an unconstrained problem

Numerical Optimization Methods A. Domahidi, S. Richter, M. Morari - Spring Semester 2015 3-41
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Constrained Optimization Interior Point Methods

Graphical Illustration

Minimize a function over a set

Numerical Optimization Methods A. Domahidi, S. Richter, M. Morari - Spring Semester 2015 3-42
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Constrained Optimization Interior Point Methods

Graphical Illustration
Define function as Œ if constraints violated.

Minimize this function over Rn

Numerical Optimization Methods A. Domahidi, S. Richter, M. Morari - Spring Semester 2015 3-43
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Barrier Method
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Constrained Optimization Interior Point Methods

Barrier Method
min f (x )

s.t. g
i

(x ) Æ 0, i = 1, . . . , m … min f (x ) + Ÿ„(x )

Constraints have been moved to objective via indicator function:

„(x ) =

mÿ

i=1

I ≠(g
i

(x )), Ÿ = 1

where I ≠(u ) = 0 if u Æ 0 and I ≠ = Œ otherwise

Augmented cost is not di�erentiable
æ approximation by logarithmic barrier:

„(x ) = ≠
mÿ

i=1

log(≠g
i

(x ))

For Ÿ > 0 smooth approximation of
indicator function
Approximation improves as Ÿ æ 0

Ÿ„(u )

Logarithmic barrier

reformulation of (1) via indicator function:

minimize f0(x) +

�m
i=1 I�(fi(x))

subject to Ax = b

where I�(u) = 0 if u  0, I�(u) = � otherwise (indicator function of R�)

approximation via logarithmic barrier

minimize f0(x) � (1/t)

�m
i=1 log(�fi(x))

subject to Ax = b

• an equality constrained problem

• for t > 0, �(1/t) log(�u) is a
smooth approximation of I�

• approximation improves as t � �

u
�3 �2 �1 0 1

�5

0

5

10

Interior-point methods 12–4Numerical Optimization Methods A. Domahidi, S. Richter, M. Morari - Spring Semester 2015 3-44
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Logarithmic Barrier Function
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Logarithmic Barrier Function

„(x) = ≠
mÿ

i=1

log(≠g
i

(x)), dom „ = {x | g
1

(x) < 0, . . . , g
m

(x) < 0}

Convex, smooth on its domain
„(x) æ Œ as x approaches boundary of domain
arg min

x

„(x) is called analytic center of the set defined by inequalities
g

1

< 0, . . . , g
m

< 0

Twice continuously di�erentiable with derivatives

Ò„(x) =

mÿ

i=1

1

≠g
i

(x)

Òg
i

(x)

Ò2„(x) =

mÿ

i=1

1

g
i

(x)

2

Òg
i

(x)Òg
i

(x)

T

+

1

≠g
i

(x)

Ò2g
i

(x)

Numerical Optimization Methods A. Domahidi, S. Richter, M. Morari - Spring Semester 2015 3-45
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Constrained Optimization Interior Point Methods

Central Path

Define xú
(Ÿ) as the solution of

min

x

f (x) + Ÿ„(x)

(assume minimizer exists and is unique for each Ÿ > 0)
Barrier parameter Ÿ determines relative weight between objective and barrier
Barrier ‘traps’ x(Ÿ) in strictly feasible set
Central path is defined as {xú

(Ÿ) | Ÿ > 0}
For given Ÿ can compute xú

(Ÿ) by solving smooth unconstrained
minimization problem
Intuitively xú

(Ÿ) converges to optimal solution as Ÿ æ 0

(easy to prove under mild conditions)

Numerical Optimization Methods A. Domahidi, S. Richter, M. Morari - Spring Semester 2015 3-46
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Example: Central Path for an LP

min cTx
s.t. aT

i

x Æ b
i

, i = 1, . . . , 6

x œ R2, c points upward

Ÿ = 1000

Example: central path for LP

x 2 R

2, A 2 R

6�2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

Ÿ = 1

Example: central path for LP

x 2 R

2, A 2 R

6�2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

Ÿ = 1/5

Example: central path for LP

x 2 R

2, A 2 R

6�2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

Ÿ = 1/100

Example: central path for LP

x 2 R

2, A 2 R

6�2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5
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Path-following Method

Idea: Follow central path to the optimal solution

Solve sequence of smooth unconstrained problems:

xú
(Ÿ) = arg min

x

f (x) + Ÿ„(x)

Assume current solution is on the central path x
i

= xú
(Ÿ

i

)

Obtain Ÿ
i+1

by decreasing Ÿ
i

by some amount: Ÿ
i+1

= Ÿ
i

/µ, µ > 1

Solve for xú
(Ÿ

i+1

) starting from xú
(Ÿ

i

) (unconstrained optimization). Called
”centering step“ because it computes a point on (or close to) the central path
Method converges to the optimal solution, i.e., x

i

æ xú for Ÿ æ 0

Numerical Optimization Methods A. Domahidi, S. Richter, M. Morari - Spring Semester 2015 3-48
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Constrained Optimization Interior Point Methods

Example - Quadratic Program

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

Optimal point Initial point

Analytic center

Numerical Optimization Methods A. Domahidi, S. Richter, M. Morari - Spring Semester 2015 3-49
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Constrained Optimization Interior Point Methods

Centering Step Using Newton’s Method
Idea: Exploit fast local convergence of Newton’s method starting at point close
to optimum

Newton direction: �x
nt

minimizes second order approximation

f (x + v) + Ÿ„(x + v) ¥f (x) + Ÿ„(x) + Òf (x)

Tv + ŸÒ„(x)

Tv

+

1

2

vTÒ2f (x)v +

1

2

ŸvTÒ2„(x)v

Newton direction for barrier method is given by solution of

(Ò2f (x) + ŸÒ2„(x))�x
nt

= ≠Òf (x) ≠ ŸÒ„(x)

Line search consists of two steps:
1 For retaining feasibility, find

h
max

= arg max

h>0{h | g1(x + h�x) < 0, . . . , g
m

(z + h�x) < 0}
2 Find hú

= arg min

hœ[0, h

max

]{f (x + h�x) + Ÿ„(x + h�x)}

both either solved exactly or through backtracking

Numerical Optimization Methods A. Domahidi, S. Richter, M. Morari - Spring Semester 2015 3-50
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Backtracking Line Search
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Unconstrained Optimization Newton’s Method

Details on Backtracking Line Search
Backtracking line search terminates when Armijo’s condition is satisfied:

f (x
i

+ h
i

� x
nt

) Æ f (x
i

) + – h
i

Òf (x
i

)

T

� x
nt

This is required for convergence of the optimization algorithm.
From [Boyd & Vandenberghe, Convex Optimization, 2004] with t © h , x © x

i

:9.2 Descent methods 465

t

f(x + t�x)

t = 0

t0

f(x) + ↵trf(x)

T
�x

f(x) + trf(x)

T
�x

Figure 9.1 Backtracking line search. The curve shows f , restricted to the line

over which we search. The lower dashed line shows the linear extrapolation

of f , and the upper dashed line has a slope a factor of ↵ smaller. The

backtracking condition is that f lies below the upper dashed line, i.e., 0 
t  t0.

The line search is called backtracking because it starts with unit step size and

then reduces it by the factor � until the stopping condition f(x + t�x)  f(x) +

↵trf(x)

T
�x holds. Since �x is a descent direction, we have rf(x)

T
�x < 0, so

for small enough t we have

f(x + t�x) ⇡ f(x) + trf(x)

T
�x < f(x) + ↵trf(x)

T
�x,

which shows that the backtracking line search eventually terminates. The constant

↵ can be interpreted as the fraction of the decrease in f predicted by linear extrap-

olation that we will accept. (The reason for requiring ↵ to be smaller than 0.5 will

become clear later.)

The backtracking condition is illustrated in figure 9.1. This figure suggests,

and it can be shown, that the backtracking exit inequality f(x + t�x)  f(x) +

↵trf(x)

T
�x holds for t � 0 in an interval (0, t0]. It follows that the backtracking

line search stops with a step length t that satisfies

t = 1, or t 2 (�t0, t0].

The first case occurs when the step length t = 1 satisfies the backtracking condition,

i.e., 1  t0. In particular, we can say that the step length obtained by backtracking

line search satisfies

t � min{1, �t0}.

When dom f is not all of R

n
, the condition f(x+ t�x)  f(x)+↵trf(x)

T
�x

in the backtracking line search must be interpreted carefully. By our convention

that f is infinite outside its domain, the inequality implies that x + t�x 2 dom f .

In a practical implementation, we first multiply t by � until x + t�x 2 dom f ;

Numerical Optimization Methods A. Domahidi, S. Richter, M. Morari - Spring Semester 2015 2-20

464 9 Unconstrained minimization

The outline of a general descent method is as follows. It alternates between two
steps: determining a descent direction ∆x, and the selection of a step size t.

Algorithm 9.1 General descent method.

given a starting point x ∈ dom f .

repeat

1. Determine a descent direction ∆x.
2. Line search. Choose a step size t > 0.
3. Update. x := x + t∆x.

until stopping criterion is satisfied.

The second step is called the line search since selection of the step size t deter-
mines where along the line {x + t∆x | t ∈ R+} the next iterate will be. (A more
accurate term might be ray search.)

A practical descent method has the same general structure, but might be or-
ganized differently. For example, the stopping criterion is often checked while, or
immediately after, the descent direction ∆x is computed. The stopping criterion
is often of the form ‖∇f(x)‖2 ≤ η, where η is small and positive, as suggested by
the suboptimality condition (9.9).

Exact line search

One line search method sometimes used in practice is exact line search, in which t
is chosen to minimize f along the ray {x + t∆x | t ≥ 0}:

t = argmins≥0 f(x + s∆x). (9.16)

An exact line search is used when the cost of the minimization problem with one
variable, required in (9.16), is low compared to the cost of computing the search
direction itself. In some special cases the minimizer along the ray can be found an-
alytically, and in others it can be computed efficiently. (This is discussed in §9.7.1.)

Backtracking line search

Most line searches used in practice are inexact : the step length is chosen to ap-
proximately minimize f along the ray {x + t∆x | t ≥ 0}, or even to just reduce
f ‘enough’. Many inexact line search methods have been proposed. One inexact
line search method that is very simple and quite effective is called backtracking line
search. It depends on two constants α, β with 0 < α < 0.5, 0 < β < 1.

Algorithm 9.2 Backtracking line search.

given a descent direction ∆x for f at x ∈ dom f , α ∈ (0, 0.5), β ∈ (0, 1).

t := 1.
while f(x + t∆x) > f(x) + αt∇f(x)T ∆x, t := βt.
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Constrained Optimization Interior Point Methods

Centering Step with Equality Constraints

Centering Step: Compute xú
(Ÿ) by solving

min f (x) + Ÿ„(x)

s.t. Cx = d

Newton step �x
nt

for minimization with equality constraints is given by
solution of

5Ò2f (x) + ŸÒ2„(x) C T

C 0

6 5
�x

nt

‹

6
= ≠

5Òf (x) + ŸÒ„(x)

0

6

Same interpretation as Newton step for unconstrained problem:
x + �x

nt

minimizes second order approximation

min Òf (x)

Tv + ŸÒ„(x)

Tv +

1

2

vTÒ2f (x)v +

1

2

ŸvTÒ2„(x)v
s.t. Cv = 0

Numerical Optimization Methods A. Domahidi, S. Richter, M. Morari - Spring Semester 2015 3-51
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Barrier Interior-point Method
With Equality Constraints

min

x

{f (x) | g(x) Æ 0, Cx = d}

Require: strictly feasible x
0

w.r.t. g(x), Ÿ
0

, µ > 1, tol. ‘ > 0

repeat
1 Centering step: Compute xú

(Ÿ
i

) by minimizing
f (x) + Ÿ

i

„(x) subject to Cx = d starting from x
i≠1

2 Update x
i

= xú
(Ÿ

i

)

3 Stopping criterion: Stop if mŸ
i

< ‘

4 Decrease barrier parameter: Ÿ
i+1

= Ÿ
i

/µ

Several heuristics for choice of Ÿ
0

and other parameters2

Terminates with f (x
i

) ≠ f (xú
) Æ ‘

Steps 1-4 represent one outer iteration
Step 1: Solve equality constrained minimization problem (via Newton steps)

2More details in e.g. [Boyd & Vandenberghe, Convex Optimization, 2004]
Numerical Optimization Methods A. Domahidi, S. Richter, M. Morari - Spring Semester 2015 3-52
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Example: Newton Step for Quadratic Programming
See also exercises

min

x

)
1/2xTHx | Gx Æ d

*

Barrier method:

min

x

f (x) + Ÿ„(x) = min

x

1

2

xTHx ≠ Ÿ
mÿ

i=1

log(d
i

≠ g
i

x)

where g
1

, . . . , g
m

are the rows of G.

The gradient and Hessian of the barrier function are:

Ò„(x) =

mÿ

i=1

1

d
i

≠ g
i

x gT

i

,Ò2„(x) =

mÿ

i=1

1

(d
i

≠ g
i

x)

2

gT

i

g
i

Newton step: (Ò2f (x) + ŸÒ2„(x))�x
nt

= ≠Òf (x) ≠ ŸÒ„(x)

(H + Ÿ
mÿ

i=1

1

(d
i

≠ g
i

x)

2

gT

i

g
i

)�x
nt

= ≠Hx ≠
mÿ

i=1

1

d
i

≠ g
i

x gT

i
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Remarks on Barrier Method

Choice of µ involves trade-o�: large µ ∆ few outer iterations, but more inner
iterations to compute x

i+1

from x
i

(typical values µ = 10 ≠ 20)
Good convergence properties for a wide range of parameters µ
Example: LP with 100 inequalities, 50 variables

Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

Newton iterations

du
al

it
y

ga
p

µ = 2µ = 50 µ = 150

0 20 40 60 80

10�6

10�4

10�2

100

102

µ
N

ew
to

n
it
er

at
io

ns
0 40 80 120 160 200

0

20

40

60

80

100

120

140

• starts with x on central path (t(0) = 1, duality gap 100)

• terminates when t = 10

8 (gap 10

�6)

• centering uses Newton’s method with backtracking

• total number of Newton iterations not very sensitive for µ � 10

Interior-point methods 12–13

Barrier method requires strictly feasible initial point
æ Phase I method, e.g., min

x,s{s | g(x) Æ s · 1}

Numerical Optimization Methods A. Domahidi, S. Richter, M. Morari - Spring Semester 2015 3-54
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Interpretation of Barrier IPM via KKT conditions
KKT conditions of the barrier problem:

Cxú
= d

g
i

(xú
) Æ 0, i = 1, . . . , m

Òf (xú
) + Ÿ

mÿ

i=1

1

≠g
i

(xú
)

Òg
i

(xú
) + C T‹ú

= 0

Defining

⁄ú
i

= Ÿ
1

≠g
i

(xú
)

Ø 0

results in the standard KKT conditions where complementarity slackness is
replaced by the relaxed condition

⁄ú
i

g
i

(xú
) = ≠Ÿ

Numerical Optimization Methods A. Domahidi, S. Richter, M. Morari - Spring Semester 2015 3-55
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Primal-Dual Interior-point Methods

Using the result from above, the relaxed KKT system can be written as

Cx ú
= d

g
i

(x ú
) + s ú

i

= 0 i = 1, . . . , m
Òf (x ú

) +

q
m

i=1

⁄ú
i

Ò g
i

(x ú
) + C T‹ú

= 0

⁄ú
i

g
i

(x ú
) = ≠Ÿ

⁄ú
i

, s ú
i

Ø 0, i = 1, . . . , m

(**)

Idea: leave dual multipliers ⁄ú
i

as variables (before, they were implicitly defined by
primal log barrier)3:

Solve the primal and dual problem simultaneously via (**)
Primal-dual central path , {(x , s , ⁄, ‹) | (**) holds}
Follow central path to solution by reducing Ÿ to zero
Solve (**) by Newton method (with additional “safeguards” & line search)

3See e.g. [Stephen Wright, Primal-dual Interior-point Methods, SIAM 1997]
Numerical Optimization Methods A. Domahidi, S. Richter, M. Morari - Spring Semester 2015 3-56
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Primal-Dual Search Direction Computation

At each iteration, linearize (**) and solve
S

WWU

H (x, ⁄) C T G(x)

T

0

C 0 0 0

G(x) 0 0 I
0 0 S �

T

XXV

S

WWU

�x
�y
�⁄
�s

T

XXV = ≠

S

WWU

Òf (x) + C Ty + G(x)

T⁄
Cx ≠ d
g(x) + s
S⁄ ≠ ‹

T

XXV

where S , diag(s
1

, . . . , s
m

) and � , diag(⁄
1

, . . . , ⁄
m

), the (1,1) block in the
coe�cient matrix is

H (x, ⁄) , Ò2f (x) +

mÿ

i=1

⁄
i

Ò2g
i

(x)

and the vector ‹ œ Rm allows for a modification of the right-hand side. Call
resulting direction � [x, y, ⁄, s] (‹).
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Primal-Dual Search Directions

25

Constrained Optimization Interior Point Methods

Search Directions in Primal-Dual Methods
Can generate di�erent directions � [x, y, ⁄, s] (‹) depending on ‹:

JLU[YHS WH[O C

s1

VW[PTHS WVPU[

�1

J\YYLU[ P[LYH[L
(x, y ,�, s)

5L^[VU
KPYLJ[PVU
�WYLKPJ[VY�
� [x, y ,�, s] (0)

JLU[LYPUN
KPYLJ[PVU � [x, y ,�, s] (1)

YLZ\S[PUN ZLHYJO
KPYLJ[PVU ^P[O � 2 (0, 1)
� [x, y ,�, s] (�1)

‹ = 0: standard Newton method for solving nonlinear equations
‹ = Ÿ1: centering direction, next iterate is on central path

∆ Using linear combination via centering parameter ‡ œ (0, 1) ensures fast
convergence in theory & practice by tracking central path to solution
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Summary Interior-Point Methods

26

Constrained Optimization Interior Point Methods

Recap: Interior-point Methods
Barrier method
(also called Sequential Unconstrained Minimization Technique, SUMT)

Intuition: Follow central path to the optimal solution
Log barrier function ensures satisfaction of inequality constraints
Centering problems can be solved e�ciently using Newton’s method
Requires strictly feasible initial point

‘Modern’ methods: Primal-dual methods
Often more e�cient than barrier method (superlinear convergence)
Cost per iteration roughly the same as barrier method
Allow for infeasible start (w.r.t. both equality and inequality constraints)
Can provide certificates of infeasibility (using self-dual embedding)
Most e�cient in practice: Mehrotra’s predictor-corrector method4: < 30 iterations
in practice

Interior-point methods are very e�cient for range of optimization problems, e.g. LPs,
QPs, second-order cone and semidefinite programs.

4See e.g. J. Nocedal and S. Wright: Numerical Optimization, 2006, Springer
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Convergence Rates

27

Constrained Optimization Interior Point Methods

Convergence Speeds
Examples of di�erent classes of converging sequences {e

i

}, with corresponding
methods for constrained optimization:

0 5 10 15 20 25 30 35 40

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

e

i

iteration iiteration i

e

i

1Ô
i+1

(sublinear)

1

i+1

(sublinear)

1

(i+1)

2

(sublinear)

Gradient methods

0.6i (linear)
GM – strongly convex case

IPM (barrier method)

!
1

1.1

"!
2

i

"
(quadratic)

i

≠i (superlinear)
Primal-dual IPMs (locally)
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Outline of this Talk

28

Precompute controller First order methods

EXPLICIT ITERATIVE METHODS

Interior-point methods

• QPC [Wills, 2008]
• qpOASES [Ferreau & Diehl, 2008]
• “Fast MPC” [Wang & Boyd 2008]
• CVXGEN [Mattingley & Boyd 2010]
• FORCES [Domahidi et al., 2012]
• ECOS [Domahidi et al., 2013]
• HPMPC [Frison et al, 2014]

1

2
3
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Interior Point Methods in a Nutshell

29

1. Initialize
2.  Solve linearized KKT system
→ search direction

3.  Determine step size
4. 

Interior Point Method

Linearized KKT system

KKT conditions

Convex problem
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Interior Point Methods in a Nutshell

29

1. Initialize
2.  Solve linearized KKT system
→ search direction

3.  Determine step size
4. 

Interior Point Method

Solving the linearized KKT system is ~95% of the computation

Linearized KKT system

KKT conditions

Convex problem
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Solving Ax=b, A square
• Iterative solvers: generate sequence of iterates s.t. 

– MINRES, conjugate gradient, Krylov subspace methods, Lanczos...
– Useful for parallelizing
– Matrix-vector products only, max. O(n^2) per iteration
– Number of iterations required depends strongly on cond(A)
– Literature in context of IPMs: inexact Newton methods

• Direct solvers: factor A & forward/backward solve
– General A: LU factorization 4/3 n^3 flops

• Gauss elimination with partial pivoting
– A symmetric indefinite: LDL factorization 4/3 n^3 flops (1/2 the memory of LU)

• Bunch-Parlett pivoting (1x1 and 2x2 blocks in D)
– A symmetric positive definite: Cholesky 2/3 n^3 flops

• stable without pivoting
• needs square roots

30

Ax � b
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Direct Methods Solving the KKT System

31

1. Unreduced form

3. Normal form

2. Augmented form • Eliminate Δλ and Δs                   
(S and L are PD and diagonal)

• Symmetric, but indefinite
• LDL factorization
– Requires pivoting
– CVXGEN: regularization instead

• Not symmetric and indefinite
• LU factorization

• Eliminate Δy                  
(Schur complement)

• Symmetric, positive definite
• Cholesky factorization
– Stable without pivoting

14
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Convex Multistage Problems

32

where                    and      has full row rank
	

upper/lower bounds

affine inequalities

quadratic inequalities

affine equalities, each 
coupling only two 

consecutive variables

separable objectiveTPUPTPaL
�N

i=1
1
2z

T
i Hizi + f T

i zi

Z\IQLJ[ [V z i � zi � z̄i

Aizi � bi

zT
i Qi ,jzi + lTi,jzi � ri ,j

Cizi +Di+1zi+1 = ci

A iHi , Qi � 0
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Convex Multistage Problems

32

where                    and      has full row rank
	

upper/lower bounds

affine inequalities

quadratic inequalities

affine equalities, each 
coupling only two 

consecutive variables

separable objective

Captures OCP, MPC, MHE, spline optimization, portfolio optimization, etc.

TPUPTPaL
�N

i=1
1
2z

T
i Hizi + f T

i zi

Z\IQLJ[ [V z i � zi � z̄i

Aizi � bi

zT
i Qi ,jzi + lTi,jzi � ri ,j

Cizi +Di+1zi+1 = ci

A iHi , Qi � 0
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Multistage Proper ty Induces Structure

33

1.              and         are block diagonal 

2.  

3. Dimensions known at compile time 

n

Linearized KKT system

H(y ,�) J(y)

TPUPTPaL
�N

i=1
1
2z

T
i Hizi + f T

i zi
Z\IQLJ[ [V z i � zi � z̄i

Aizi � bi
zT
i Qi ,jzi + lTi,jzi � ri ,j
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Multistage problem
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Multistage Proper ty Induces Structure

33

1.              and         are block diagonal 

2.  

3. Dimensions known at compile time 

n

Linearized KKT system

Goal: Exploit problem structure to speed up solution

H(y ,�) J(y)

TPUPTPaL
�N

i=1
1
2z

T
i Hizi + f T

i zi
Z\IQLJ[ [V z i � zi � z̄i

Aizi � bi
zT
i Qi ,jzi + lTi,jzi � ri ,j
Cizi +Di+1zi+1 = ci

Multistage problem
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Direct Methods Solving the KKT System

34

1. Unreduced form

3. Normal form

2. Augmented form • Eliminate Δλ and Δs                   
(S and L are PD and diagonal)

• Symmetric, but indefinite
• LDL factorization
– Requires pivoting
– CVXGEN: regularization instead

• Not symmetric and indefinite
• LU factorization

• Eliminate Δy                  
(Schur complement)

• Symmetric, positive definite
• Cholesky factorization
– Stable without pivoting
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Search Direction Computation

35

N : U\TILY VM Z[HNLZ, r : Z[HNL�ISVJR ZPaL

Compute search 
direction (forward & 

backward subst.)

Set up KKT System

Factor coefficient
matrix

1

2

3
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Cholesky Factorization of Y

36

• Want to compute      such that  

• Sequential block-wise factorization: 

Y = LY L
T
YLY

Y =

�

����

Y11 Y12 0 0 · · ·
Y T
12 Y22 Y23 0 · · ·
0 Y T

23 Y33 Y34 · · ·
���

��� � � � � � � � � �

�

���� LY =

�

������

L11 0 0 · · · 0
L21 L22 0 · · · 0
0 L32 L33 · · · 0
���

��� � � � � � � ���
0 0 · · · LN,N�1 LN,N

�

������

L11 = JOVS(Y11) 2/3r3 �*OVSLZR` MHJ[VYPaH[PVU�
MVY i = 2 : N KV
LT

i+1,i = Yi ,i+1/Li ,i r3 �4H[YP_ IHJR^HYK Z\IZ[��
Ui = Li ,i�1LT

i,i�1 r3 �4H[YP_ TH[YP_ T\S[��
Li i = JOVS(Yi i � Ui) 2/3r3 �*OVSLZR` MHJ[VYPaH[PVU�
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Search Direction Computation

37

N : U\TILY VM Z[HNLZ, r : Z[HNL�ISVJR ZPaL

Compute search 
direction (forward & 

backward subst.)

Set up KKT System

Factor coefficient
matrix
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Search Direction Computation

37

N : U\TILY VM Z[HNLZ, r : Z[HNL�ISVJR ZPaL

Compute search 
direction (forward & 

backward subst.)

Set up KKT System

Factor coefficient
matrix

1

2

3

• Reduce naive O(N3r3) to O(Nr3) by banded fact.
[Wang & Boyd 2008], [Rao, Wright & Rawlings 1998]

• 20% of total effort
• Independent of problem structure
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Search Direction Computation

37

• 80% of total effort
• Generally ignored in the literature
• Possible to exploit structure of problem

[Domahidi et. al. CDC 2012]

N : U\TILY VM Z[HNLZ, r : Z[HNL�ISVJR ZPaL

Compute search 
direction (forward & 

backward subst.)

Set up KKT System

Factor coefficient
matrix

1

2

3

• Reduce naive O(N3r3) to O(Nr3) by banded fact.
[Wang & Boyd 2008], [Rao, Wright & Rawlings 1998]

• 20% of total effort
• Independent of problem structure
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Cost Analysis for Forming

38

Block structure due to MS property

Y =

�

����

Y11 Y12 0 0 · · ·
Y T
12 Y22 Y23 0 · · ·
0 Y T

23 Y33 Y34 · · ·
���

��� � � � � � � � � �

�

����
• 80% of total effort
• inherently parallel

Block-wise computation of Y

Proposed method (saves       flops)2r3 re-use already
computed elements

1 Li = chol(�i) 2/3r3 �*OVSLZR` MHJ[VYPaH[PVU�
2 Vi = Ci/LT

i r3 �4H[YP_ IHJR^HYK Z\IZ[��
3 Wi = Di/LT

i r3

4 Yi ,i = V T
i Vi r3 �4H[YP_�TH[YP_ WYVK\J[Z�

5 +W T
i Wi r3

6 Yi ,i+1 = WiV T
i 2r3

;V[HS 20/3r3 ÅVWZ

Y = C��1CT
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Cost Analysis for Forming

38

Block structure due to MS property

Y =

�

����

Y11 Y12 0 0 · · ·
Y T
12 Y22 Y23 0 · · ·
0 Y T

23 Y33 Y34 · · ·
���

��� � � � � � � � � �

�

����

How much can be saved if the structure of C, D, and Φ are known?

• 80% of total effort
• inherently parallel

Block-wise computation of Y

Proposed method (saves       flops)2r3 re-use already
computed elements

1 Li = chol(�i) 2/3r3 �*OVSLZR` MHJ[VYPaH[PVU�
2 Vi = Ci/LT

i r3 �4H[YP_ IHJR^HYK Z\IZ[��
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i r3
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Fine-grained Structure Exploitation

39

‣ Additional structure exploitation possible for special cases (block-wise):

ObjectiveObjectiveObjective

9.3x 9.3x 1.4x
1.0x 1.0x 1.0x
6.7x 6.7x 1.4x
1.4x 1.4x 1.4x (1.8x if M=Q)Co

ns
tra

int
s

Theoretical speedups
compared to base case

v � vi � v̄

Fvi � fi

vT
i Mvi � r,M KPHN�

vT
i Mvi � r,M KLUZL

cT
i vi vT

i Qvi , Q KPHN� vT
i Qvi , Q KLUZL
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Fine-grained Structure Exploitation

39

‣ Additional structure exploitation possible for special cases (block-wise):

‣ Example for typical MPC problem:
• Stages 0...N-1: Q, R diagonal
• Stage N: P dense

~75% complexity reduction
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TPU xTNPxN +
�N�1

i=0 xTi Qxi + uTi Rui

Z�[� x0 = x, xi+1 = Axi + Bui
x � xi � x̄ , u � ui � ū,
xTNPxN � �
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‣ Additional structure exploitation possible for special cases (block-wise):

‣ Example for typical MPC problem:
• Stages 0...N-1: Q, R diagonal
• Stage N: P dense
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Structure exploitation can be automatized by code generation

TPU xTNPxN +
�N�1

i=0 xTi Qxi + uTi Rui

Z�[� x0 = x, xi+1 = Axi + Bui
x � xi � x̄ , u � ui � ū,
xTNPxN � �



‣ From problem & platform specification to implementation
‣ Generates library-free ANSI-C code
‣ New: generate code directly from Simulink
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min f(x) high-leveldescription
fit method
to problem

exploit 
problem 
structure

tailor
code to 
platform

solver in

software
C

VLSIPlatform
Specs

solver inhardware

FORCES Pro: Multi-method Autocoder

40
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Current Features

41

‣ Optimized for parametric multistage convex programs of the form

QMRMQM^I
N�

i=1

1

2
zTi Hizi + f Ti zi

WYFNIGX�XS D1z1 = c1

Ci�1zi�1 +Dizi = ci , �i � {2, 3, ..., N}
zmin � zi � zmax, �i � {1, 2, ..., N}
Aizi � bmax, �i � {1, 2, ..., N}
zTi Qi ,kzi + Li ,kzi � ri ,k �k �i � {1, 2, ..., N}

Methods

• Primal-dual interior point
• ADMM 1 & 2, custom projections
• Primal (fast) gradient
• Dual (fast) gradient 1

Interfaces

• Matlab
• Simulink
• Python
• dSpace

Platforms

• x86, x86_64
• Tricore
• PowerPC
• ARM
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Example: Autonomous Racing

42 Watch online

https://www.youtube.com/watch?v=JoHfJ6LEKVo
https://www.youtube.com/watch?v=JoHfJ6LEKVo
https://www.youtube.com/watch?v=JoHfJ6LEKVo
https://www.youtube.com/watch?v=JoHfJ6LEKVo
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Autonomous Racing - Implementation
‣ Idea: reformulate “minimum time” objective as “maximum progress”

• Progress measured by projection on center line (nonlinear operator)

‣ SQP method [Diehl 2002]:
1. Linearize continuous-time dynamics around trajectory
2. Discretize using matrix exponential
3. Solve local convex approximation (QP)
4. Update trajectory & apply first input

‣ QP solved in 14 milliseconds (N=40, 540 variables, 680 constraints)

43

QE\ sN �
N�

k=1

�c��ck�2 + �l��lk�2

W�X� s0 = s̃ , x0 = x̃

sk+1 = sk + vk

0 � vk � v̄ , xk � Xk , uk � Uk

xk+1 = Akxk + Bkuk + gk

�ck = Ekxk + Fksk + fk

�lk = Gkxk +Hksk + hk

s0

s1

s2

. . .
sk

sN

. .
.

xk

x0

x1

x2

xN
. .

.
. . .

�lk

�ck

50 Hz sampling rate on smartphone

center line
car trajectory
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Closed-loop Simulation

44

Watch online

http://youtu.be/i6EEKao3bYY
http://youtu.be/i6EEKao3bYY
http://youtu.be/i6EEKao3bYY
http://youtu.be/i6EEKao3bYY
http://youtu.be/i6EEKao3bYY
http://youtu.be/i6EEKao3bYY
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Comparison IPM to Commercial Solver

45

‣ Standard MPC problem for oscillating
chain of masses (on Intel i5 @3.1 GHz)

‣ CPLEX N/A on embedded systems

0 10 20 30 40 50 60

100

101

102

Number of States

Sp
ee

du
p

 

 

IBM CPLEX, 4 Cores
FORCES general, 1 Core
FORCES tailored, 1 Core
FORCES general, 4 Cores
FORCES tailored, 4 Cores

IBM CPLEX
Solve time: 5470 μs 

Code size: 11700 KB

FORCES
Solve time: 90 μs 
Code size: 52 KB

k k k k 

d d d d 
M1 M2 M3 

u1 u2 

80x

10x
2x

[Domahidi, 2013]
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Gasoline 2-Stage Turbocharger Control

46

By courtesy of D. Ritter and T. Albin, Institut für Regelungstechnik, RWTH Aachen University

50 Hz sampling rate on dSpace Autobox
ACADO + FORCES Pro
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Gasoline 2-Stage Turbocharger Control

46

By courtesy of D. Ritter and T. Albin, Institut für Regelungstechnik, RWTH Aachen University

50 Hz sampling rate on dSpace Autobox
ACADO + FORCES Pro
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Non-embedded Applications: Finance

‣ Reliability is a must

‣ QCQP solver implemented using FORCES Pro allocating 30M$/day in NYC
‣ Switching to FORCES Pro allowed to reduce simulation time by 100x

47

transaction 
costs

expected
return

current 
positionrisk 

constraint

max
x

µT x �
N�

i=1

ci |xi � x̄i |

W�X� xmin � x � xmax ,

xT�x � r
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Future Developments

‣ Branch-and-bound 
solvers

‣ Disjunctive 
programming

‣ Piecewise-affine 
dynamics

48

MIXED-INTEGER 
PROBLEMS

NONLINEAR 
SMOOTH 
PROBLEMS

LARGE-SCALE
PROBLEMS

‣ Efficient integration 
methods for ODEs

‣ Easy-to-use automatic 
linearisation and 
discretisation tools

‣ Tools for power 
distribution grids

‣ Difference of convex 
functions 
programming

‣ Large-scale portfolio 
problems
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Exercise Session

‣ Choice of 3 types of exercises:
• Graphical optimal control design using Simulink + FORCES Pro
• Matlab API of FORCES Pro (quadratic constraints etc.)
• Your own barrier interior-point method

‣ For barrier IPM:
• Problem:
• Centering step via Newton:
• Gradient and Hessian of Barrier function:

• Newton step:

49

Constrained Optimization Interior Point Methods

Centering Step Using Newton’s Method
Idea: Exploit fast local convergence of Newton’s method starting at point close
to optimum

Newton direction: �x
nt

minimizes second order approximation

f (x + v) + Ÿ„(x + v) ¥f (x) + Ÿ„(x) + Òf (x)

Tv + ŸÒ„(x)

Tv

+

1

2

vTÒ2f (x)v +

1

2

ŸvTÒ2„(x)v

Newton direction for barrier method is given by solution of

(Ò2f (x) + ŸÒ2„(x))�x
nt

= ≠Òf (x) ≠ ŸÒ„(x)

Line search consists of two steps:
1 For retaining feasibility, find

h
max

= arg max

h>0{h | g1(x + h�x) < 0, . . . , g
m

(z + h�x) < 0}
2 Find hú

= arg min

hœ[0, h

max

]{f (x + h�x) + Ÿ„(x + h�x)}

both either solved exactly or through backtracking
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Constrained Optimization Interior Point Methods

Example: Newton Step for Quadratic Programming
See also exercises

min

x

)
1/2xTHx | Gx Æ d

*

Barrier method:

min

x

f (x) + Ÿ„(x) = min

x

1

2

xTHx ≠ Ÿ
mÿ

i=1

log(d
i

≠ g
i

x)

where g
1

, . . . , g
m

are the rows of G.

The gradient and Hessian of the barrier function are:

Ò„(x) =

mÿ

i=1

1

d
i

≠ g
i

x gT

i

,Ò2„(x) =

mÿ

i=1

1

(d
i

≠ g
i

x)

2

gT

i

g
i

Newton step: (Ò2f (x) + ŸÒ2„(x))�x
nt

= ≠Òf (x) ≠ ŸÒ„(x)

(H + Ÿ
mÿ

i=1

1

(d
i

≠ g
i

x)

2

gT

i

g
i

)�x
nt

= ≠Hx ≠
mÿ

i=1

1

d
i

≠ g
i

x gT

i
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Example: Newton Step for Quadratic Programming
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