embotech*

Interior-point Algorithms: Methods & Tools Part I: Introduction to IPMs & FORCES Pro

Alexander Domahidi

Co-founder embotech GmbH

July 30, 2015

TEMPO Summer School on Numerical Optimal Control University of Freiburg Germany

• Convex Optimization is the Workhorse

 $G_X \prec_{\mathsf{K}} h \leftarrow$

Many problems can be boiled down to solving

minimize $0.5x^T Hx + f^T x$ subject to Ax = b

Bounds, polytopes, second-order cones, 2-norm balls, exponential cones, ...

- Linear constrained optimal control
- Nonlinear programming: sequential quadratic programming
- Mixed-integer problems: convex relaxations
- Stochastic optimization: sampling
- In fact, this is what we can solve reliably
- In real-time control: parametric convex problems

Methods & Tools for Parametric Problems

EXPLICIT

Precompute controller

- Fixed complexity
- Simple to evaluate
- < µs sampling
- LPs/QPs only

embotech*

• small problems only

ITERATIVE METHODS

First order methods

- Any size
- Very fast for problems with simple sets
- µs ms sampling
- Certification

Second order methods

- Any size & problem
- Robust to conditioning
- ms sampling

Parametric Programming

Speed

Gradient Methods Operator Splitting (ADMM) Active Set Methods Interior Point Methods

Flexibility

Methods & Tools for Parametric Problems

EXPLICIT

Precompute controller

- Fixed complexity
- Simple to evaluate
- < µs sampling
- LPs/QPs only
- small problems only

Software

embotech*

Multi-Parametric Toolbox 3.0 [Kvasnica, Herceg, Jones, 2012]

First order methods

- Any size
- Very fast for problems with simple sets
- µs ms sampling
- Certification

ITERATIVE METHODS

Second order methods

- Any size & problem
- Robust to conditioning
- ms sampling

- µAO-MPC [Zometa et al., 2013]
- FiOrdOs [Richter et al., 2012]
- QPgen [Giselsson, 2015]
- SPLIT Toolbox [Jones, 2015]

- QPC [Wills, 2008]
- qpOASES [Ferreau & Diehl, 2008]
- "Fast MPC" [Wang & Boyd 2008]
- CVXGEN [Mattingley & Boyd 2010]
- FORCES [Domahidi et al., 2012]
- ECOS [Domahidi et al., 2013]
- HPMPC [Frison et al, 2014]

Outline of this Talk

EXPLICIT

Precompute controller

- Fixed complexity
- Simple to evaluate
- < µs sampling
- LPs/QPs only
- small problems only

Software

Multi-Parametric Toolbox 3.0 [Kvasnica, Herceg, Jones, 2012]

First order methods

- Any size
- Very fast for problems with simple sets
- µs ms sampling
- Certification

ITERATIVE METHODS

Interior-point methods

- Any size & problem
- Robust to conditioning
- ms sampling

- QPC [Wills, 2008]
 - qpOASES [Ferreau & Diehl, 2008]
 - "Fast MPC" [Wang & Boyd 2008]
 - CVXGEN [Mattingley & Boyd 2010]

ECOS [Domahidi et al., 2013]

• HPMPC [Frison et al, 2014]

- µAO-MPC [Zometa et al., 2013]
- FiOrdOs [Richter et al., 2012]
- QPgen [Giselsson, 2015]
- SPLIT Toolbox [Jones, 2015]

Outline of this Talk

embotech*

EXPLICIT	ITERATIVE METHODS			
Precompute controller	First order methods	Interior-point methods		
		The following slides are (C) ETH Zurich, Automatic Control Lab with the help of Stefan Richter		

FORCES [Domahidi et al., 2012]
ECOS [Domahidi et al., 2013]

Melanie Zeilinger

Manfred Morari

Colin Jones

Constrained Minimization Problem

Consider the following problem with inequality constraints

min f(x)s.t. $g_i(x) \le 0, \ i = 1, ..., m$

Assumptions:

- f, g_i convex, twice continuously differentiable
- $f(x^*)$ is finite and attained
- strict feasibility: there exists a \tilde{x} with

$$\tilde{x} \in \operatorname{dom} f, \quad g_i(\tilde{x}) < 0, i = 1, \dots, m$$

feasible set is closed and compact

Idea: There exist many methods for unconstrained minimization \Rightarrow Reformulate problem as an unconstrained problem

Graphical Illustration

Minimize a function over a set

Graphical Illustration

Define function as ∞ if constraints violated.

Minimize this function over \mathbb{R}^n

ifa

Barrier Method

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \mathcal{G}_i(x) \le 0, \ i = 1, \dots, m \end{array} \qquad \Leftrightarrow \quad \min \quad f(x) + \kappa \phi(x) \end{array}$$

Constraints have been moved to objective via indicator function:

$$\phi(X) = \sum_{i=1}^{m} I_{-}(\mathcal{G}_{i}(X)), \quad \kappa = 1$$

where $I_{-}(u) = 0$ if $u \leq 0$ and $I_{-} = \infty$ otherwise

■ Augmented cost is not differentiable → approximation by *logarithmic barrier*:

m

$$\phi(\mathbf{X}) = -\sum_{i=1}^{m} \log(-g_i(\mathbf{X}))$$

- For κ > 0 smooth approximation of indicator function
- Approximation improves as $\kappa \to 0$

embotech*

 $\kappa\phi(U)$

ifa

Logarithmic Barrier Function

$$\phi(x) = -\sum_{i=1}^{m} \log(-g_i(x)), \quad \text{dom } \phi = \{x \mid g_1(x) < 0, \dots, g_m(x) < 0\}$$

- Convex, smooth on its domain
- $\phi(x) \to \infty$ as x approaches boundary of domain
- $\arg \min_x \phi(x)$ is called **analytic center** of the set defined by inequalities $g_1 < 0, \ldots, g_m < 0$
- Twice continuously differentiable with derivatives

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-g_i(x)} \nabla g_i(x)$$
$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{g_i(x)^2} \nabla g_i(x) \nabla g_i(x)^T + \frac{1}{-g_i(x)} \nabla^2 g_i(x)$$

ifa

Central Path

 \blacksquare Define $x^*(\kappa)$ as the solution of

$$\min_{x} f(x) + \kappa \phi(x)$$

(assume minimizer exists and is unique for each $\kappa > 0$)

- Barrier parameter κ determines relative weight between objective and barrier
- Barrier 'traps' $x(\kappa)$ in strictly feasible set
- Central path is defined as $\{x^*(\kappa) \mid \kappa > 0\}$
- For given κ can compute $x^*(\kappa)$ by solving smooth unconstrained minimization problem
- Intuitively $x^*(\kappa)$ converges to optimal solution as $\kappa \to 0$ (easy to prove under mild conditions)

Example: Central Path for an LP

min
$$c^T x$$

s.t. $a_i^T x \le b_i, i = 1, \dots, 6$

 $x \in \mathbb{R}^2, c$ points upward

Path-following Methods

Idea: Follow central path to the optimal solution

Solve sequence of smooth unconstrained problems:

$$x^*(\kappa) = \arg\min_x f(x) + \kappa \phi(x)$$

- Assume current solution is on the central path $x_i = x^*(\kappa_i)$
- Obtain κ_{i+1} by decreasing κ_i by some amount: $\kappa_{i+1} = \kappa_i/\mu, \mu > 1$
- Solve for $x^*(\kappa_{i+1})$ starting from $x^*(\kappa_i)$ (unconstrained optimization). Called "centering step" because it computes a point on (or close to) the central path
- Method converges to the optimal solution, i.e., $x_i \to x^*$ for $\kappa \to 0$

Example: PF-IPM for Quadratic Program

Centering Step Using Newton Method

Idea: Exploit fast local convergence of Newton's method starting at point close to optimum

• Newton direction: Δx_{nt} minimizes second order approximation

$$\begin{aligned} f(x+v) + \kappa \phi(x+v) \approx & f(x) + \kappa \phi(x) + \nabla f(x)^T v + \kappa \nabla \phi(x)^T v \\ & + \frac{1}{2} v^T \nabla^2 f(x) v + \frac{1}{2} \kappa v^T \nabla^2 \phi(x) v \end{aligned}$$

Newton direction for barrier method is given by solution of

$$(\nabla^2 f(x) + \kappa \nabla^2 \phi(x)) \Delta x_{nt} = -\nabla f(x) - \kappa \nabla \phi(x)$$

Line search consists of two steps:

 For retaining feasibility, find
 h_{max} = arg max_{h>0}{h | g₁(x + h∆x) < 0,..., g_m(z + h∆x) < 0}

 Find h* = arg min_{h∈[0, hmax]}{f(x + h∆x) + κφ(x + h∆x)}

both either solved exactly or through backtracking

Backtracking Line Search

given a descent direction Δx for f at $x \in \text{dom } f$, $\alpha \in (0, 0.5)$, $\beta \in (0, 1)$. t := 1.while $f(x + t\Delta x) > f(x) + \alpha t \nabla f(x)^T \Delta x$, $t := \beta t$.

Backtracking line search terminates when *Armijo's condition* is satisfied:

$$f(X_i + h_i \Delta X_{nt}) \le f(X_i) + \alpha h_i \nabla f(X_i)^T \Delta X_{nt}$$

This is required for convergence of the optimization algorithm. From [Boyd & Vandenberghe, Convex Optimization, 2004] with $t \equiv h, x \equiv x_i$:

noff

THzürich

Centering Step with Equality Constraints

Centering Step: Compute $x^*(\kappa)$ by solving

$$\begin{array}{ll} \min & f(x) + \kappa \phi(x) \\ \text{s.t.} & Cx = d \end{array}$$

Newton step Δx_{nt} for minimization with equality constraints is given by solution of

$$\begin{bmatrix} \nabla^2 f(x) + \kappa \nabla^2 \phi(x) & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{nt} \\ \nu \end{bmatrix} = -\begin{bmatrix} \nabla f(x) + \kappa \nabla \phi(x) \\ 0 \end{bmatrix}$$

Same interpretation as Newton step for unconstrained problem: $x + \Delta x_{nt}$ minimizes second order approximation

$$\begin{array}{ll} \min & \nabla f(x)^T v + \kappa \nabla \phi(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v + \frac{1}{2} \kappa v^T \nabla^2 \phi(x) v \\ \text{s.t.} & Cv = 0 \end{array}$$

embotech*

Barrier IPM with Equality Constraints

 $\min_{x} \{ f(x) \mid g(x) \le 0, \ Cx = d \}$

Require: strictly feasible x_0 w.r.t. g(x), κ_0 , $\mu > 1$, tol. $\epsilon > 0$ repeat

1 Centering step: Compute $x^*(\kappa_i)$ by minimizing $f(x) + \kappa_i \phi(x)$ subject to Cx = d starting from x_{i-1}

2 Update
$$x_i = x^*(\kappa_i)$$

3 Stopping criterion: Stop if
$$m\kappa_i < \epsilon$$

4 Decrease barrier parameter: $\kappa_{i+1} = \kappa_i/\mu$

Several heuristics for choice of κ_0 and other parameters

- Terminates with $f(x_i) f(x^*) \le \epsilon$
- Steps 1-4 represent one outer iteration
- Step 1: Solve equality constrained minimization problem (via Newton steps)

embote<mark>ch</mark>*

ifa

ETH zürich

Spinott

Example: Newton Step for QPs

$$\min_{x} \left\{ 1/2x^T Hx \mid Gx \le d \right\}$$

Barrier method:

$$\min_{x} f(x) + \kappa \phi(x) = \min_{x} \frac{1}{2} x^{T} H x - \kappa \sum_{i=1}^{m} \log(d_{i} - g_{i} x)$$

where g_1, \ldots, g_m are the rows of G.

The gradient and Hessian of the barrier function are:

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{d_i - g_i x} g_i^T, \nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{(d_i - g_i x)^2} g_i^T g_i$$

• Newton step: $(\nabla^2 f(x) + \kappa \nabla^2 \phi(x)) \Delta x_{nt} = -\nabla f(x) - \kappa \nabla \phi(x)$

$$(H + \kappa \sum_{i=1}^{m} \frac{1}{(d_i - g_i x)^2} g_i^T g_i) \Delta x_{nt} = -Hx - \sum_{i=1}^{m} \frac{1}{d_i - g_i x} g_i^T$$

Spinoff **ETH**zürich

Remarks on Barrier IPMs

- Choice of μ involves trade-off: large $\mu \Rightarrow$ few outer iterations, but more inner iterations to compute x_{i+1} from x_i (typical values $\mu = 10 20$)
- Good convergence properties for a wide range of parameters μ Example: LP with 100 inequalities, 50 variables

Barrier method requires strictly feasible initial point \rightarrow Phase I method, e.g., $\min_{x,s} \{s \mid g(x) \leq s \cdot 1\}$

Barrier IPMs and KKT Conditions

KKT conditions of the barrier problem:

 $Cx^* = d$ $g_i(x^*) \le 0, i = 1, \dots, m$ $\nabla f(x^*) + \kappa \sum_{i=1}^m \frac{1}{-g_i(x^*)} \nabla g_i(x^*) + C^T \nu^* = 0$

Defining

$$\lambda_i^* = \kappa \frac{1}{-g_i(x^*)} \ge 0$$

results in the standard KKT conditions where complementarity slackness is replaced by the relaxed condition

$$\lambda_i^* g_i(x^*) = -\kappa$$

Primal-Dual Interior-Point Methods

Using the result from above, the **relaxed** KKT system can be written as

$$Cx^{*} = d$$

$$G_{i}(x^{*}) + S_{i}^{*} = 0 \ i = 1, \dots, m$$

$$\nabla f(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} \nabla G_{i}(x^{*}) + C^{T} \nu^{*} = 0$$

$$\lambda_{i}^{*} G_{i}(x^{*}) = -\kappa$$

$$\lambda_{i}^{*}, S_{i}^{*} \ge 0, \ i = 1, \dots, m$$
(**)

Idea: leave dual multipliers λ_i^* as variables (before, they were implicitly defined by primal log barrier)³:

- Solve the primal and dual problem simultaneously via (**)
- Primal-dual central path $\triangleq \{(X, S, \lambda, \nu) \mid (**) \text{ holds}\}$
- Follow central path to solution by reducing κ to zero
- Solve (**) by Newton method (with additional "safeguards" & line search)

Primal-Dual Search Direction

At each iteration, linearize (**) and solve

$$\begin{bmatrix} H(x,\lambda) & C^T & G(x)^T & 0\\ C & 0 & 0 & 0\\ G(x) & 0 & 0 & I\\ 0 & 0 & S & \Lambda \end{bmatrix} \begin{bmatrix} \Delta x\\ \Delta y\\ \Delta \lambda\\ \Delta s \end{bmatrix} = -\begin{bmatrix} \nabla f(x) + C^T y + G(x)^T \lambda\\ Cx - d\\ g(x) + s\\ S\lambda - \nu \end{bmatrix}$$

where $S \triangleq \operatorname{diag}(s_1, \ldots, s_m)$ and $\Lambda \triangleq \operatorname{diag}(\lambda_1, \ldots, \lambda_m)$, the (1,1) block in the coefficient matrix is

$$H(x,\lambda) \triangleq \nabla^2 f(x) + \sum_{i=1}^m \lambda_i \nabla^2 g_i(x)$$

and the vector $\nu \in \mathbb{R}^m$ allows for a modification of the right-hand side. Call resulting direction $\Delta[x, y, \lambda, s](\nu)$.

Primal-Dual Search Directions

Can generate different directions $\Delta \left[x, y, \lambda, s \right] (\nu)$ depending on ν :

• $\nu = 0$: standard Newton method for solving nonlinear equations

• $\nu = \kappa \mathbf{1}$: centering direction, next iterate is on central path

 \Rightarrow Using linear combination via **centering parameter** $\sigma \in (0,1)$ ensures fast convergence in theory & practice by tracking central path to solution

embote<mark>ch</mark>*

if.

Summary Interior-Point Methods

Barrier method

(also called Sequential Unconstrained Minimization Technique, SUMT)

- Intuition: Follow central path to the optimal solution
- Log barrier function ensures satisfaction of inequality constraints
- Centering problems can be solved efficiently using Newton's method
- Requires strictly feasible initial point

'Modern' methods: Primal-dual methods

- Often more efficient than barrier method (superlinear convergence)
- Cost per iteration roughly the same as barrier method
- Allow for infeasible start (w.r.t. both equality and inequality constraints)
- Can provide certificates of infeasibility (using self-dual embedding)
- Most efficient in practice: Mehrotra's predictor-corrector method : < 30 iterations in practice

Interior-point methods are very efficient for range of optimization problems, e.g. LPs, QPs, second-order cone and semidefinite programs.

Convergence Rates

Spinoff ETHzürich

Interior Point Methods in a Nutshell

Convex problem

$$\min_{y} f(y)$$
s.t. $g(y) \le 0$
 $Cy + c = 0$

Linearized KKT system

$\begin{bmatrix} \mathcal{H}(y,\lambda) \\ C \end{bmatrix}$	C^{T}	$J^T(y)$]	$\begin{bmatrix} \Delta y \\ \Delta y \end{bmatrix}$		$\begin{bmatrix} r_C \\ r \end{bmatrix}$	
J(y)			/	$\begin{vmatrix} \Delta \nu \\ \Delta \lambda \end{vmatrix}$	= -	'Ε r _l	
L		S	$\wedge \rfloor$	$\left\lfloor \Delta s \right\rfloor$		_r _s _	

KKT conditions

$$\nabla f(y) + \nabla g(y)^T \lambda + C^T \nu = 0$$
$$Cy + c = 0$$
$$g(y) + s = 0$$
$$\lambda^T s = 0$$
$$\lambda, s \ge 0$$

Interior Point Method

- 1. Initialize $z_0 = (y_0, s_0, \lambda_0, \nu_0)$
- 2. Solve linearized KKT system
 - \rightarrow search direction Δz_i
- 3. Determine step size α
- 4. $z_{i+1} = z_i + \alpha \Delta z_i$

Interior Point Methods in a Nutshell

Convex problem

$$\min_{y} f(y)$$
s.t. $g(y) \le 0$
 $Cy + c = 0$

Linearized KKT system

$\int \mathcal{H}(y,\lambda)$	C^{T}	$J^T(y)$	٦	$\left\lceil \Delta y \right\rceil$		$[r_C]$
С				Δu	_	r _E
J(y)			1	$\Delta\lambda$		r_l
L		S	$\land \rfloor$	$\left\lfloor \Delta s \right\rfloor$		$[r_s]$

KKT conditions

$$\nabla f(y) + \nabla g(y)^T \lambda + C^T \nu = 0$$
$$Cy + c = 0$$
$$g(y) + s = 0$$
$$\lambda^T s = 0$$
$$\lambda, s > 0$$

Interior Point Method

- 1. Initialize $z_0 = (y_0, s_0, \lambda_0, \nu_0)$
- 2. Solve linearized KKT system
 - \rightarrow search direction Δz_i
- 3. Determine step size α
- 4. $z_{i+1} = z_i + \alpha \Delta z_i$

Solving the linearized KKT system is ~95% of the computation

Solving Ax=b, A square

- Iterative solvers: generate sequence of iterates s.t. $Ax \approx b$
 - MINRES, conjugate gradient, Krylov subspace methods, Lanczos...
 - Useful for parallelizing
 - Matrix-vector products only, max. O(n^2) per iteration
 - Number of iterations required depends strongly on cond(A)
 - Literature in context of IPMs: inexact Newton methods
- Direct solvers: factor A & forward/backward solve
 - General A: LU factorization 4/3 n^3 flops
 - Gauss elimination with partial pivoting
 - A symmetric indefinite: LDL factorization 4/3 n^3 flops (1/2 the memory of LU)
 - Bunch-Parlett pivoting (1x1 and 2x2 blocks in D)
 - A symmetric positive definite: Cholesky 2/3 n^3 flops
 - stable without pivoting
 - needs square roots
- embote<mark>ch</mark>*

Spinoff |

EIH zürich

Direct Methods Solving the KKT System 1. Unreduced form Not symmetric and indefinite $\begin{bmatrix} \mathcal{H}(y,\lambda) & C^{T} & J^{T}(y) \\ C & & & \\ J(y) & & I \\ & & S & \Lambda \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta \nu \\ \Delta \lambda \\ \Delta s \end{bmatrix} = - \begin{bmatrix} r_{C} \\ r_{E} \\ r_{I} \\ r_{s} \end{bmatrix}$ LU factorization • Eliminate $\Delta\lambda$ and Δs 2. Augmented form (S and L are PD and diagonal) $\begin{vmatrix} \Phi & C' \\ C & \end{vmatrix} \begin{vmatrix} \Delta y \\ \Delta \nu \end{vmatrix} = - \begin{vmatrix} r_d \\ r_E \end{vmatrix}$ • Symmetric, but indefinite LDL factorization - Requires pivoting $\Phi := \mathcal{H}(y, \lambda) + J^{T}(y)S^{-1} \wedge J(y)$ - CVXGEN: regularization instead • Eliminate Δy 3. Normal form (Schur complement) Symmetric, positive definite $Y\Delta\nu = \beta$ Cholesky factorization - Stable without pivoting $Y := C \Phi^{-1} C^T$ Spinoff EnHzürich

1. Unreduced form Not symmetric and indefinite $\begin{bmatrix} \mathcal{H}(y,\lambda) & C^{T} & J^{T}(y) \\ C & & & \\ J(y) & & I \\ & & S & \Lambda \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta \nu \\ \Delta \lambda \\ \Delta s \end{bmatrix} = - \begin{bmatrix} r_{C} \\ r_{E} \\ r_{I} \\ r_{s} \end{bmatrix}$ LU factorization • Eliminate $\Delta\lambda$ and Δs 2. Augmented form (S and L are PD and diagonal) $\begin{vmatrix} \Phi & C' \\ C & \end{vmatrix} \begin{vmatrix} \Delta y \\ \Delta \nu \end{vmatrix} = - \begin{vmatrix} r_d \\ r_F \end{vmatrix}$ • Symmetric, but indefinite LDL factorization Requires pivoting $\Phi := \mathcal{H}(y, \lambda) + J^{T}(y)S^{-1}\Lambda J(y)$ - CVXGEN: regularization instead • Eliminate Δy 3. Normal form (Schur complement) Symmetric, positive definite $Y\Delta\nu = \beta$ Cholesky factorization - Stable without pivoting $Y := C \Phi^{-1} C^T$

Spinoff ETHzürich

 r_C

 r_E

 r_s

1. Unreduced form

$$\begin{bmatrix} \mathcal{H}(y,\lambda) & C^{\mathcal{T}} & J^{\mathcal{T}}(y) \\ C & & & \\ J(y) & & I \\ & & & \\ \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta \nu \\ \Delta \lambda \\ \Delta s \end{bmatrix} = -$$

Not symmetric and indefinite

LU factorization

2. Augmented form

$$\begin{bmatrix} \Phi + \delta I & C^{T} \\ C & -\delta I \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta \nu \end{bmatrix} = -\begin{bmatrix} r_{d} \\ r_{E} \end{bmatrix}$$
$$\Phi := \mathcal{H}(v, \lambda) + J^{T}(v)S^{-1}\Lambda J(v)$$

3. Normal form

 $Y\Delta\nu=\beta$

 $Y := C \Phi^{-1} C^{T}$

- Eliminate Δλ and Δs
 (S and L are PD and diagonal)
- Symmetric, but indefinite
- LDL factorization
 - Requires pivoting
 - CVXGEN: regularization instead
- Eliminate Δy (Schur complement)
- Symmetric, positive definite
- Cholesky factorization
 - Stable without pivoting

 r_C

 r_E

ri

 r_{s}

1. Unreduced form

 $\mathcal{H}($

$$\begin{array}{cccc} (y,\lambda) & C^{T} & J^{T}(y) \\ C & & & \\ I(y) & & I \\ & & S & \Lambda \end{array} \right| \begin{bmatrix} \Delta y \\ \Delta \nu \\ \Delta \lambda \\ \Lambda S \\ \Lambda \end{array} = -$$

Not symmetric and indefinite

LU factorization

2. Augmented form

$$\begin{bmatrix} \Phi + \delta I & C^{T} \\ C & -\delta I \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta \nu \end{bmatrix} = -\begin{bmatrix} r_{d} \\ r_{E} \end{bmatrix}$$
$$\Phi := \mathcal{H}(y, \lambda) + J^{T}(y)S^{-1}\Lambda J(y)$$

3. Normal form

 $Y\Delta\nu=\beta$

 $Y := C\Phi^{-1}C^{T}$

- Eliminate Δλ and Δs
 (S and L are PD and diagonal)
- Symmetric, but indefinite
- LDL factorization
 - Requires pivoting
 - CVXGEN: regularization instead
- Eliminate Δy (Schur complement)
- Symmetric, positive definite
- Cholesky factorization
 - Stable without pivoting

Convex Multistage Problems

minimize	$\sum_{i=1}^{N} \frac{1}{2} z_i^T H_i z_i + f_i^T z_i$	separable objective
subject to	$\underline{z}_i \leq z_i \leq \overline{z}_i$	upper/lower bounds
	$A_i z_i \leq b_i$	affine inequalities
	$z_i^T Q_{i,j} z_i + I_{i,j}^T z_i \leq r_{i,j}$	quadratic inequalities
	$C_i z_i + D_{i+1} z_{i+1} = c_i$	affine equalities, each coupling only two consecutive variables

where H_i , $Q_i \succeq 0$ and A_i has full row rank

embotech*

Convex Multistage Problems

minimize	$\sum_{i=1}^{N} \frac{1}{2} z_i^T H_i z_i + f_i^T z_i$	separable objective
subject to	$\underline{z}_i \leq z_i \leq \overline{z}_i$	upper/lower bounds
	$A_i z_i \leq b_i$	affine inequalities
	$z_i^T Q_{i,j} z_i + I_{i,j}^T z_i \leq r_{i,j}$	quadratic inequalities
	$C_i z_i + D_{i+1} z_{i+1} = c_i$	affine equalities, each coupling only two consecutive variables

where H_i , $Q_i \succeq 0$ and A_i has full row rank

Captures OCP, MPC, MHE, spline optimization, portfolio optimization, etc.

Multistage Property Induces Structure

Multi	stage problem		Linea	arized Kł	KT sy	ystem		
minimize subject to	$\sum_{i=1}^{N} \frac{1}{2} z_i^T H_i z_i + f_i^T z_i$ $\underline{z}_i \leq z_i \leq \overline{z}_i$ $A_i z_i \leq b_i$ $z_i^T Q_{i,j} z_i + I_{i,j}^T z_i \leq r_{i,j}$ $C_i z_i + D_{i+1} z_{i+1} = c_i$	$\begin{bmatrix} \mathcal{H}(y,\lambda) \\ C \\ J(y) \end{bmatrix}$	CT	J [⊤] (у) S	/ /	$\begin{bmatrix} \Delta y \\ \Delta \nu \\ \Delta \lambda \\ \Delta s \end{bmatrix}$	= -	$\begin{bmatrix} r_C \\ r_E \\ r_l \\ r_s \end{bmatrix}$

1. $\mathcal{H}(y, \lambda)$ and J(y) are block diagonal

$$2. C := \begin{bmatrix} C_0 & D_1 & 0 & \cdots & 0 \\ 0 & C_1 & D_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & C_{N-1} & D_N \end{bmatrix}$$

3. Dimensions known at compile time

Multistage Property Induces Structure

Multi	stage problem		Linea	arized Kł	<t sy<="" th=""><th>/stem</th><th></th><th></th></t>	/stem		
minimize subject to	$\sum_{i=1}^{N} \frac{1}{2} z_i^T H_i z_i + f_i^T z_i$ $\underline{z}_i \leq z_i \leq \overline{z}_i$ $A_i z_i \leq b_i$ $z_i^T Q_{i,j} z_i + I_{i,j}^T z_i \leq r_{i,j}$ $C_i z_i + D_{i+1} z_{i+1} = c_i$	$\begin{bmatrix} \mathcal{H}(y,\lambda) \\ C \\ J(y) \end{bmatrix}$	CT	J [⊤] (у) S	/ /	$\begin{bmatrix} \Delta y \\ \Delta \nu \\ \Delta \lambda \\ \Delta s \end{bmatrix}$	= -	$\begin{bmatrix} r_C \\ r_E \\ r_l \\ r_s \end{bmatrix}$

1. $\mathcal{H}(y, \lambda)$ and J(y) are block diagonal

$$2. C := \begin{bmatrix} C_0 & D_1 & 0 & \cdots & 0 \\ 0 & C_1 & D_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & C_{N-1} & D_N \end{bmatrix}$$

3. Dimensions known at compile time

Goal: Exploit problem structure to speed up solution

Direct Methods Solving the KKT System 1. Unreduced form Not symmetric and indefinite $\begin{bmatrix} \mathcal{H}(y,\lambda) & C^{T} & J^{T}(y) \\ C & & & \\ J(y) & & I \\ & & S & \Lambda \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta \nu \\ \Delta \lambda \\ \Delta s \end{bmatrix} = - \begin{bmatrix} r_{C} \\ r_{E} \\ r_{I} \\ r_{s} \end{bmatrix}$ LU factorization • Eliminate $\Delta\lambda$ and Δs 2. Augmented form (S and L are PD and diagonal) $\begin{vmatrix} \Phi & C' \\ C & \end{vmatrix} \begin{vmatrix} \Delta y \\ \Delta \nu \end{vmatrix} = - \begin{vmatrix} r_d \\ r_E \end{vmatrix}$ • Symmetric, but indefinite LDL factorization - Requires pivoting $\Phi := \mathcal{H}(y, \lambda) + J^{T}(y)S^{-1} \wedge J(y)$ - CVXGEN: regularization instead • Eliminate Δy 3. Normal form (Schur complement) Symmetric, positive definite $Y\Delta\nu = \beta$ Cholesky factorization - Stable without pivoting $Y := C \Phi^{-1} C^T$ Spinoff **EnH**zürich

 r_C

 r_E

 r_{s}

1. Unreduced form

$$\begin{bmatrix} \mathcal{H}(y,\lambda) & C^{T} & J^{T}(y) \\ C & & & \\ J(y) & & I \\ & & & \\ \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta \nu \\ \Delta \lambda \\ \Delta s \end{bmatrix} = -$$

2. Augmented form

$$\begin{bmatrix} \Phi + \delta I & C^{T} \\ C & -\delta I \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta \nu \end{bmatrix} = -\begin{bmatrix} r_{d} \\ r_{E} \end{bmatrix}$$
$$\Phi := \mathcal{H}(y, \lambda) + J^{T}(y)S^{-1}\Lambda J(y)$$

3. Normal form

 $Y\Delta\nu=\beta$

 $Y := C \Phi^{-1} C^{T}$

- Not symmetric and indefinite
- LU factorization

- Eliminate Δλ and Δs
 (S and L are PD and diagonal)
 - Symmetric, but indefinite
 - LDL factorization
 - Requires pivoting
 - CVXGEN: regularization instead
- Eliminate Δy (Schur complement)
- Symmetric, positive definite
- Cholesky factorization
 - Stable without pivoting

N: number of stages, r: stage/block size

Spinoff **EnH**zürich

Cholesky Factorization of Y

• Want to compute L_Y such that $Y = L_Y L_Y^T$

$$Y = \begin{bmatrix} Y_{11} & Y_{12} & 0 & 0 & \cdots \\ Y_{12}^T & Y_{22} & Y_{23} & 0 & \cdots \\ 0 & Y_{23}^T & Y_{33} & Y_{34} & \cdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \end{bmatrix} \qquad L_Y = \begin{bmatrix} L_{11} & 0 & 0 & \cdots & 0 \\ L_{21} & L_{22} & 0 & \cdots & 0 \\ 0 & L_{32} & L_{33} & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & L_{NN-1} & L_{NN} \end{bmatrix}$$

• Sequential block-wise factorization:

 $\begin{array}{ll} L_{11} = \operatorname{chol}(Y_{11}) & 2/3r^3 & (\text{Cholesky factorization}) \\ \text{for } i = 2: N \text{ do} & & \\ L_{i+1,i}^T = Y_{i,i+1}/L_{i,i} & r^3 & (\text{Matrix backward subst.}) \\ U_i = L_{i,i-1}L_{i,i-1}^T & r^3 & (\text{Matrix matrix mult.}) \\ L_{ii} = \operatorname{chol}(Y_{ii} - U_i) & 2/3r^3 & (\text{Cholesky factorization}) \end{array}$

N: number of stages, r: stage/block size

Spinoff **EnH**zürich

- Reduce naive O(N³r³) to O(Nr³) by banded fact. [Wang & Boyd 2008], [Rao, Wright & Rawlings 1998]
- 20% of total effort
- Independent of problem structure

N: number of stages, r: stage/block size

- 80% of total effort
- Generally ignored in the literature
- Possible to exploit structure of problem [Domahidi et. al. CDC 2012]
- Reduce naive O(N³r³) to O(Nr³) by banded fact. [Wang & Boyd 2008], [Rao, Wright & Rawlings 1998]
- 20% of total effort
- Independent of problem structure

N: number of stages, r: stage/block size

Cost Analysis for Forming $Y = C\Phi^{-1}C^T$

Block structure due to MS property

$$Y = \begin{bmatrix} Y_{11} & Y_{12} & 0 & 0 & \cdots \\ Y_{12}^T & Y_{22} & Y_{23} & 0 & \cdots \\ 0 & Y_{23}^T & Y_{33} & Y_{34} & \cdots \\ \vdots & \vdots & \ddots & \ddots & \ddots \end{bmatrix}$$

Block-wise computation of Y

- $Y_{ii} := C_{i-1} \Phi_{i-1}^{-1} C_{i-1}^{T} + D_i \Phi_i^{-1} D_i^{T}$ $Y_{ii+1} := D_i \Phi_i^{-1} C_i^{T}$
- 80% of total effort
- inherently parallel

	Proposed method (saves $2r^3$ flops)							
1 2 3 4 5 6	$L_{i} = chol(\Phi_{i})$ $V_{i} = C_{i}/L_{i}^{T}$ $W_{i} = D_{i}/L_{i}^{T}$ $Y_{i,i} = V_{i}^{T}V_{i}$ $+W_{i}^{T}W_{i}$ $Y_{i,i+1} = W_{i}V_{i}^{T}$	2/3r ³ r ³ r ³ r ³ r ³ 2r ³	(Cholesky factorization) (Matrix backward subst.) (Matrix-matrix products)					
	Total	20/3r ³	flops					

re-use already computed elements

Cost Analysis for Forming $Y = C\Phi^{-1}C^T$

Block structure due to MS property

$$Y = \begin{bmatrix} Y_{11} & Y_{12} & 0 & 0 & \cdots \\ Y_{12}^T & Y_{22} & Y_{23} & 0 & \cdots \\ 0 & Y_{23}^T & Y_{33} & Y_{34} & \cdots \\ \vdots & \vdots & \ddots & \ddots & \ddots \end{bmatrix}$$

Block-wise computation of Y

- $Y_{ii} := C_{i-1} \Phi_{i-1}^{-1} C_{i-1}^{T} + D_i \Phi_i^{-1} D_i^{T}$ $Y_{ii+1} := D_i \Phi_i^{-1} C_i^{T}$
- 80% of total effort
- inherently parallel

	Proposed method (saves $2r^3$ flops)							
1 2 3 4 5 6	$L_{i} = chol(\Phi_{i})$ $V_{i} = C_{i}/L_{i}^{T}$ $W_{i} = D_{i}/L_{i}^{T}$ $Y_{i,i} = V_{i}^{T}V_{i}$ $+W_{i}^{T}W_{i}$ $Y_{i,i+1} = W_{i}V_{i}^{T}$	2/3r ³ r ³ r ³ r ³ r ³ 2r ³	(Cholesky factorization) (Matrix backward subst.) (Matrix-matrix products)					
	Total	$20/3r^{3}$	flops					

re-use already computed elements

Spinoff **EnH**zürich

How much can be saved if the structure of C, D, and Φ are known?

Fine-grained Structure Exploitation

Additional structure exploitation possible for special cases (block-wise):

The	eoretical speedups	Objective		
compared to base case		$C_i^T V_i$	$v_i^T Q v_i$, Q diag.	$v_i^T Q v_i$, Q dense
N.	$\underline{v} \leq v_i \leq \overline{v}$	9.3x	9.3x	1.4x
raint	$Fv_i \leq f_i$	1.0x	1.0x	1.0x
onst	$v_i^T M v_i \leq r, M$ diag.	6.7x	6.7x	1.4x
0	$v_i^T M v_i \leq r, M$ dense	1.4x	1.4x	1.4x (1.8x if <i>M</i> = <i>Q</i>)

Fine-grained Structure Exploitation

Additional structure exploitation possible for special cases (block-wise):

The	eoretical speedups	Objective		
compared to base case		$C_i^T V_i$	$v_i^T Q v_i$, Q diag.	$v_i^T Q v_i$, Q dense
S	$\underline{v} \leq v_i \leq \overline{v}$	9.3x	9.3x	1.4x
raint	$Fv_i \leq f_i$	1.0x	1.0x	1.0x
onst	$v_i^T M v_i \leq r, M$ diag.	6.7x	6.7x	1.4x
Ö	$v_i^T M v_i \leq r, M$ dense	1.4x	1.4x	1.4x (1.8x if <i>M=Q</i>)

- Example for typical MPC problem:
 - Stages 0...N-1: Q, R diagonal
 - Stage N: P dense

embotech*

 \Rightarrow ~75% complexity reduction

min
$$x_N^T P x_N + \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i$$

s.t. $x_0 = x, x_{i+1} = A x_i + B u_i$
 $\underline{x} \le x_i \le \overline{x}, \ \underline{u} \le u_i \le \overline{u},$
 $x_N^T P x_N \le \alpha$

Fine-grained Structure Exploitation

Additional structure exploitation possible for special cases (block-wise):

The	eoretical speedups	etical speedups Objective			
compared to base case		$C_i^{T} V_i$	$v_i^T Q v_i$, Q diag.	$v_i^T Q v_i, Q$ dense	
S	$\underline{v} \leq v_i \leq \overline{v}$	9.3x	9.3x	1.4x	
raint	$Fv_i \leq f_i$	1.0x	1.0x	1.0x	
onst	$v_i^T M v_i \leq r, M$ diag.	6.7x	6.7x	1.4x	
0	$v_i^T M v_i \leq r, M$ dense	1.4x	1.4x	1.4x (1.8x if <i>M</i> = <i>Q</i>)	

- Example for typical MPC problem:
 - Stages 0...N-1: Q, R diagonal
 - Stage N: P dense

embotech*

 \Rightarrow ~75% complexity reduction

min $x_N^T P x_N + \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i$ s.t. $x_0 = x, \ x_{i+1} = A x_i + B u_i$ $\underline{x} \le x_i \le \overline{x}, \ \underline{u} \le u_i \le \overline{u},$ $x_N^T P x_N \le \alpha$

Structure exploitation can be automatized by code generation

FORCES Pro: Multi-method Autocoder

- From problem & platform specification to implementation
- Generates library-free ANSI-C code
- New: generate code directly from Simulink

Model	Control objectives	System constraints	Settings
Constr	aints on output/state	e 1?	
Constr	aints on output/state	e 2?	
Constrain	t type: Bound const	traints	•
Lower bo	und:		
0			
Upper bo	und:		
✓ Soft co	onstraint		
Constr	aints on input 1?		
Constrain	t type: Bound const	traints	FORCES_PRO
Lower bo	und:		
-5			

FORCES

Current Features

• Optimized for **parametric** multistage convex programs of the form

minimize $\sum_{i=1}^{N} \frac{1}{2} z_i^T H_i z_i + f_i^T z_i$ subject to $D_1 z_1 = c_1$ $C_{i-1} z_{i-1} + D_i z_i = c_i, \qquad \forall i$ $z_{\min} \leq z_i \leq z_{\max}, \qquad \forall i$ $A_i z_i \leq b_{\max}, \qquad \forall i$

 $z_i^T Q_{i,k} z_i + L_{i,k} z_i \leq r_{i,k} \quad \forall k$

 $\forall i \in \{2, 3, ..., N\}$ $\forall i \in \{1, 2, ..., N\}$ $\forall i \in \{1, 2, ..., N\}$ $\forall i \in \{1, 2, ..., N\}$

Interfaces

- Matlab
- Simulink
- Python
- dSpace

Methods

- Primal-dual interior point
- ADMM 1 & 2, custom projections
- Primal (fast) gradient
- Dual (fast) gradient I

Platforms

- ×86, ×86_64
- Tricore
- PowerPC
- ARM

FORCES

Example: Autonomous Racing

Autonomous Racing - Implementation

- Idea: reformulate "minimum time" objective as "maximum progress"
 - Progress measured by projection on center line (nonlinear operator)

• SQP method [Diehl 2002]:

embotech*

- ► I. Linearize continuous-time dynamics around trajectory
 - 2. Discretize using matrix exponential
 - 3. Solve local convex approximation (QP) —
- 4. Update trajectory & apply first input

 $\max s_{N} - \sum_{k=1}^{N} \gamma_{c} \|\epsilon_{k}^{c}\|^{2} + \gamma_{l} \|\epsilon_{k}^{l}\|^{2}$ s.t. $s_{0} = \tilde{s}$, $x_{0} = \tilde{x}$ $s_{k+1} = s_{k} + v_{k}$ $0 \leq v_{k} \leq \bar{v}$, $x_{k} \in \mathbb{X}_{k}$, $u_{k} \in \mathbb{U}_{k}$ $x_{k+1} = A_{k}x_{k} + B_{k}u_{k} + g_{k}$ $\epsilon_{k}^{c} = E_{k}x_{k} + F_{k}s_{k} + f_{k}$ $\epsilon_{k}^{l} = G_{k}x_{k} + H_{k}s_{k} + h_{k}$

▶ QP solved in 14 milliseconds (N=40, 540 variables, 680 constraints)

50 Hz sampling rate on smartphone

FORCES

Closed-loop Simulation

Watch online

Comparison IPM to Commercial Solver

- Standard MPC problem for oscillating chain of masses (on Intel i5 @3.1 GHz)

FORCES

Gasoline 2-Stage Turbocharger Control

By courtesy of D. Ritter and T.Albin, Institut für Regelungstechnik, RWTH Aachen University ACADO + FORCES Pro

50 Hz sampling rate on dSpace Autobox

FORCES

Gasoline 2-Stage Turbocharger Control

By courtesy of D. Ritter and T. Albin, Institut für Regelungstechnik, RWTH Aachen University ACADO + FORCES Pro

50 Hz sampling rate on dSpace Autobox

Non-embedded Applications: Finance

- Reliability is a must
- QCQP solver implemented using FORCES Pro allocating 30M\$/day in NYC
- Switching to FORCES Pro allowed to reduce simulation time by 100x

Future Developments

MIXED-INTEGER PROBLEMS

- Branch-and-bound solvers
- Disjunctive programming
- Piecewise-affine dynamics

NONLINEAR SMOOTH PROBLEMS

- Efficient integration methods for ODEs
- Easy-to-use automatic linearisation and discretisation tools

LARGE-SCALE PROBLEMS

- Tools for power distribution grids
- Difference of convex functions programming
- Large-scale portfolio problems

Exercise Session

- Choice of 3 types of exercises:
 - Graphical optimal control design using **Simulink** + FORCES Pro
 - Matlab API of FORCES Pro (quadratic constraints etc.)
 - Your own barrier interior-point method
- For barrier IPM:

embotech*

- Problem: $\min_{x} \{1/2x^T Hx \mid Gx \leq d\}$
- Centering step via Newton: $(\nabla^2 f(x) + \kappa \nabla^2 \phi(x)) \Delta x_{nt} = -\nabla f(x) \kappa \nabla \phi(x)$
- Gradient and Hessian of Barrier function:

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{d_i - g_i x} g_i^T, \nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{(d_i - g_i x)^2} g_i^T g_i$$

Newton step: $(H + \kappa \sum_{i=1}^{m} \frac{1}{(d_i - g_i x)^2} g_i^T g_i) \Delta x_{nt} = -Hx - \sum_{i=1}^{m} \frac{1}{d_i - g_i x} g_i^T$

