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B Convex Optimization i1s the Workhorse

» Many problems can be boiled down to solving

minimize 0.5x" Hx + ' x

subject to Ax = b Bounds, polytopes,
second-order cones,

Gx <k h < 2-norm balls,
exponential cones, ...

* Linear constrained optimal control

* Nonlinear programming: sequential quadratic programming
» Mixed-integer problems: convex relaxations

» Stochastic optimization: sampling

» In fact, this is what we can solve reliably

» In real-time control: parametric convex problems
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B Methods & Tools for Parametric Problems

EXPLICIT ITERATIVE METHODS

Precompute controller First order methods

* Fixed complexity
Simple to evaluate
< ps sampling
LPs/QPs only

small problems only

Parametric Programming

* Any size

* \ery fast for problems
with simple sets

* us —ms sampling

* Certification

Gradient Methods
Operator Splitting (ADMM)

Second order methods

* Any size & problem
* Robust to conditioning
* ms sampling

Active Set Methods
Interior Point Methods

< Speed

embotech™
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B Methods & Tools for Parametric Problems

EXPLICIT ITERATIVE METHODS
Precompute controller First order methods Second order methods

* Fixed complexity * Any size * Any size & problem

« Simple to evaluate * \ery fast for problems * Robust to conditioning
« < ys sampling with simple sets * ms sampling

* LPs/QPs only * ps —ms sampling

. * Certification

small problems only

Software * QPC [Wills, 2008]

LAO-MPC * gpOASES [Ferreau & Diehl, 2008]
[Zometa et al., 2013]  “Fast MPC” [Wang & Boyd 2008]
FiOrdOs [Richter et al., 2012]  « C\/XGEN [Mattingley & Boyd 2010]
QPgen [Giselsson, 2015] « FORCES [Domahidi et al., 2012]
SPLIT Toolbox [Jones, 2015]  « EcOS [Domahidi et al., 2013]

* HPMPC [Frison et al, 2014]
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B Outline of this Talk

EXPLICIT ITERATIVE METHODS
Precompute controller First order methods | Interior-point methods

* Fixed complexity * Any size * Any size & problem

* Simple to evaluate * \ery fast for problems * Robust to conditioning
* < ps sampling with simple sets * ms sampling

* LPs/QPs only * ps —ms sampling

« small problems only * Certification

Software

FORCES [Domahidi et al., 2012]
ECOS [Domahidi et al., 2013]

embotech™ 5 TNl Emirich |



B Outline of this Talk

EXPLICIT ITERATIVE METHODS
Precompute controller First order methods | Interior-point methods

The following slides are
(C) ETH Zurich,
Automatic Control Lab
with the help of

Stefan Richter

Melanie Zeilinger

Colin Jones
Manfred Morari

FORCES [Domanhidi et al., 2012]
ECOS [Domahidi et al., 2013]
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B Constrained Minimization Problem

Consider the following problem with inequality constraints

min f(z)

sit. g;(z) <0,i=1,...,m

Assumptions:
m [, g; convex, twice continuously differentiable
m f(z*) is finite and attained

m strict feasibility: there exists a T with
Te domf, ¢;(%)<0,i=1,...,m

m feasible set is closed and compact

Idea: There exist many methods for unconstrained minimization
= Reformulate problem as an unconstrained problem
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B» Graphical lllustration

Minimize a function over a set
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B» Graphical lllustration

Define function as oo if constraints violated.

Minimize this function over R"
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D Barrier Method

min f(X)

in f
st. g(x)<0,i=1,....m &  min  f(X) 4+ ko(X)

Constraints have been moved to objective via indicator function:

p(x) =) 1-(g:(x), r=1
i=1
where | _(u) =0 if u <0 and | _ = oo otherwise

m Augmented cost is not differentiable
— approximation by logarithmic barrier:

6x) = =Y log(~g:())

m For x > 0 smooth approximation of
indicator function

m Approximation improves as k — ( u
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B | ogarithmic Barrier Function

d(z) = — Z log(—gi(z)), dom ¢={z]| gi(z)<0,...,gm(z) <0}

m Convex, smooth on its domain
m ¢(z) — oo as x approaches boundary of domain

m arg min, ¢(z) is called analytic center of the set defined by inequalities
g1 <0,...,9, <0

m Twice continuously differentiable with derivatives

Vo(r) = —gj(x) V()
2 _ - 1 (r (1 T 1 2 . T
Vio(a) =), Vel Ve@)" + — s Vi)

=1

embotech™ | TNl Emirich |



B Central Path

m Define z*(k) as the solution of
min f(z) + £¢(2)

(assume minimizer exists and is unique for each x > 0)

Barrier parameter x determines relative weight between objective and barrier
Barrier ‘traps’ z(k) in strictly feasible set

Central path is defined as {z*(k) | kK > 0}

For given k can compute z*(k) by solving smooth unconstrained
minimization problem

m Intuitively 2* (k) converges to optimal solution as Kk — 0
(easy to prove under mild conditions)
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B txample: Central Path for an LP

z € R?, ¢ points upward

x = 1000

k=1/5 k=1/100
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B Path-following Methods

Idea: Follow central path to the optimal solution

Solve sequence of smooth unconstrained problems:

" (k) = argmin f(z) + 56(2)

m Assume current solution is on the central path z; = % (k;)
m Obtain k;11 by decreasing x; by some amount: k;11 = Kk;/p, 0 > 1

m Solve for x*(k;y1) starting from z*(k;) (unconstrained optimization). Called
"centering step” because it computes a point on (or close to) the central path

m Method converges to the optimal solution, i.e., ; — z* for k — 0
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B txample: PF-IPM for Quadratic Program

0.5
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B Centering Step Using Newton Method

Idea: Exploit fast local convergence of Newton's method starting at point close
to optimum

m Newton direction: Ax,; minimizes second order approximation

flz+ )+ kd(z+v) =f(z) + ko(z) + V() v+ kVe(z) v

1 1
+ §’UTV2f(£E)’U + iijVng(x)v

m Newton direction for barrier method is given by solution of
(V2f(2) + £V $(2)) Az = =V f(2) — iV ()

Line search consists of two steps:

For retaining feasibility, find
hmaez = argmaxpso{h | g1(z + hAz) <O0,...,gn(z+ hAz) < 0}

Find h™ = argminyeco, 1,,..] 1/ (z + hAz) + kp(z + hAz)}
both either solved exactly or through backtracking
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B Backtracking Line Search

given a descent direction Az for f at x € dom f, a € (0,0.5), B € (0,1).

t:=1.
while f(z 4+ tAz) > f(z) + atVf(z) ' Az, t:= 3t

Backtracking line search terminates when Armijo’s condition is satisfied:
f(Xi + hz’AXnt) < f(XZ) + CYhZVf (Xi)TAXmg

This is required for convergence of the optimization algorithm.
From [Boyd & Vandenberghe, Convex Optimization, 2004] with t = h,x = X;:

flx +tAx)

em t=0 to TiVo)ill ETHziirich



B Centering Step with Equality Constraints

Centering Step: Compute z* (k) by solving

min  f(z) + k¢(z)
st. Cr=d

m Newton step Ax,; for minimization with equality constraints is given by
solution of

V2f(z) +C/<;V2gb(x) c;T] [AZnt] _ [Vf(x) —I—OHV(b(x)

m Same interpretation as Newton step for unconstrained problem:
x + Ax,; minimizes second order approximation

min  Vf(z)Tv+ kVe(z)Tv+ 0TV f(2)v + 3r0TV23(z)v
st. Cv=0
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B Barrier IPM with Equality Constraints

min{f(z) | g(z) <0, Cr = d}

Require: strictly feasible 29 w.r.t. g(z), ko, u > 1, tol. € >0
repeat

Centering step: Compute z*(x;) by minimizing
f(x) + k;¢0(x) subject to Cx = d starting from xz;_;

Update x; = x*(k;)
Stopping criterion: Stop if mr; < €

Decrease barrier parameter: k;11 = Ki/ i

m Several heuristics for choice of kg and other parameters
m Terminates with f(z;) — f(z*) <€
m Steps 1-4 represent one outer iteration

m Step 1: Solve equality constrained minimization problem (via Newton steps)
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B -xample: Newton Step for QPs
mggn{l/Qa:THx | Gz < d}
m Barrier method:

1 m
min f(z) + k¢(z) = min §xTHx — HZlog(di — ;)

1=1

where g1, ..., g, are the rows of G.

m The gradient and Hessian of the barrier function are:

Vqﬁ(g;):z . : . 9; ,VZ Z d QQz'ng'

i—1 dz — 9iX i—1 — gi%
m Newton step: (V2f(z) + kV2¢(2))Az, = —Vf(z) — kV(z)
- 1 —~ 1
H " 9;) Ay = —Hr — T
( _'_l{;(dz_gzx)ng g) Int x ;dz_gzxgz
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B Remarks on Barrier |IPMs

m Choice of u involves trade-off: large ;1 = few outer iterations, but more inner
iterations to compute x;11 from z; (typical values = 10 — 20)

m Good convergence properties for a wide range of parameters p
Example: LP with 100 inequalities, 50 variables

duality gap

— — =

(@} @} (@}
! ! =
=~ [\

[
3
=)

pw=>50u=150 p=2

o

20 40 60
Newton iterations

80

Newton iterations

140

—
[\
o

100

w

0 40 80 120 160 200

"

m Barrier method requires strictly feasible initial point
— Phase | method, e.g., min, s{s | g(z) < s-1}

embotech™

21

Spinoff



Bl RBarrier IPMs and KKT Conditions

KKT conditions of the barrier problem:

Cr* =
g9i(2%) <0,i=1,...,m
N |
Vf(z™) + mz —Vgi(z*)+ CTv* =0
i—1 —gi(z*)
Defining
1
A=K —~ >0
—gi(z*)

results in the standard KKT conditions where complementarity slackness is
replaced by the relaxed condition

Nigi(a) = —5

embotech™ 2
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B» Primal-Dual Interior-Point Methods

Using the result from above, the relaxed KKT system can be written as

Cx* =d
g(xX*)+sf =0i=1,...,m
VE(X*) + 305, A Vei(x*) +C v =0 (**)
AiGi(X*) = —k
AE st >0, i=1,....m

79 %

Idea: leave dual multipliers A} as variables (before, they were implicitly defined by
primal log barrier)3:

m Solve the primal and dual problem simultaneously via (**)

m Primal-dual central path = {(x,s,\,v) | (**¥) holds}

m Follow central path to solution by reducing k to zero
O

Solve (**) by Newton method (with additional “safeguards” & line search)
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B Primal-Dual Search Direction

At each iteration, linearize (**
H(z,\) CT G(x)7T

C 0 0

G(x) 0 0

I 0 0 S

where S = diag(sy, ...,

coefficient matrix is

sm) and A = diag(\y, ...

H(z,\) =

) and solve
0] [Az]
0 |Ay
Il [AX
A

_AS_

ZA V2 g:(z)

(Vf(z)+ CTy+ G(z) T\
Cx —d
g9(z) + s
SA—v

, Am ), the (1,

1) block in the

and the vector v € R™ allows for a modification of the right-hand side. Call
resulting direction A [z, y, A, s] (v).

embotech™
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B Primal-Dual Search Directions

Can generate different directions A [z, y, A, s| (v) depending on v:

AN
¢ iterat centering
current iterate
direction A [x, y, X, s] (k1)
(.Y, A 5)— 0>
‘ resulting search
. direction with o € (0, 1)
Newton — Alx,y, N s](okl)
direction
(predictor) __—central path C
Alx,y, X s](0)
optimal point
|
—>

51
m v = 0: standard Newton method for solving nonlinear equations
m v = k1: centering direction, next iterate is on central path

= Using linear combination via centering parameter o € (0, 1) ensures fast
convergence in theory & practice by tracking central path to solution
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B Summary Interior-Point Methods

Barrier method
(also called Sequential Unconstrained Minimization Technique, SUMT)
m Intuition: Follow central path to the optimal solution

m Log barrier function ensures satisfaction of inequality constraints

m Centering problems can be solved efficiently using Newton's method

m Requires strictly feasible initial point

‘Modern’ methods: Primal-dual methods
m Often more efficient than barrier method (superlinear convergence)

m Cost per iteration roughly the same as barrier method

m Allow for infeasible start (w.r.t. both equality and inequality constraints)

m Can provide certificates of infeasibility (using self-dual embedding)

m Most efficient in practice: Mehrotra's predictor-corrector method : < 30 iterations
in practice

Interior-point methods are very efficient for range of optimization problems, e.g. LPs,
QPs, second-order cone and semidefinite programs.
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B Convergence Rates

0

10
107
107
o
107°
107°
7f\z (superlinear) IPM (b er method)
0 ; : Primal-dual IPMs (locally) | ; ;
10 | | | | | | | |
0 5 10 15 20 o5 30 35 40
iteration /
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B Outline of this Talk

EXPLICIT ITERATIVE METHODS
Precompute controller First order methods | Interior-point methods

FORCES [Domahidi et al., 2012]
ECOS [Domahidi et al., 2013]
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B nterior Point Methods in a Nutshell

min  f(y) H(y.N) CT J(y) ] [AY] rc
g C Av re

s.t. g(y) <0 J(_)/) / AN - r
Cy+c= I S Al |As 3

KKT conditions Interior Point Method

Vi(y)+Vag(y)'X+C'v=0 1. Initialize 2o = (o, S0, Mo, Yo)
Cy+c=0 2. Solve linearized KKT system

g(y) +s=0 — search direction Az,

As=0 3. Determine step size a

A s>0 4, Ziy1 =z + alz
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B nterior Point Methods in a Nutshell

min - (y) Hy AN TSy [ [
C Av| e
st gy) <0 J(y) [l [AXN] r
Cy+c= I S A| [As] 3
Interior Point Method
Vf(y) T Vg(y)TA T CTV =0 1. Initialize 2y = (yo, S0, >\0, 1/0)
Cy+c=0 2. Solve linearized KKT system
g(y)+s=0 — search direction Az
AMs=0 3. Determine step size o

A s>0 4, Ziy1 =z + alz

Solving the linearized KKT system is ~95% of the computation



B Solving Ax=b, A square

* lterative solvers: generate sequence of iterates s.t. Ax =~ b
— MINRES, conjugate gradient, Krylov subspace methods, Lanczos...
— Useful for parallelizing
— Matrix-vector products only, max. O(n\2) per iteration
— Number of iterations required depends strongly on cond(A)
— Literature in context of IPMs: inexact Newton methods

* Direct solvers: factor A & forward/backward solve
— General A: LU factorization 4/3 nA3 flops
« (Gauss elimination with partial pivoting
— A symmetric indefinite: LDL factorization 4/3 nA3 flops (1/2 the memory of LU)
« Bunch-Parlett pivoting (1x1 and 2x2 blocks in D)
— A symmetric positive definite: Cholesky 2/3 n/A3 flops

« stable without pivoting
* needs square roots
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B Direct Methods Solving the KKT System

. Unreduced form « Not symmetric and indefinite
’H(y A CT JT(y) 7 [Ay] "] * LU factorization
C Av| — |re
J(y) / AXN| ry
| S N [As] b
2 Auamented form * Eliminate A\ and As
- (S and L are PD and diagonal)
[CD C ] [AYI _ [/’d] * Symmetric, but indefinite
C Av re + DL factorization
®=H(y,\) + JT(y)S—l/\J(y) — Requires pivoting
— CVXGEN: regularization instead
+ Eiminate By
(Schur complement)
YAv = (3 * Symmetric, positive definite
» Cholesky factorization
Y — CoicT — Stable without pivoting
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B Direct Methods Solving the KKT System

. Unreduced form » Not symmetric and indefinite
’H(y A CT JT(y) 7 [Ay] "] © LU factorization
C Av| — |re
J(y) / AXN| ry
| S N [As] b
2 Auamented form * Eliminate A\ and As
- (S and L are PD and diagonal)
[CD +ol C ] [AYI _ [/’d] « Symmetric, but indefinite
C —o/ re + DL factorization
®=H(y,\) + JT(y)S—l/\J(y) — Requires pivoting
— CVXGEN: regularization instead
+ Eiminate 2y
(Schur complement)
YAv = (3 « Symmetric, positive definite
* Cholesky factorization
Y — CoicT — Stable without pivoting
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B Convex Multistage Problems

minimize ZlNzl %Z,-T H;z + f,-TZ,' separable objective
subject to z;, < z; < Z upper/lower bounds
Az < b; affine inequalities
Z,-TQ,'JZ,' + /,C-Z,' < rj quadratic inequalities
Cizi+ Dji1zi41 = Cj affine equalities, each

coupling only two
consecutive variables

where H;, Q; = 0 and A; has full row rank
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B Convex Multistage Problems

o N
miniMmize Z/_l 52 TH. G2y fTZ, separable objective
subject to z;, <z < Z upper/lower bounds
Az <b
TN. . /T < L L
Z; Q,,JZ, + 1.2 < hij quadratic inequalities

Cizi+ Dji1zi41 = Cj affine equalities, each
coupling only two
consecutive variables

where H;, Q; = 0 and A; has full row rank

Captures OCP, MPC, MHE, spline optimization, portfolio optimization, etc.
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B Multistage Property Induces Structure

Multistage problem

minimize
subject to

1. H(y,A) and J(y) are block diagonal

2. C .=

Yim1 27 Hizi+ 2 “H(y, \)
z; <z < Z C
Aizi < b;

ZI-TQ,'JZ,' + /Z;-Z,' < Fij J(y)
Cizi+ Diy1zit1 = ¢ |

Co
0

0

N 1_T

D
Cq

0

0
Do

0
0

Cn—1 Dn|

3. Dimensions known at compile time

embotech™
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As

Linearized KKT system
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B Multistage Property Induces Structure

Multistage problem Linearized KKT system

C N _ - - - -
minimize i1 3z  Hizi + £ 2 H(y, \) cT JT(y) Ay re
subjectto z, <z < Z
Az < b C Av |
ZI-TQ,'JZ,' + /Z;-Z,' < Fij J(y) / A>\ ri
Cizi+ Djt1ziy1 = G L S /\_ _AS_ e

1. H(y,A) and J(y) are block diagonal

Co Dy O 0

0 C; Ds 0
2. C:=| . . .

0 0 - Cy.1 Dnl

3. Dimensions known at compile time

Goal: Exploit problem structure to speed up solution
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B Direct Methods Solving the KKT System

. Unreduced form « Not symmetric and indefinite
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B Direct Methods Solving the KKT System

. Unreduced form » Not symmetric and indefinite
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B Scarch Direction Computation

@
Set up KKT System

Y .= Cco~IcT
ONr3 FLOPS
v
@

Factor coefficient
matrix

2Nr® FLOPS
v
13

Compute search

direction (forward &
backward subst.)

O(Nr?) FLOPS N : number of stages, r : stage/block size
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B Cholesky Factorization of Y

- Want to compute Ly such thatY = Ly L]

_\/11 Y12 0 0 o] ([ 11 0 0 0

»/172_ »/22 \/23 O o« o L021 222 LO . e 8
Y=10 \/273_ Yz Yaa - Ly = . .32 .33

. . i i ] i 0 0 LN,N—l LN,N_

Sequential block-wise factorization:

L11 = chol(Yi1) 2/3r3  (Cholesky factorization)
forir=2:Ndo
Ll =Yiis1/Li, r3  (Matrix backward subst.)
Ui=Ljji-1L],_4 r3  (Matrix matrix muilt.)

Li; = chol(Y;; — U;) 2/3r® (Cholesky factorization)
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B Scarch Direction Computation

@
Set up KKT System

Y .= Cco~IcT
ONr3 FLOPS
v
@

Factor coefficient
matrix

2Nr® FLOPS
v
13

Compute search

direction (forward &
backward subst.)

O(Nr?) FLOPS N : number of stages, r : stage/block size
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B Scarch Direction Computation

@
Set up KKT System

Y :=Ccoic’
ONr® FLOPS
v
@ .

* Reduce naive O(N3r3) to O(Nr3) by banded fact.

Factor coefficient [Wang & Boyd 2008], [Rao, Wright & Rawlings 1998]

matrix « 20% of total effort
* Independent of problem structure

2Nr® FLOPS
v
©

Compute search

direction (forward &
backward subst.)

O(Nr?) FLOPS N : number of stages, r : stage/block size
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B Scarch Direction Computation

Y .= Cco 1T
ONr3 FLOPS
v

2Nr® FLOPS
v

O(Nr?) FLOPS
W

* 80% of total effort
* Generally ignored in the literature

* Possible to exploit structure of problem
[Domahidi et. al. CDC 2012]

* Reduce naive O(N3r3) to O(Nr3) by banded fact.

[Wang & Boyd 2008], [Rao, Wright & Rawlings 1998]
« 20% of total effort
* Independent of problem structure

N : number of stages, r : stage/block size
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B Cost Analysis for Forming Y = Co~1C’

Block-wise computation of Y

Y,',' .= C/'—lcbi__llcitl + D/CD,_lD/T

re-use already
computed elements

Y1 Y2 0 0
Y5 Yo Yes O 1T
_ Yiiv1 .= D;® " C,
Y = 0 »/27?; Y33 Y34 Ii+1 1Y j
: : » 80% of total effort
- - * inherently parallel
Proposed method (saves 2> flops)
1 L;=chol(d)) 2/3r3  (Cholesky factorization)
2 V.=C;/LT r3  (Matrix backward subst.)
3 W,=D;/L] e
4 Y, =V"V r3  (Matrix-matrix products)
5 +W.IW, rs
6 Yii=W\V/’ 2r3
Total 20/3r3 flops

embotech™
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B Cost Analysis for Forming Y = Co~1C’

Yy Y2 0 0 - Yi = Ciaa® Gy + Do D]
Y5 Yoo Yz 0 .- 1T

_ Yiig1 1= Di®;°C;
V=100 Y5 vas Ve o -
: S * 80% of total effort
L ' ' ' e * inherently parallel

Proposed method (saves 2> flops) re-use already
computed elements
1 L;=chol(d)) 2/3r3 (Cholesky factorization)
2 V.=C;/LT r3  (Matrix backward subst.)
3 W, =D;/LT r?
4 Y, =V"V r3  (Matrix-matrix products)
5 +WT W, =
6 Yii=W\V/’ 2r3
Total 20/3r3 flops

How much can be saved if the structure of C, D, and ® are known?

<l
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B Fine-grained Structure Exploitation

» Additional structure exploitation possible for special cases (block-wise):

Theoretical speedups

vy, <V
Fvi<f
v Mv; < r, M diag.

v/ Mv; < r, M dense

2]
]
=

©
=

n

-

o
O

embotech™

Objective
compared to base case v! Qv;, Q diag. v Qv;, Q dense

9.3x
1.0x
6.7X
1.4x

9.3x
1.0x
6.7X
1.4x

1.4x
1.0x
1.4x
1.4x (1.8x if M=Q)
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B Fine-grained Structure Exploitation

» Additional structure exploitation possible for special cases (block-wise):

Theoretical speedups
compared to base case v Qv;, Q dense
vSvVvis<Vv 9.3x 9.3x 1.4X
Fvi < f; 1.0x 1.0x 1.0x
v Mv; < r, M diag. 6.7x 6.7x 1.4x
v Mv; < r, M dense 1.4x 1.4x 1.4x (1.8x if M=Q)

2]
]
=

©
=

n

-

o
O

v

Example for typical MPC problem:  min  x/ Pxy + SV ' xT Qx; + u] Ru;
e Stages 0...N-1: Q, R diagonal st xo =X, Xi+1 = Ax; + Bu;
e Stage N: P dense X<xi<Xx, u<u <,

E
= ~75% complexity reduction Xy Pxn < a
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B Fine-grained Structure Exploitation

» Additional structure exploitation possible for special cases (block-wise):

Theoretical speedups
compared to base case v Qv;, Q dense
vVSVisSV 9.3x 9.3x 1.4x
Fvi<f 1.0x 1.0x 1.0x
v Mv; < r, M diag. 6.7x 6.7x 1.4x

2]
]
=

©
=

n

-

o
O

v/ Mv; < r, M dense 1.4x 1.4x 1.4x (1.8x if M=Q)

v

Example for typical MPC problem:  min  x/ Pxy + SV ' xT Qx; + u] Ru;

e Stages 0...N-1: Q, R diagonal st xo =X, Xi+1 = Ax; + Bu;

e Stage N: P dense x<xi <X, u<u <1,
T

= ~75% complexity reduction Xy PXy < @

Structure exploitation can be automatized by code generation
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B FORCES Pro: Multi-method Autocoder

» From problem & platform specification to implementation

» Generates library-free ANSI-C code

Model | Control objectives | System constraints | Settings
onstraints on output/state 1?
Constraints on output/state 2?

» New: generate code directly from Simulink

Soft constraint

FORCES™

exploit tailor
problem code to

fit method

to problem structure platform

embotech™
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FORCES™
B» Current Features

» Optimized for parametric multistage convex programs of the form

N
L 1
minimize Z EZI-TH,'Z,' + f,'TZ,'
i=1
subjectto D1z = ¢

Ci_1zi—1+ D;z; = ¢, Vied{2,3, ....N}
Zmin < Zj < Zmax, Vie{l,2,...,N}
Aizi < bmax, Vie{l,2, .. N}
2/ Qixzi+ Lixzi < rix Vk vie{l,2, ... N}
» Matlab * Primal-dual interior point * x86, x86_64
* Simulink * ADMM | & 2, custom projections * Tricore
* Python * Primal (fast) gradient » PowerPC
* dSpace * Dual (fast) gradient | * ARM
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FORCES™
Example: Autonomous Racing

=

/ 3 ’ e . P, S
- == > - -— o T

embotech™ Watch online  Spinoff |G


https://www.youtube.com/watch?v=JoHfJ6LEKVo
https://www.youtube.com/watch?v=JoHfJ6LEKVo
https://www.youtube.com/watch?v=JoHfJ6LEKVo
https://www.youtube.com/watch?v=JoHfJ6LEKVo

FORCES™
B Autonomous Racing - Implementation

» ldea: reformulate “minimum time" objective as “maximum progress”
* Progress measured by projection on center line (nonlinear operator)

/
Sk o N

S,
max sy — Z%HEiHQ + ’YIH‘5£<H2
k=1

st.Sp =5, Xo =X

So X\ center line Ski1 = Sk + Wk
¢ /7 Ncartrajector _
S ,' ) Y 0< v <V, x¢x € Xy, ug € Uy
» SQP method [Diehl 2002]: X1 = AkXk + BiUk + gk
| Linearize continuous-time dynamics around trajectory Ei = Eixx + Frsk + f
2. Discretize using matrix exponential

I _
3. Solve local convex approximation (QP) > €k = GrXk + Hicsk + hi

4. Update trajectory & apply first input
» QP solved in 14 milliseconds (N=40, 540 variables, 680 constraints)

50 Hz sampling rate on smartphone
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FORCES™

B Closed-loop Simulation

I T T T I I I I I 35
150
: 3
|8 S
05| ' i 25
L)
8 \
— " —
= 1o *E
5 =
05k
15
=
Lt
15k i
2 | 1 | | 1 1 1 1 1 .0_5
15 -1 05 0 05 1 15 2 25
X [m]

Watch online
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http://youtu.be/i6EEKao3bYY
http://youtu.be/i6EEKao3bYY
http://youtu.be/i6EEKao3bYY
http://youtu.be/i6EEKao3bYY
http://youtu.be/i6EEKao3bYY
http://youtu.be/i6EEKao3bYY

B» Comparison IPM to Commercial Solver

. . Uy Uy
» Standard MPC problem for oscillating ’ k ! k
chain of masses (on Intel i5 @3.1 GHz) W g W Tag
—F— 2
» CPLEX N/A on embedded systems d d d d
FORCES 10° [ ‘
- —=—|BM CPLEX, 4 Cores

Solve time: 90 ys —— \ —e— FORCES general, 1 Core ||

o I ——FORCES tailored, 1 Core ||

Code size: i FORCES ga;r?éfal, 4 Cores |

‘ FORCES tailored, 4 Cores |

| 80 : [Domahidi, 2013]

210" -
5
IBM CPLEX ‘
Solve time: 5470 ps I 2%
Coe 26100 KD ¥
ode size 100 NV /
; | | | | . :’
0 10 20 30 40 50 60
Number of States
45 Spinoff
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FORCES™

B Gasoline 2-Stage Turbocharger Control

By courtesy of D. Ritter and T. Albin, Institut fur Regelungstechnik, RWTH Aachen University
ACADO + FORCES Pro

50 Hz sampling rate on dSpace Autobox



FORCES™

B Gasoline 2-Stage Turbocharger Control

N

St S et A L T3 et gt 8 i § 3

4&0..:0#1‘0.-.04: .-“5“
. 4 A 4

By courtesy of D thter and T. Albin, Instltut fiir Regelungstechnlk RWTH Aachen University
ACADO + FORCES Pro

50 Hz sampling rate on dSpace Autobox



FORCES™

B Non-embedded Applications: Finance

expected " S——

e, transaction
costs

return

T _

max W' x — E Cilxi — X
X N
i=1

St Xmin < X < Xmax,

constraint

e, CUITENT
position

» Reliability I1s a must
» QCQP solver implemented using FORCES Pro allocating 30M%$/day in NYC
» Switching to FORCES Pro allowed to reduce simulation time by [00x
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B Future Developments

MIXED-INTEGER
PROBLEMS

» Branch-and-bound
solvers

» Disjunctive
programming

» Piecewise-affine
dynamics

»

NONLINEAR
SMOOTH
PROBLEMS

Efficient integration
methods for ODEs

Easy-to-use automatic
linearisation and
discretisation tools

LARGE-SCALE
PROBLEMS

Tools for power
distribution grids

Difference of convex
functions
programming

Large-scale portfolio
problems

embotech™
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B Cxercise Session

» Choice of 3 types of exercises:

» Graphical optimal control design using Simulink + FORCES Pro
» Matlab APl of FORCES Pro (quadratic constraints etc.)
* Your own barrier interior-point method

» For barrier [PM:
* Problem: min{1/2s"Hz | Gz < d}
+ Centering step via Newton: (V2f(z) + £V?¢(2)) Az = —Vf(z) — KV ()

« Gradient and Hessian of Barrier function:
Vo(z) = ij L7 V2(z) = Zm: L s
—~ d; — gz —~ (di — gix)?™" 7
- Newton step:  (H To)Az, = —Hrx — r
P +K;(di—gix)2gzg) ot ! ;di—gﬂgz
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