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Convex Optimization is the Workhorse

‣ Many problems can be boiled down to solving

• Linear constrained optimal control
• Nonlinear programming: sequential quadratic programming
• Mixed-integer problems: convex relaxations
• Stochastic optimization: sampling

‣ In fact, this is what we can solve reliably
‣ In real-time control: parametric convex problems
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Bounds, polytopes,
second-order cones, 
2-norm balls, 
exponential cones, ...
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In Par t II: Conic IPMs & ECOS

‣ Conic problems are nonlinear convex problems
‣ Hence can be efficiently solved by e.g. interior-point methods
‣ ECOS is a solver implementing a conic IPM with sparse LA
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Bounds, polytopes,
second-order cones, 
2-norm balls, 
exponential cones, ...
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Second-order Cone Programs
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‣ Minimize linear objective over convex pointed cone     affine equality:

where                                       and

with

‣ LPs, QPs and QCQPs can be formulated as SOCPs

K � K1 �K2 � . . .KN Ki =

�
R+ �WVZP[P]L VY[OHU[�
Qni �ZLJVUK�VYKLY JVUL�

Qni � {(x0, x1) � R� Rni�1 | x0 � �x1�2}

�

TPUPTPaL cT x
Z\IQLJ[ [V Ax = b

Gx �K h
�:6*7�
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Applications of SOCPs
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‣ Signal processing, e.g. 
• robust beamforming [Vorobyov et al., 2003]
• error correction [Candes & Randall, 2008]

‣ Power grids, e.g. optimal power flow [Sojoudi & Lavaei, 2012]

‣ Finance, e.g. robust portfolio selection [Goldfarb & Iyengar, 2003]

‣ Machine learning, e.g. group LASSO [Meier et al., 2008]

‣ Control, e.g.
• Robust MPC via affine feedback policies [Goulart et al., 2006]
• Minimum-fuel powered descent for spacecraft [Acikmese & Ploen, 2007]
• Soft-constrained MPC with stability guarantees [Zeilinger et al., 2013]
• Minimum-time trajectories for robots [Verscheure et al., 2013]

‣ MedTec: Radiation therapy planning [Chu et al, 2005]
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Example: Minimum Time Path Tracking

6

‣ Goal: follow given trajectory with robot arm as quickly as possible
‣ Optimization problem: 

minimize
subject to

time
robot tip on given trajectory
system dynamics
maximum torque at joints
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Example: Minimum Time Path Tracking
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‣ Goal: follow given trajectory with robot arm as quickly as possible
‣ Optimization problem: 

‣ Results in convex SOCP [Verscheure, Demeulenaere, Swevers, De Schutter, Diehl 2009]
• there is no faster way of tracking a path
• constraints are satisfied
• optimum can be computed efficiently

minimize
subject to

time
robot tip on given trajectory
system dynamics
maximum torque at joints



e m b o t e c h
Doing more w i th  less

7

(source: Verscheure et al., 2009)

Link to 
Video

Example: Minimum Time Path Tracking

http://people.mech.kuleuven.be/~dversche/timeopt/kuka361-exp.mpg
http://people.mech.kuleuven.be/~dversche/timeopt/kuka361-exp.mpg
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SOCPs for Min-Fuel Powered Descent
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Real-time Optimization for Advanced 
Automation

Behçet Açıkmeşe

Department of Aerospace Engineering and Engineering Mechanics
University of Texas at Austin 
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Convexification Method

Acikmese, Behcet, and 
Scott R. Ploen. "Convex 
programming approach to 
powered descent guidance 
for mars landing." Journal of 
Guidance, Control, and 
Dynamics 30.5 (2007): 
1353-1366.

By courtesy of Behçet Açıkmeşe
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Solve Times for SOCPs
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Problem 
instance

Optimal 
solution

Generic IPM 
solver

Solution via Generic Solvers

Solution via Custom Solvers

Problem 
class

Custom 
IPM

Solver 
customization

Problem 
instance

Optimal 
solution

Custom IPM 
solver

T secs

T/100 secs

Computation 
time

Method NLP-based Generic IPM 
for SOCP

Custom IPM 
for SOCP

CPU time (ms) on a 
laptop

Reliability

20,000 1,000 10 - 15

< 80% > 99% > 99%

By courtesy of Behçet Açıkmeşe
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Example: Min-Fuel Powered Descent
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Watch online

Source: Youtube (“Xombie 750m Mars EDL Divert Trajectory”)

https://www.youtube.com/watch?v=jl6pw2oossU
https://www.youtube.com/watch?v=jl6pw2oossU
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Conic Programming
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Cone LP
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Conic programming

There is a dual cone problem

minimize cT x

subject to Ax = b

x 2 K

minimize � bT y

subject to AT y + s = c

s 2 K?

K? =
n

s | xT s � 0 for all x 2 K
o

K

K?

10 / 67

By courtesy of Santiago Akle, Stanford University
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What is a Proper Cone?
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Conic programming

What is a proper cone (K)?

I If x 2 K then all positive
scalings ↵x 2 K

I Closed

I Convex

I Pointed (if x 2 K then
�x /2 K)

I With nonempty interior

9 / 67

By courtesy of Santiago Akle, Stanford University
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Dual Cone and Dual Problem

15

Conic programming

There is a dual cone problem

minimize cT x

subject to Ax = b

x 2 K

minimize � bT y

subject to AT y + s = c

s 2 K?

K? =
n

s | xT s � 0 for all x 2 K
o

K

K?

10 / 67
By courtesy of Santiago Akle, Stanford University
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Car tesian Product of Cones
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Conic programming

Cartesian products of cones

The product

K = K1 ⇥K2

is a cone, and has dual

K? = K?
1 ⇥K?

2

12 / 67

By courtesy of Santiago Akle, Stanford University
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The Most Impor tant Cones
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Conic programming

Examples of cones

Positive orthant

Rn
+ = {x | 0  xi 8i}

Second-order cone

L = {x , ⌧ | kxk2  ⌧}

Positive semi-definite matrices

Sn
+ =

n

X | X = XT , X ⌫ 0
o

Exponential cone

Ke = cl
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Exponential cone

the epigraph of the perspective of expx is a non-proper cone

K =
{

(x, y, z) ∈ R3 | yex/y ≤ z, y > 0
}

the exponential cone is Kexp = clK = K ∪ {(x, 0, z) | x ≤ 0, z ≥ 0}
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Conic optimization 16-11

y

z
x

By courtesy of Santiago Akle, Stanford University & Lieven Vandenberghe, UCLA
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Cones Suppor ted by
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Conic programming
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Examples for SOCP-representable f(x)

19

Examples of second-order cone representable functions

• convex quadratic

f(x) = xTPx+ qTx+ r (P ! 0)

• quadratic-over-linear function

f(x, y) =
xTx

y
with dom f = Rn × R+ (assume 0/0 = 0)

• convex powers with rational exponent

f(x) = |x|α, f(x) =

{

xβ x > 0
+∞ x ≤ 0

for rational α ≥ 1 and β ≤ 0

• p-norm f(x) = ‖x‖p for rational p ≥ 1

Conic optimization 16-18

Material from Lieven Vandenberghe, UCLA
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Examples of second-order cone representable functions
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{

xβ x > 0
+∞ x ≤ 0

for rational α ≥ 1 and β ≤ 0

• p-norm f(x) = ‖x‖p for rational p ≥ 1

Conic optimization 16-18

Many more functions and examples in:

- Ben-Tal and Nemirovski. Lectures in Modern Convex Programming §2.3

- Lobo, Vandenberghe, Boyd, Lebret: 
  Applications of Second-order cone programming, 1998

Material from Lieven Vandenberghe, UCLA
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Functions Representable by Exp Cones

‣ Logarithms 
• Geometric programming:

‣ Exponentials:
• Logistic regression: 

‣ Entropy: f(x) = x log x

‣ Kullback-Leibler Divergence

21

A tutorial on geometric programming 71

As an example, consider the problem

minimize x−1y−1/2z−1 + 2.3xz + 4xyz

subject to (1/3)x−2y−2 + (4/3)y1/2z−1 ≤ 1,

x + 2y + 3z ≤ 1,

(1/2)xy = 1,

with variables x, y and z. This is a GP in standard form, with n = 3 variables, m = 2
inequality constraints, and p = 1 equality constraints.

We can switch the sign of any of the exponents in any monomial term in the
objective or constraint functions, and still have a GP. For example, we can change the
objective in the example above to x−1y1/2z−1 + 2.3xz−1 + 4xyz, and the resulting
problem is still a GP (since the objective is still a posynomial). But if we change
the sign of any of the coefficients, or change any of the additions to subtractions,
the resulting problem is not a GP. For example, if we replace the second inequality
constraint with x +2y −3z ≤ 1, the resulting problem is not a GP (since the left-hand
side is no longer a posynomial).

The term geometric program was introduced by Duffin, Peterson, and Zener in
their 1967 book on the topic (Duffin et al. 1967). It’s natural to guess that the name
comes from the many geometrical problems that can be formulated as GPs. But in
fact, the name comes from the geometric-arithmetic mean inequality, which played a
central role in the early analysis of GPs.

It is important to distinguish between geometric programming, which refers to
the family of optimization problems of the form (3), and geometric optimization,
which usually refers to optimization problems involving geometry. Unfortunately,
this nomenclature isn’t universal: a few authors use ‘geometric programming’ to
mean optimization problems involving geometry, and vice versa.

2.3 Simple extensions of GP

Several extensions are readily handled. If f is a posynomial and g is a monomial, then
the constraint f (x) ≤ g(x) can be handled by expressing it as f (x)/g(x) ≤ 1 (since
f/g is posynomial). This includes as a special case a constraint of the form f (x) ≤ a,
where f is posynomial and a > 0. In a similar way if g1 and g2 are both monomial
functions, then we can handle the equality constraint g1(x) = g2(x) by expressing it
as g1(x)/g2(x) = 1 (since g1/g2 is monomial). We can maximize a nonzero mono-
mial objective function, by minimizing its inverse (which is also a monomial).

As an example, consider the problem

maximize x/y

subject to 2 ≤ x ≤ 3,

x2 + 3y/z ≤ √
y,

x/y = z2,

(4)

KL(p, q) =
�

pi log
pi

qi

f (x) =
1

1 + e�0+�1x
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Optimization over 
Symmetric Cones
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Symmetric Cones:

‣ Positive orthant
‣ Second-order cone
‣ SDP cone

‣ Consequence: powerful long-step interior-point methods
• Mehrotra-predictor corrector works extremely well for these problems

‣ Exponential cones are not symmetric
• more iterations needed in general (short step methods)

23

K = K�
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SOCP vs SOCP-Exp - #Iterations

24

ECOS and ECOS-Exp

A first look at ECOS-Exp

Figure : Iteration count vs ⌫ SOCP and mixed SOCP Exponential cone problems

48 / 67

Short-step method

Mehrotra PC method
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Euclidean Jordan Algebra

‣ Each element in a symmetric cone can be spectrally decomposed:

where vectors     form an orthonormal basis with identity element 
‣ Examples: 

• nonnegative orthant:

•

25

Spectral decomposition for primitive cones

positive semidefinite cone (K = Sp)

spectral decomposition of x ∈ Rp(p+1)/2 follows from e.v.d. of mat(x):

mat(x) =
p
∑

i=1

λiviv
T
i , qi = vec(viv

T
i )

second-order cone (K = Qp)

spectral decomposition of x = (x0, x1) ∈ R× Rp−1 is

λi =
x0 ± ‖x1‖2√

2
, qi =

1√
2

[

1
±x1/‖x1‖2

]

, i = 1, 2

Symmetric cones 19-9

x � K� ��i � 0, qi : x =
��

i=1

�iqi

Spectral decomposition for composite cones

product cone (K = K1 × · · ·×KN)

spectral decomposition follows from decomposition of different blocks

example (K = K1 ×K2): decomposition of x = (x1, x2) is

[

x1

x2

]

=
θ1
∑

i=1

λ1i

[

q1i
0

]

+
θ2
∑

i=1

λ2i

[

0
q2i

]

where xj =
θj
∑

i=1
λjiqji is the spectral decomposition of xj, j = 1, 2

nonnegative orthant (K = Rp
+)

λi = xi, qi = ei (ith unit vector), i = 1, . . . , n

Symmetric cones 19-10

Spectral decomposition for composite cones

product cone (K = K1 × · · ·×KN)

spectral decomposition follows from decomposition of different blocks

example (K = K1 ×K2): decomposition of x = (x1, x2) is

[

x1

x2
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=
θ1
∑

i=1

λ1i

[

q1i
0

]

+
θ2
∑

i=1

λ2i

[

0
q2i

]

where xj =
θj
∑

i=1
λjiqji is the spectral decomposition of xj, j = 1, 2

nonnegative orthant (K = Rp
+)

λi = xi, qi = ei (ith unit vector), i = 1, . . . , n

Symmetric cones 19-10

Material from Lieven Vandenberghe, UCLA

qi e
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Some Interesting Facts

26

18 2 Convex Optimization

With this spectral decomposition in place, we can express some useful relations which are

given in (2.23).

Property Definition Cone R
+

Cone Qn, n > 1

x 2 Qn , �i � 0 , 8i x � 0 x
0

± kx
1

k
2

� 0 (2.23a)

x 2 int Qn , �i > 0 , 8i x > 0 x
0

± kx
1

k
2

> 0 (2.23b)

Inverse x�1 s.t.
x � x�1 = e x�1 ,

RX

i=1

��1i qi x�1 = 1/x x�1 = (x
0

,�x
1

)/ det(x) (2.23c)

Determinant:
det(x) det(x) ,

RY

i=1

�i det(x) = x det(x) = x2
0

� xT
1

x
1

(2.23d)

The inverse and determinant are important for interior point algorithms for optimization

over symmetric cones, since they allow to construct logarithmic barriers and to define the

central path in a symmetric way. We detail on this in Section 2.2.2. For more details on

properties of symmetric cones see [43].

2.1.4 Self-Dual Embeddings

2.1.4.1 Homogeneous Self-Dual Embedding

In the following, we discuss the embedding of (CP) and (CP-D) into a lifted problem (cf. [5,

7, 141])

min 0

s.t. ⌧c + AT y + GT z = 0

Ax � ⌧b = 0

Gx + s � ⌧h = 0

cT x + bT y + hT z +  = 0

(s, z) ⌫K 0 , (⌧,) � 0

(HSD)

with two additional scalar variables ⌧ and . Problem (HSD) is self-dual, i.e. the dual of

(HSD) is structurally the same problem (see Lemma A.1 in the Appendix for a straight-

forward proof), there always exists a feasible solution, as the point (x, y , z, s, ⌧,) = 0

trivially satisfies the constraints. The main advantage of problem (HSD) is that it allows

for detecting infeasibility of the primal cone program (CP) or its dual (CP-D).

Lemma 2.1 (Certificates of optimality or infeasibility). Let a feasible point (x, y , z, s, ⌧,)

for (HSD) be given. Then the following certificates can be provided:

‣ Can be used to treat symmetric cones with one unified IPM theory
Schmieta, S. H., and Farid Alizadeh. "Extension of primal-dual interior point algorithms to symmetric cones." 
Mathematical Programming 96.3 (2003): 409-438.
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Central Path

27

‣ Use log-det barrier function
‣ Property:                           by a spectral decomposition of x
‣ Primal-dual central path is the set of points satisfying

‣

��(x) = �x�1

Primal-dual central path
�

�
0
0
s

�

� =

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
x
y
z

�

�+

�

�
c
b
h

�

�

z = �µ��(s)
(s, z) �K 0

z = �µ��(s) JHU IL ^YP[[LU HZ s � z = µe MVY HWWYVWYPH[L ]LJ[VY WYVK\J[ �

^P[O WH[O WHYHTL[LY µ > 0

�(x) = � log det x MVY x � PU[K

TPUPTPaL cT x
Z\IQLJ[ [V Ax = b

Gx + s = h, s � K
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Optimality Conditions

28

‣ KKT conditions are necessary and sufficient conditions for convex problems

‣ Primal-dual interior-point methods: relax KKT conditions & track central path

Primal Problem: Dual Problem:
TPUPTPaL cT x
Z\IQLJ[ [V Ax = b

Gx + s = h, s � K

TH_PTPaL �bT y � hT z
Z\IQLJ[ [V AT y + GT z = �c

z � K

Relaxed Optimality Conditions
�

�
0
0
s

�

� =

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
x
y
z

�

�+

�

�
c
b
h

�

�

s � z = 0 � s � z = µe

(s, z) �K 0 � (s, z)�K0
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Path-following IPM
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‣ Primal-dual central path (CP) is a continuously differentiable curve defined by 
the points                 and            s.t. [Nesterov & Todd, 1997]

‣ Path-following interior point methods track central path to solution:
1. Solve linearized central path equations to obtain search direction
2. Determine step size     (line search)
3. Update W, variables
4. Go to step 1

‣ 99% of computation time is spent in step 1

(x, y , z, s)� (x, y , z, s) + ��(x, y , z, s) HUK µ� sT z/N

�

µ > 0

�

�
0
0
s

�

� =

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
x
y
z

�

�+

�

�
c
b
h

�

�

Wz �W�T s = µe

(s, z) �K 0

(x, y , s, z)

�(x, y , z, s)

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5
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1. Solve linearized central path equations to obtain search direction
2. Determine step size     (line search)
3. Update W, variables
4. Go to step 1

‣ 99% of computation time is spent in step 1

(x, y , z, s)� (x, y , z, s) + ��(x, y , z, s) HUK µ� sT z/N
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Wz �W�T s = µe

(s, z) �K 0
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Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5
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Primal-dual System

30

Conic programming Uses of Duality

Detecting solutions

Duality

bT y  d?  p?  cT x

Ax = b x 2 K
AT y + s = c s 2 K?

Primal and dual feasibility and complementarity �

Ax = b

AT y + s = c

cT x � bT y = xT s = 0

x 2 K, s 2 K?

� caveat: won’t solve all problems, we call those problems badly formed
14 / 67

By courtesy of Santiago Akle, Stanford University
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Unboundedness and Infeasibility

31

Conic programming Uses of Duality

Unboundedness and Infeasibility

To certify that a problem is unbounded

Find �x 2 K such that A �x = 0 and cT �x < 0. Then

cT (x + ↵ �x) ! �1
A(x + ↵ �x) = b

x + ↵ �x 2 K

so the primal has to be unbounded

To certify that a problem is infeasible

Find �s 2 K? and �y such that AT �y + �s = 0 and bT �y > 0. Then

bT (y + ↵ �y) ! 1
AT (y + ↵ �y) + s + ↵ �s = c

s + ↵ �s 2 K?

so the dual has to be unbounded 15 / 67By courtesy of Santiago Akle, Stanford University



e m b o t e c h
Doing more w i th  less

Conic programming Uses of Duality

The equations at the solution are

Ax? = ⌧?b

AT y? + s? = ⌧?c

bT y? � cT x? = ?

When ⌧ ? > 0 and ? = 0 we found a solution
because (x?/⌧?, y?/⌧?, s?/⌧?)

Ax?/⌧? = b

AT y?/⌧? + s?/⌧? = c

cT x?/⌧? � bT y?/⌧? = 0

17 / 67

Introduce 2 New Variables

32

By courtesy of Santiago Akle, Stanford University
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Detecting Unboundedness & Infeasibility

33

Conic programming Uses of Duality

Certificates ? > 0 then ⌧ ? = 0

Ax? = 0

AT y? + s? = 0

bT y? � cT x? = ? > 0

When ? > 0 and c

T
x

? < 0 the primal is unbounded

because
A �x = 0

cT �x < 0

When ? > 0 and b

T
y

? > 0 the primal is infeasible (dual unbounded)

AT �y + �s = 0

bT �y > 0
18 / 67

By courtesy of Santiago Akle, Stanford University
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Self-dual Homogeneous Embedding

34

Conic programming Uses of Duality

The simplified homogeneous embedding [15, 8, 11]

minimize 0

subject to
0

@

A �b
�AT c
bT �cT

1

A

0

@

y
x
⌧

1

A�
0

@

0
s


1

A =

0

@

0
0
0

1

A

x 2 K and s 2 K?, ⌧ � 0,  � 0

Zero is a solution, but it is not the only solution!
Any feasible point satisfies

I xT s + ⌧ = 0
I xT s = 0
I ⌧ = 0

When ⌧ > 0 then  = 0
When  > 0 then ⌧ = 0

16 / 67By courtesy of Santiago Akle, Stanford University
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Conic Solvers N/A for Embedded Sys.

35

‣ Free solvers such as SeDuMi, SDPT3 and CVXOPT
• require runtime environments (MATLAB or Python)
• require external libraries (LAPACK/BLAS)
• slow for “small” problems

‣ Commercial solvers such as Gurobi and MOSEK
• do not run on embedded platforms (proprietary binaries)
• incur licensing costs
• code size (binary): Gurobi: 2.7 MB, MOSEK: 7.9 MB

‣ Performance of first order solvers (e.g. FiOrdOs) problem dependent 
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‣ Free solvers such as SeDuMi, SDPT3 and CVXOPT
• require runtime environments (MATLAB or Python)
• require external libraries (LAPACK/BLAS)
• slow for “small” problems

‣ Commercial solvers such as Gurobi and MOSEK
• do not run on embedded platforms (proprietary binaries)
• incur licensing costs
• code size (binary): Gurobi: 2.7 MB, MOSEK: 7.9 MB

‣ Performance of first order solvers (e.g. FiOrdOs) problem dependent 

ECOS fills this gap
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Recall: Path-following IPMs

36

Primal & Dual SOCP Problem

TPUPTPaL cT x
Z\IQLJ[ [V Ax = b

Gx + s = h, s � K

TH_PTPaL �bT y � hT z
Z\IQLJ[ [V AT y + GT z = �c

z � K

[Vandenberghe et al., 2010], [Nesterov & Todd, 1997], [Schmieta & Alizadeh, 2003]
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36

Primal & Dual SOCP Problem

Optimality Conditions & Central Path

TPUPTPaL cT x
Z\IQLJ[ [V Ax = b

Gx + s = h, s � K

TH_PTPaL �bT y � hT z
Z\IQLJ[ [V AT y + GT z = �c

z � K

[Vandenberghe et al., 2010], [Nesterov & Todd, 1997], [Schmieta & Alizadeh, 2003]
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Recall: Path-following IPMs
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Optimality Conditions & Central Path
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Recall: Path-following IPMs

36

Primal & Dual SOCP Problem

Optimality Conditions & Central Path

TPUPTPaL cT x
Z\IQLJ[ [V Ax = b

Gx + s = h, s � K

TH_PTPaL �bT y � hT z
Z\IQLJ[ [V AT y + GT z = �c

z � K

[Vandenberghe et al., 2010], [Nesterov & Todd, 1997], [Schmieta & Alizadeh, 2003]
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Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

µ = 100
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Optimality Conditions & Central Path
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t = 5 t = 8
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Sequential unconstrained minimization 9–5

µ = 0.1
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Recall: Path-following IPMs
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Primal & Dual SOCP Problem

Optimality Conditions & Central Path
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Path-following Method
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5. 9LK\JL WH[O WHYHTL[LY µ, NV [V 2.
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Search Direction Computation

37

‣ Per iteration, solve up to 3 linear systems with indefinite coefficient matrix:

‣ Common approach: Cholesky factorization of reduced system

• implemented in FORCES, MOSEK, CVXOPT, SeDuMi, and many others
• potentially slow if dense columns in A or G are present
• additional code needed (e.g. low rank modifications)

‣ In ECOS: sparse LDL factorization directly of (SD): 
• sparsity exploitation in A and G
• small and efficient code

A(GW�2GT )�1AT�y = A(GW�2GT )�1(bx + GTW�2bz)� by

�

�
0 AT GT

A 0 0
G 0 �W 2

�

�

� �� �
K

�

�
�x
�y
�z

�

�

� �� �
x

=

�

�
bx
by
bz

�

�

� �� �
b

(SD)
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On Sparse LDL Factorization

38

‣ Direct approach for solving 
1. Factorize: 
2. Solve:

where P is chosen to obtain sparse triangular L and D is (block-)diagonal

PKP T = LDLT

u = L\(Pb), v = D\u, w = LT \v , x = P Tw

Kx = b ^P[O PUKLÄUP[L K :
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‣ Standard LDL requires pivoting for numerical stability [Bunch & Parlett, 1976]
• effective elimination ordering P is data dependent
• requires complex code and is potentially slow
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On Sparse LDL Factorization

38

‣ Direct approach for solving 
1. Factorize: 
2. Solve:

where P is chosen to obtain sparse triangular L and D is (block-)diagonal

‣ Standard LDL requires pivoting for numerical stability [Bunch & Parlett, 1976]
• effective elimination ordering P is data dependent
• requires complex code and is potentially slow

‣                                             

PKP T = LDLT

u = L\(Pb), v = D\u, w = LT \v , x = P Tw

Theorem [Vanderbei, 1994]                                              If K is quasi-definite, 

can be computed stably for all  permutations P.

Quasi-definite Matrix
PKP T = LDLT

�
H F T

F � E

�
^P[O H,E � 0

Kx = b ^P[O PUKLÄUP[L K :
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where P is chosen to obtain sparse triangular L and D is (block-)diagonal

‣ Standard LDL requires pivoting for numerical stability [Bunch & Parlett, 1976]
• effective elimination ordering P is data dependent
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‣                                             
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On Sparse LDL Factorization

38

‣ Direct approach for solving 
1. Factorize: 
2. Solve:

where P is chosen to obtain sparse triangular L and D is (block-)diagonal

‣ Standard LDL requires pivoting for numerical stability [Bunch & Parlett, 1976]
• effective elimination ordering P is data dependent
• requires complex code and is potentially slow

‣                                             

‣ Advantage: Ordering P fixed, D diagonal, factorization code ~20 lines of C

PKP T = LDLT

u = L\(Pb), v = D\u, w = LT \v , x = P Tw

Issue: K is not quasi-definite

Theorem [Vanderbei, 1994]                                              If K is quasi-definite, 

can be computed stably for all  permutations P.

Quasi-definite Matrix
PKP T = LDLT

�
H F T

F � E

�
^P[O H,E � 0

Kx = b ^P[O PUKLÄUP[L K :
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Obtaining a Quasi-definite KKT Matrix

39

‣ Regularization makes K quasi-definite:

where                             . Solving               is stable for any permutation  

‣ Iterative refinement recovers true solution                in a few steps:                

‣ This is standard in many solvers (e.g. CVXGEN, PDCO, ...)

� � 10�6 . . . 10�8 K̃x̃ = b

:L[ x � x̃
JVTW\[L e = b �Kx
ZVS]L K̃d = e
\WKH[L x � x + d

K =

�

�
0 AT GT

A 0 0
G 0 �W 2

�

��

�

�
+�I AT GT

A ��I 0
G 0 �W 2

�

� = K̃

x MYVT x̃

[Arioli, Demmel & Duff, 1989]
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Obtaining a Quasi-definite KKT Matrix

39

‣ Regularization makes K quasi-definite:

where                             . Solving               is stable for any permutation  

‣ Iterative refinement recovers true solution                in a few steps:                

‣ This is standard in many solvers (e.g. CVXGEN, PDCO, ...)

� � 10�6 . . . 10�8 K̃x̃ = b

:L[ x � x̃
JVTW\[L e = b �Kx
ZVS]L K̃d = e
\WKH[L x � x + d

K =

�

�
0 AT GT

A 0 0
G 0 �W 2

�

��

�

�
+�I AT GT

A ��I 0
G 0 �W 2

�

� = K̃

x MYVT x̃

Issue: Matrix W is dense for second-order cones      method slow for “large” cones

[Arioli, Demmel & Duff, 1989]
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Por tfolio Minimization Example

40

‣ Maximize risk-adjusted return for portfolio investments x:

‣ Risk covariance matrix is in factor model form:                        
D diagonal,                                fairly large SOC cones 

‣ Sparsity pattern:

� = D + FF T

m � n

TH_ µT x � �(xT�x)
Z�[� 1T x = 1

x � 0

[Boyd & Vandenberghe, 2004]
F � Rn�m,

PKP T -HJ[VY L

�W 2

K

nz = 251’964 nz = 251’964 nz = 158’584

AT GT

A

G

+�I

��I
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Nesterov-Todd Scalings for Large Steps

41

‣ An invertible matrix W is called scaling if it preserves the conic inequalities:

‣ Scaling for product cone is block-diagonal:

‣ Nesterov-Todd scaling yields large step sizes - used in most solvers:

•  

•

s � PU[K� Ws � PU[K� W T s � PU[K �s � PU[K

W = ISRKPHN(W1, . . . ,WN) MVY s, z � K = K1 � · · ·�KN

s, z � PU[Qn : WQ = �(qqT � J), J =

�
1 0
0 �I

�
MVY ZJHSHY �(s, z) HUK ]LJ[VY q(s, z)

[Nesterov & Todd, 1997]

s, z � Rn
++ : WR++ = KPHN(s)/KPHN(z) = SZ�1 �Z[HUKHYK KPYLJ[PVUZ MVY 37Z�87Z�
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Nesterov-Todd Scalings for Large Steps

41

‣ An invertible matrix W is called scaling if it preserves the conic inequalities:

‣ Scaling for product cone is block-diagonal:

‣ Nesterov-Todd scaling yields large step sizes - used in most solvers:

•  

•

s � PU[K� Ws � PU[K� W T s � PU[K �s � PU[K

W = ISRKPHN(W1, . . . ,WN) MVY s, z � K = K1 � · · ·�KN

Approach: Exploit diagonal + rank 1 structure of SOC scaling

s, z � PU[Qn : WQ = �(qqT � J), J =

�
1 0
0 �I

�
MVY ZJHSHY �(s, z) HUK ]LJ[VY q(s, z)

[Nesterov & Todd, 1997]

s, z � Rn
++ : WR++ = KPHN(s)/KPHN(z) = SZ�1 �Z[HUKHYK KPYLJ[PVUZ MVY 37Z�87Z�
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Stable Sparse Expansion of KKT Matrix

42

‣  

‣ Consequence: SOC blocks in K can be safely expanded into sparse form:

‣ New KKT matrix is quasi-definite

W 2Main Result                              The square of scaling matrix,       , can be rewritten as

for carefully chosen diagonal D and vectors u and v such that the matrix

is quasi-definite.

W 2 = D + uuT � vvT

�

�
D v u
vT 1 0
uT 0 �1

�

�

�

�
+�I AT GT

A ��I 0
G 0 �W 2

�

�

�

�
�x
�y
�z

�

� =

�

�
bx
by
bz

�

��

�

�����

+�I AT GT 0 0
A ��I 0 0 0
G 0 �D �v �u
0 0 �vT �1 0
0 0 �uT 0 1

�

�����

�

�����

�x
�y
�z
t1
t2

�

�����
=

�

�����

bx
by
bz
0
0

�

�����
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Stable Sparse Expansion of KKT Matrix

42

‣  

‣ Consequence: SOC blocks in K can be safely expanded into sparse form:

‣ New KKT matrix is quasi-definite

W 2Main Result                              The square of scaling matrix,       , can be rewritten as

for carefully chosen diagonal D and vectors u and v such that the matrix

is quasi-definite.

W 2 = D + uuT � vvT

�

�
D v u
vT 1 0
uT 0 �1

�

�

�

�
+�I AT GT

A ��I 0
G 0 �W 2

�

�

�

�
�x
�y
�z

�

� =

�

�
bx
by
bz

�

��

�

�����

+�I 0 AT GT 0
0 1 0 �uT 0
A 0 ��I 0 0
G �u 0 �D �v
0 0 0 �vT �1

�

�����

�

�����

�x
t2
�y
�z
t1

�

�����
=

�

�����

bx
0
by
bz
0

�

�����
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Stable Sparse Expansion of KKT Matrix

42

‣  

‣ Consequence: SOC blocks in K can be safely expanded into sparse form:

‣ New KKT matrix is quasi-definite

W 2Main Result                              The square of scaling matrix,       , can be rewritten as

for carefully chosen diagonal D and vectors u and v such that the matrix

is quasi-definite.

W 2 = D + uuT � vvT

�

�
D v u
vT 1 0
uT 0 �1

�

�

�

�
+�I AT GT

A ��I 0
G 0 �W 2

�

�

�

�
�x
�y
�z

�

� =

�

�
bx
by
bz

�

��

�

�����

+�I 0 AT GT 0
0 1 0 �uT 0
A 0 ��I 0 0
G �u 0 �D �v
0 0 0 �vT �1

�

�����

�

�����

�x
t2
�y
�z
t1

�

�����
=

�

�����

bx
0
by
bz
0

�

�����
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Effect of Expansion for Por tfolio Problem

43

PKP T -HJ[VY L

No
 E

xp
an

sio
n

Pr
op

os
ed

 E
xp

an
sio

n

K

nz = 251’964 nz = 251’964 nz = 158’584

nz = 3’144 nz = 3’144 nz = 13’971
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Embedded Conic Solver

44

.com/embotech/ecos

‣ Primal-dual Mehrotra IPM with 
Nesterov-Todd scalings

‣ Detects infeasibility

‣ ANSI C implementation
• Solve has ~800 lines of code,

including all linear algebra code
• size of binary: ~110 KB
• library free
• safe divisions

‣ Interfaces: 
• Native: C, Matlab, Python, Julia, MLlib
• Modeling: CVX, Yalmip, QCML, CVXPY
• With simple branch-and-bound

Setup
• Allocate memory
• Determine elimination ordering

Solve
• Return certificate of

optimality or infeasibility

Cleanup
• Free memory

new 
problem 
data

‣ Divided into 3 functions:

can be generated
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Por tfolio Benchmark

45

‣ Maximize risk-adjusted 
return for portfolio 
investments x:

‣ Risk covariance matrix 
is in factor model form:                         

D diagonal,       

‣ Converting to SOCP 
yields large cone sizes
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#factors


#assets


#variables


� = D + FF T

m � n

TH_ µT x � �(xT�x)
Z�[� 1T x = 1

x � 0

[Boyd & Vandenberghe, 2004]

F � Rn�m,

Solve times on Mac Book Pro, Intel Core i7 @2.6 GHz
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Soft-constrained MPC Benchmark
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Computation Times for Soft-constrained MPC with Stability Guarantees


SOC constraints


Linear constraints

# of variables


# of inputs

# of states


horizon length

# of masses


non-zeros in [A;G]


Solve times on Mac Book Pro, Intel Core i7 @2.6 GHz‣ Relax state 
constraints but 
guarantee stability 
[Zeilinger et al., 2013]

‣ Many second-
order cone 
constraints of 
small dimension
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Soft-constrained MPC Benchmark
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order cone 
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small dimension
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Soft-constrained MPC Benchmark
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SOC constraints


Linear constraints

# of variables
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# of masses


non-zeros in [A;G]


Solve times on Mac Book Pro, Intel Core i7 @2.6 GHz‣ Relax state 
constraints but 
guarantee stability 
[Zeilinger et al., 2013]

‣ Many second-
order cone 
constraints of 
small dimension

Competitive computation times, but embeddable
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Exercise Session

‣ Two Tasks:
• TASK 1: ECOS as sparse QP solver

- Errata: The hint should read

• TASK 2: Thrust allocation problem

47

�
(t, x) |

1

2
xTW TWx + qT x � t

�
=

�

(t, x) |

�����
Wx

t�qT x�1�
2

�����
2

�
t � qT x + 1�

2

�


