
July 30, 2015

TEMPO Summer School on Numerical Optimal Control
University of Freiburg
Germany

Alexander Domahidi
Co-founder embotech GmbH

Interior-point Algorithms: Methods & Tools
Part II: Conic IPMs and ECOS

e m b o t e c h

e m b o t e c h
Doing more w i th less

TPUPTPaL 0.5xTHx + f T x

Z\IQLJ[[V Ax = b

Gx �K h

Convex Optimization is the Workhorse

‣ Many problems can be boiled down to solving

• Linear constrained optimal control
• Nonlinear programming: sequential quadratic programming
• Mixed-integer problems: convex relaxations
• Stochastic optimization: sampling

‣ In fact, this is what we can solve reliably
‣ In real-time control: parametric convex problems

2

Bounds, polytopes,
second-order cones,
2-norm balls,
exponential cones, ...

e m b o t e c h
Doing more w i th less

TPUPTPaL 0.5xTHx + f T x

Z\IQLJ[[V Ax = b

Gx �K h

In Par t II: Conic IPMs & ECOS

‣ Conic problems are nonlinear convex problems
‣ Hence can be efficiently solved by e.g. interior-point methods
‣ ECOS is a solver implementing a conic IPM with sparse LA

3

Bounds, polytopes,
second-order cones,
2-norm balls,
exponential cones, ...

e m b o t e c h
Doing more w i th less

Second-order Cone Programs

4

‣ Minimize linear objective over convex pointed cone affine equality:

where and

with

‣ LPs, QPs and QCQPs can be formulated as SOCPs

K � K1 �K2 � . . .KN Ki =

�
R+ �WVZP[P]L VY[OHU[�
Qni �ZLJVUK�VYKLY JVUL�

Qni � {(x0, x1) � R� Rni�1 | x0 � �x1�2}

�

TPUPTPaL cT x
Z\IQLJ[[V Ax = b

Gx �K h
�:6*7�

e m b o t e c h
Doing more w i th less

Applications of SOCPs

5

‣ Signal processing, e.g.
• robust beamforming [Vorobyov et al., 2003]
• error correction [Candes & Randall, 2008]

‣ Power grids, e.g. optimal power flow [Sojoudi & Lavaei, 2012]

‣ Finance, e.g. robust portfolio selection [Goldfarb & Iyengar, 2003]

‣ Machine learning, e.g. group LASSO [Meier et al., 2008]

‣ Control, e.g.
• Robust MPC via affine feedback policies [Goulart et al., 2006]
• Minimum-fuel powered descent for spacecraft [Acikmese & Ploen, 2007]
• Soft-constrained MPC with stability guarantees [Zeilinger et al., 2013]
• Minimum-time trajectories for robots [Verscheure et al., 2013]

‣ MedTec: Radiation therapy planning [Chu et al, 2005]

e m b o t e c h
Doing more w i th less

Example: Minimum Time Path Tracking

6

‣ Goal: follow given trajectory with robot arm as quickly as possible
‣ Optimization problem:

minimize
subject to

time
robot tip on given trajectory
system dynamics
maximum torque at joints

e m b o t e c h
Doing more w i th less

Example: Minimum Time Path Tracking

6

‣ Goal: follow given trajectory with robot arm as quickly as possible
‣ Optimization problem:

‣ Results in convex SOCP [Verscheure, Demeulenaere, Swevers, De Schutter, Diehl 2009]
• there is no faster way of tracking a path
• constraints are satisfied
• optimum can be computed efficiently

minimize
subject to

time
robot tip on given trajectory
system dynamics
maximum torque at joints

e m b o t e c h
Doing more w i th less

7

(source: Verscheure et al., 2009)

Link to
Video

Example: Minimum Time Path Tracking

http://people.mech.kuleuven.be/~dversche/timeopt/kuka361-exp.mpg
http://people.mech.kuleuven.be/~dversche/timeopt/kuka361-exp.mpg

e m b o t e c h
Doing more w i th less

SOCPs for Min-Fuel Powered Descent

8

Real-time Optimization for Advanced
Automation

Behçet Açıkmeşe

Department of Aerospace Engineering and Engineering Mechanics
University of Texas at Austin

e m b o t e c h
Doing more w i th less

Pointing
Envelope

Intersection

Convex
Intersection

Pointing
Half-Space

LIFT

PROJECT

SL
ICE

Tc(t)
n̂

�

Convexification Method

Acikmese, Behcet, and
Scott R. Ploen. "Convex
programming approach to
powered descent guidance
for mars landing." Journal of
Guidance, Control, and
Dynamics 30.5 (2007):
1353-1366.

By courtesy of Behçet Açıkmeşe

e m b o t e c h
Doing more w i th less

Solve Times for SOCPs

10

Problem
instance

Optimal
solution

Generic IPM
solver

Solution via Generic Solvers

Solution via Custom Solvers

Problem
class

Custom
IPM

Solver
customization

Problem
instance

Optimal
solution

Custom IPM
solver

T secs

T/100 secs

Computation
time

Method NLP-based Generic IPM
for SOCP

Custom IPM
for SOCP

CPU time (ms) on a
laptop

Reliability

20,000 1,000 10 - 15

< 80% > 99% > 99%

By courtesy of Behçet Açıkmeşe

e m b o t e c h
Doing more w i th less

Example: Min-Fuel Powered Descent

11
Watch online

Source: Youtube (“Xombie 750m Mars EDL Divert Trajectory”)

https://www.youtube.com/watch?v=jl6pw2oossU
https://www.youtube.com/watch?v=jl6pw2oossU

e m b o t e c h
Doing more w i th less

12

Conic Programming

e m b o t e c h
Doing more w i th less

Cone LP

13

Conic programming

There is a dual cone problem

minimize cT x

subject to Ax = b

x 2 K

minimize � bT y

subject to AT y + s = c

s 2 K?

K? =
n

s | xT s � 0 for all x 2 K
o

K

K?

10 / 67

By courtesy of Santiago Akle, Stanford University

e m b o t e c h
Doing more w i th less

What is a Proper Cone?

14

Conic programming

What is a proper cone (K)?

I If x 2 K then all positive
scalings ↵x 2 K

I Closed

I Convex

I Pointed (if x 2 K then
�x /2 K)

I With nonempty interior

9 / 67

By courtesy of Santiago Akle, Stanford University

e m b o t e c h
Doing more w i th less

Dual Cone and Dual Problem

15

Conic programming

There is a dual cone problem

minimize cT x

subject to Ax = b

x 2 K

minimize � bT y

subject to AT y + s = c

s 2 K?

K? =
n

s | xT s � 0 for all x 2 K
o

K

K?

10 / 67
By courtesy of Santiago Akle, Stanford University

e m b o t e c h
Doing more w i th less

Car tesian Product of Cones

16

Conic programming

Cartesian products of cones

The product

K = K1 ⇥K2

is a cone, and has dual

K? = K?
1 ⇥K?

2

12 / 67

By courtesy of Santiago Akle, Stanford University

e m b o t e c h
Doing more w i th less

The Most Impor tant Cones

17

Conic programming

Examples of cones

Positive orthant

Rn
+ = {x | 0  xi 8i}

Second-order cone

L = {x , ⌧ | kxk2  ⌧}

Positive semi-definite matrices

Sn
+ =

n

X | X = XT , X ⌫ 0
o

Exponential cone

Ke = cl

8

<

:

0

@

x
y
z

1

A | exp
⇣x

z

⌘

 y

z
, z > 0

9

=

;

Dual exponential cone

K?
e = cl

8

<

:

0

@

x
y
z

1

A | exp
⇣z

x

⌘

 �e
y

x
, x < 0

9

=

;

11 / 67

Exponential cone

the epigraph of the perspective of expx is a non-proper cone

K =
{

(x, y, z) ∈ R3 | yex/y ≤ z, y > 0
}

the exponential cone is Kexp = clK = K ∪ {(x, 0, z) | x ≤ 0, z ≥ 0}

−2
−1

0
1

0

1

2

3
0

0.5

1

x
y

z

Conic optimization 16-11

y

z
x

By courtesy of Santiago Akle, Stanford University & Lieven Vandenberghe, UCLA

e m b o t e c h
Doing more w i th less

Cones Suppor ted by

18

Conic programming

Examples of cones

Positive orthant

Rn
+ = {x | 0  xi 8i}

Second-order cone

L = {x , ⌧ | kxk2  ⌧}

Positive semi-definite matrices

Sn
+ =

n

X | X = XT , X ⌫ 0
o

Exponential cone

Ke = cl

8

<

:

0

@

x
y
z

1

A | exp
⇣x

z

⌘

 y

z
, z > 0

9

=

;

Dual exponential cone

K?
e = cl

8

<

:

0

@

x
y
z

1

A | exp
⇣z

x

⌘

 �e
y

x
, x < 0

9

=

;

11 / 67By courtesy of Santiago Akle, Stanford University & Lieven Vandenberghe, UCLA

Conic programming

Examples of cones

Positive orthant

Rn
+ = {x | 0  xi 8i}

Second-order cone

L = {x , ⌧ | kxk2  ⌧}

Positive semi-definite matrices

Sn
+ =

n

X | X = XT , X ⌫ 0
o

Exponential cone

Ke = cl

8

<

:

0

@

x
y
z

1

A | exp
⇣x

z

⌘

 y

z
, z > 0

9

=

;

Dual exponential cone

K?
e = cl

8

<

:

0

@

x
y
z

1

A | exp
⇣z

x

⌘

 �e
y

x
, x < 0

9

=

;

11 / 67

Exponential cone

the epigraph of the perspective of expx is a non-proper cone

K =
{

(x, y, z) ∈ R3 | yex/y ≤ z, y > 0
}

the exponential cone is Kexp = clK = K ∪ {(x, 0, z) | x ≤ 0, z ≥ 0}

−2
−1

0
1

0

1

2

3
0

0.5

1

x
y

z

Conic optimization 16-11

y

z
x

e m b o t e c h
Doing more w i th less

Examples for SOCP-representable f(x)

19

Examples of second-order cone representable functions

• convex quadratic

f(x) = xTPx+ qTx+ r (P ! 0)

• quadratic-over-linear function

f(x, y) =
xTx

y
with dom f = Rn × R+ (assume 0/0 = 0)

• convex powers with rational exponent

f(x) = |x|α, f(x) =

{

xβ x > 0
+∞ x ≤ 0

for rational α ≥ 1 and β ≤ 0

• p-norm f(x) = ‖x‖p for rational p ≥ 1

Conic optimization 16-18

Material from Lieven Vandenberghe, UCLA

e m b o t e c h
Doing more w i th less

Examples for SOCP-representable f(x)

20

Examples of second-order cone representable functions

• convex quadratic

f(x) = xTPx+ qTx+ r (P ! 0)

• quadratic-over-linear function

f(x, y) =
xTx

y
with dom f = Rn × R+ (assume 0/0 = 0)

• convex powers with rational exponent

f(x) = |x|α, f(x) =

{

xβ x > 0
+∞ x ≤ 0

for rational α ≥ 1 and β ≤ 0

• p-norm f(x) = ‖x‖p for rational p ≥ 1

Conic optimization 16-18

Many more functions and examples in:

- Ben-Tal and Nemirovski. Lectures in Modern Convex Programming §2.3

- Lobo, Vandenberghe, Boyd, Lebret:
 Applications of Second-order cone programming, 1998

Material from Lieven Vandenberghe, UCLA

e m b o t e c h
Doing more w i th less

Functions Representable by Exp Cones

‣ Logarithms
• Geometric programming:

‣ Exponentials:
• Logistic regression:

‣ Entropy: f(x) = x log x

‣ Kullback-Leibler Divergence

21

A tutorial on geometric programming 71

As an example, consider the problem

minimize x−1y−1/2z−1 + 2.3xz + 4xyz

subject to (1/3)x−2y−2 + (4/3)y1/2z−1 ≤ 1,

x + 2y + 3z ≤ 1,

(1/2)xy = 1,

with variables x, y and z. This is a GP in standard form, with n = 3 variables, m = 2
inequality constraints, and p = 1 equality constraints.

We can switch the sign of any of the exponents in any monomial term in the
objective or constraint functions, and still have a GP. For example, we can change the
objective in the example above to x−1y1/2z−1 + 2.3xz−1 + 4xyz, and the resulting
problem is still a GP (since the objective is still a posynomial). But if we change
the sign of any of the coefficients, or change any of the additions to subtractions,
the resulting problem is not a GP. For example, if we replace the second inequality
constraint with x +2y −3z ≤ 1, the resulting problem is not a GP (since the left-hand
side is no longer a posynomial).

The term geometric program was introduced by Duffin, Peterson, and Zener in
their 1967 book on the topic (Duffin et al. 1967). It’s natural to guess that the name
comes from the many geometrical problems that can be formulated as GPs. But in
fact, the name comes from the geometric-arithmetic mean inequality, which played a
central role in the early analysis of GPs.

It is important to distinguish between geometric programming, which refers to
the family of optimization problems of the form (3), and geometric optimization,
which usually refers to optimization problems involving geometry. Unfortunately,
this nomenclature isn’t universal: a few authors use ‘geometric programming’ to
mean optimization problems involving geometry, and vice versa.

2.3 Simple extensions of GP

Several extensions are readily handled. If f is a posynomial and g is a monomial, then
the constraint f (x) ≤ g(x) can be handled by expressing it as f (x)/g(x) ≤ 1 (since
f/g is posynomial). This includes as a special case a constraint of the form f (x) ≤ a,
where f is posynomial and a > 0. In a similar way if g1 and g2 are both monomial
functions, then we can handle the equality constraint g1(x) = g2(x) by expressing it
as g1(x)/g2(x) = 1 (since g1/g2 is monomial). We can maximize a nonzero mono-
mial objective function, by minimizing its inverse (which is also a monomial).

As an example, consider the problem

maximize x/y

subject to 2 ≤ x ≤ 3,

x2 + 3y/z ≤ √
y,

x/y = z2,

(4)

KL(p, q) =
�

pi log
pi

qi

f (x) =
1

1 + e�0+�1x

e m b o t e c h
Doing more w i th less

22

Optimization over
Symmetric Cones

e m b o t e c h
Doing more w i th less

Symmetric Cones:

‣ Positive orthant
‣ Second-order cone
‣ SDP cone

‣ Consequence: powerful long-step interior-point methods
• Mehrotra-predictor corrector works extremely well for these problems

‣ Exponential cones are not symmetric
• more iterations needed in general (short step methods)

23

K = K�

e m b o t e c h
Doing more w i th less

SOCP vs SOCP-Exp - #Iterations

24

ECOS and ECOS-Exp

A first look at ECOS-Exp

Figure : Iteration count vs ⌫ SOCP and mixed SOCP Exponential cone problems

48 / 67

Short-step method

Mehrotra PC method

e m b o t e c h
Doing more w i th less

Euclidean Jordan Algebra

‣ Each element in a symmetric cone can be spectrally decomposed:

where vectors form an orthonormal basis with identity element
‣ Examples:

• nonnegative orthant:

•

25

Spectral decomposition for primitive cones

positive semidefinite cone (K = Sp)

spectral decomposition of x ∈ Rp(p+1)/2 follows from e.v.d. of mat(x):

mat(x) =
p
∑

i=1

λiviv
T
i , qi = vec(viv

T
i)

second-order cone (K = Qp)

spectral decomposition of x = (x0, x1) ∈ R× Rp−1 is

λi =
x0 ± ‖x1‖2√

2
, qi =

1√
2

[

1
±x1/‖x1‖2

]

, i = 1, 2

Symmetric cones 19-9

x � K� ��i � 0, qi : x =
��

i=1

�iqi

Spectral decomposition for composite cones

product cone (K = K1 × · · ·×KN)

spectral decomposition follows from decomposition of different blocks

example (K = K1 ×K2): decomposition of x = (x1, x2) is

[

x1

x2

]

=
θ1
∑

i=1

λ1i

[

q1i
0

]

+
θ2
∑

i=1

λ2i

[

0
q2i

]

where xj =
θj
∑

i=1
λjiqji is the spectral decomposition of xj, j = 1, 2

nonnegative orthant (K = Rp
+)

λi = xi, qi = ei (ith unit vector), i = 1, . . . , n

Symmetric cones 19-10

Spectral decomposition for composite cones

product cone (K = K1 × · · ·×KN)

spectral decomposition follows from decomposition of different blocks

example (K = K1 ×K2): decomposition of x = (x1, x2) is

[

x1

x2

]

=
θ1
∑

i=1

λ1i

[

q1i
0

]

+
θ2
∑

i=1

λ2i

[

0
q2i

]

where xj =
θj
∑

i=1
λjiqji is the spectral decomposition of xj, j = 1, 2

nonnegative orthant (K = Rp
+)

λi = xi, qi = ei (ith unit vector), i = 1, . . . , n

Symmetric cones 19-10

Material from Lieven Vandenberghe, UCLA

qi e

e m b o t e c h
Doing more w i th less

Some Interesting Facts

26

18 2 Convex Optimization

With this spectral decomposition in place, we can express some useful relations which are

given in (2.23).

Property Definition Cone R
+

Cone Qn, n > 1

x 2 Qn , �i � 0 , 8i x � 0 x
0

± kx
1

k
2

� 0 (2.23a)

x 2 int Qn , �i > 0 , 8i x > 0 x
0

± kx
1

k
2

> 0 (2.23b)

Inverse x�1 s.t.
x � x�1 = e x�1 ,

RX

i=1

��1i qi x�1 = 1/x x�1 = (x
0

,�x
1

)/ det(x) (2.23c)

Determinant:
det(x) det(x) ,

RY

i=1

�i det(x) = x det(x) = x2
0

� xT
1

x
1

(2.23d)

The inverse and determinant are important for interior point algorithms for optimization

over symmetric cones, since they allow to construct logarithmic barriers and to define the

central path in a symmetric way. We detail on this in Section 2.2.2. For more details on

properties of symmetric cones see [43].

2.1.4 Self-Dual Embeddings

2.1.4.1 Homogeneous Self-Dual Embedding

In the following, we discuss the embedding of (CP) and (CP-D) into a lifted problem (cf. [5,

7, 141])

min 0

s.t. ⌧c + AT y + GT z = 0

Ax � ⌧b = 0

Gx + s � ⌧h = 0

cT x + bT y + hT z +  = 0

(s, z) ⌫K 0 , (⌧,) � 0

(HSD)

with two additional scalar variables ⌧ and . Problem (HSD) is self-dual, i.e. the dual of

(HSD) is structurally the same problem (see Lemma A.1 in the Appendix for a straight-

forward proof), there always exists a feasible solution, as the point (x, y , z, s, ⌧,) = 0

trivially satisfies the constraints. The main advantage of problem (HSD) is that it allows

for detecting infeasibility of the primal cone program (CP) or its dual (CP-D).

Lemma 2.1 (Certificates of optimality or infeasibility). Let a feasible point (x, y , z, s, ⌧,)

for (HSD) be given. Then the following certificates can be provided:

‣ Can be used to treat symmetric cones with one unified IPM theory
Schmieta, S. H., and Farid Alizadeh. "Extension of primal-dual interior point algorithms to symmetric cones."
Mathematical Programming 96.3 (2003): 409-438.

e m b o t e c h
Doing more w i th less

Central Path

27

‣ Use log-det barrier function
‣ Property: by a spectral decomposition of x
‣ Primal-dual central path is the set of points satisfying

‣

��(x) = �x�1

Primal-dual central path
�

�
0
0
s

�

� =

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
x
y
z

�

�+

�

�
c
b
h

�

�

z = �µ��(s)
(s, z) �K 0

z = �µ��(s) JHU IL ^YP[[LU HZ s � z = µe MVY HWWYVWYPH[L]LJ[VY WYVK\J[�

^P[O WH[O WHYHTL[LY µ > 0

�(x) = � log det x MVY x � PU[K

TPUPTPaL cT x
Z\IQLJ[[V Ax = b

Gx + s = h, s � K

e m b o t e c h
Doing more w i th less

Optimality Conditions

28

‣ KKT conditions are necessary and sufficient conditions for convex problems

‣ Primal-dual interior-point methods: relax KKT conditions & track central path

Primal Problem: Dual Problem:
TPUPTPaL cT x
Z\IQLJ[[V Ax = b

Gx + s = h, s � K

TH_PTPaL �bT y � hT z
Z\IQLJ[[V AT y + GT z = �c

z � K

Relaxed Optimality Conditions
�

�
0
0
s

�

� =

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
x
y
z

�

�+

�

�
c
b
h

�

�

s � z = 0 � s � z = µe

(s, z) �K 0 � (s, z)�K0

e m b o t e c h
Doing more w i th less

Path-following IPM

29

‣ Primal-dual central path (CP) is a continuously differentiable curve defined by
the points and s.t. [Nesterov & Todd, 1997]

‣ Path-following interior point methods track central path to solution:
1. Solve linearized central path equations to obtain search direction
2. Determine step size (line search)
3. Update W, variables
4. Go to step 1

‣ 99% of computation time is spent in step 1

(x, y , z, s)� (x, y , z, s) + ��(x, y , z, s) HUK µ� sT z/N

�

µ > 0

�

�
0
0
s

�

� =

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
x
y
z

�

�+

�

�
c
b
h

�

�

Wz �W�T s = µe

(s, z) �K 0

(x, y , s, z)

�(x, y , z, s)

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

e m b o t e c h
Doing more w i th less

Path-following IPM

29

‣ Primal-dual central path (CP) is a continuously differentiable curve defined by
the points and s.t. [Nesterov & Todd, 1997]

‣ Path-following interior point methods track central path to solution:
1. Solve linearized central path equations to obtain search direction
2. Determine step size (line search)
3. Update W, variables
4. Go to step 1

‣ 99% of computation time is spent in step 1

(x, y , z, s)� (x, y , z, s) + ��(x, y , z, s) HUK µ� sT z/N

�

µ > 0

�

�
0
0
s

�

� =

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
x
y
z

�

�+

�

�
c
b
h

�

�

Wz �W�T s = µe

(s, z) �K 0

(x, y , s, z)

�(x, y , z, s)

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

e m b o t e c h
Doing more w i th less

Path-following IPM

29

‣ Primal-dual central path (CP) is a continuously differentiable curve defined by
the points and s.t. [Nesterov & Todd, 1997]

‣ Path-following interior point methods track central path to solution:
1. Solve linearized central path equations to obtain search direction
2. Determine step size (line search)
3. Update W, variables
4. Go to step 1

‣ 99% of computation time is spent in step 1

(x, y , z, s)� (x, y , z, s) + ��(x, y , z, s) HUK µ� sT z/N

�

µ > 0

�

�
0
0
s

�

� =

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
x
y
z

�

�+

�

�
c
b
h

�

�

Wz �W�T s = µe

(s, z) �K 0

(x, y , s, z)

�(x, y , z, s)

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

e m b o t e c h
Doing more w i th less

Path-following IPM

29

‣ Primal-dual central path (CP) is a continuously differentiable curve defined by
the points and s.t. [Nesterov & Todd, 1997]

‣ Path-following interior point methods track central path to solution:
1. Solve linearized central path equations to obtain search direction
2. Determine step size (line search)
3. Update W, variables
4. Go to step 1

‣ 99% of computation time is spent in step 1

(x, y , z, s)� (x, y , z, s) + ��(x, y , z, s) HUK µ� sT z/N

�

µ > 0

�

�
0
0
s

�

� =

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
x
y
z

�

�+

�

�
c
b
h

�

�

Wz �W�T s = µe

(s, z) �K 0

(x, y , s, z)

�(x, y , z, s)

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

e m b o t e c h
Doing more w i th less

Primal-dual System

30

Conic programming Uses of Duality

Detecting solutions

Duality

bT y  d?  p?  cT x

Ax = b x 2 K
AT y + s = c s 2 K?

Primal and dual feasibility and complementarity �

Ax = b

AT y + s = c

cT x � bT y = xT s = 0

x 2 K, s 2 K?

� caveat: won’t solve all problems, we call those problems badly formed
14 / 67

By courtesy of Santiago Akle, Stanford University

e m b o t e c h
Doing more w i th less

Unboundedness and Infeasibility

31

Conic programming Uses of Duality

Unboundedness and Infeasibility

To certify that a problem is unbounded

Find �x 2 K such that A �x = 0 and cT �x < 0. Then

cT (x + ↵ �x) ! �1
A(x + ↵ �x) = b

x + ↵ �x 2 K

so the primal has to be unbounded

To certify that a problem is infeasible

Find �s 2 K? and �y such that AT �y + �s = 0 and bT �y > 0. Then

bT (y + ↵ �y) ! 1
AT (y + ↵ �y) + s + ↵ �s = c

s + ↵ �s 2 K?

so the dual has to be unbounded 15 / 67By courtesy of Santiago Akle, Stanford University

e m b o t e c h
Doing more w i th less

Conic programming Uses of Duality

The equations at the solution are

Ax? = ⌧?b

AT y? + s? = ⌧?c

bT y? � cT x? = ?

When ⌧ ? > 0 and ? = 0 we found a solution
because (x?/⌧?, y?/⌧?, s?/⌧?)

Ax?/⌧? = b

AT y?/⌧? + s?/⌧? = c

cT x?/⌧? � bT y?/⌧? = 0

17 / 67

Introduce 2 New Variables

32

By courtesy of Santiago Akle, Stanford University

e m b o t e c h
Doing more w i th less

Detecting Unboundedness & Infeasibility

33

Conic programming Uses of Duality

Certificates ? > 0 then ⌧ ? = 0

Ax? = 0

AT y? + s? = 0

bT y? � cT x? = ? > 0

When ? > 0 and c

T
x

? < 0 the primal is unbounded

because
A �x = 0

cT �x < 0

When ? > 0 and b

T
y

? > 0 the primal is infeasible (dual unbounded)

AT �y + �s = 0

bT �y > 0
18 / 67

By courtesy of Santiago Akle, Stanford University

e m b o t e c h
Doing more w i th less

Self-dual Homogeneous Embedding

34

Conic programming Uses of Duality

The simplified homogeneous embedding [15, 8, 11]

minimize 0

subject to
0

@

A �b
�AT c
bT �cT

1

A

0

@

y
x
⌧

1

A�
0

@

0
s


1

A =

0

@

0
0
0

1

A

x 2 K and s 2 K?, ⌧ � 0,  � 0

Zero is a solution, but it is not the only solution!
Any feasible point satisfies

I xT s + ⌧ = 0
I xT s = 0
I ⌧ = 0

When ⌧ > 0 then  = 0
When  > 0 then ⌧ = 0

16 / 67By courtesy of Santiago Akle, Stanford University

e m b o t e c h
Doing more w i th less

Conic Solvers N/A for Embedded Sys.

35

‣ Free solvers such as SeDuMi, SDPT3 and CVXOPT
• require runtime environments (MATLAB or Python)
• require external libraries (LAPACK/BLAS)
• slow for “small” problems

‣ Commercial solvers such as Gurobi and MOSEK
• do not run on embedded platforms (proprietary binaries)
• incur licensing costs
• code size (binary): Gurobi: 2.7 MB, MOSEK: 7.9 MB

‣ Performance of first order solvers (e.g. FiOrdOs) problem dependent

e m b o t e c h
Doing more w i th less

Conic Solvers N/A for Embedded Sys.

35

‣ Free solvers such as SeDuMi, SDPT3 and CVXOPT
• require runtime environments (MATLAB or Python)
• require external libraries (LAPACK/BLAS)
• slow for “small” problems

‣ Commercial solvers such as Gurobi and MOSEK
• do not run on embedded platforms (proprietary binaries)
• incur licensing costs
• code size (binary): Gurobi: 2.7 MB, MOSEK: 7.9 MB

‣ Performance of first order solvers (e.g. FiOrdOs) problem dependent

ECOS fills this gap

e m b o t e c h
Doing more w i th less

Recall: Path-following IPMs

36

Primal & Dual SOCP Problem

TPUPTPaL cT x
Z\IQLJ[[V Ax = b

Gx + s = h, s � K

TH_PTPaL �bT y � hT z
Z\IQLJ[[V AT y + GT z = �c

z � K

[Vandenberghe et al., 2010], [Nesterov & Todd, 1997], [Schmieta & Alizadeh, 2003]

e m b o t e c h
Doing more w i th less

Recall: Path-following IPMs

36

Primal & Dual SOCP Problem

Optimality Conditions & Central Path

TPUPTPaL cT x
Z\IQLJ[[V Ax = b

Gx + s = h, s � K

TH_PTPaL �bT y � hT z
Z\IQLJ[[V AT y + GT z = �c

z � K

[Vandenberghe et al., 2010], [Nesterov & Todd, 1997], [Schmieta & Alizadeh, 2003]

�

�
0
0
s

�

� =

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
x
y
z

�

�+

�

�
c
b
h

�

�

s � z = 0

(s, z) �K 0

e m b o t e c h
Doing more w i th less

Recall: Path-following IPMs

36

Primal & Dual SOCP Problem

Optimality Conditions & Central Path

TPUPTPaL cT x
Z\IQLJ[[V Ax = b

Gx + s = h, s � K

TH_PTPaL �bT y � hT z
Z\IQLJ[[V AT y + GT z = �c

z � K

[Vandenberghe et al., 2010], [Nesterov & Todd, 1997], [Schmieta & Alizadeh, 2003]

�

�
0
0
s

�

� =

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
x
y
z

�

�+

�

�
c
b
h

�

�

s � z = 0 � s � z = µ1

(s, z) �K 0 � (s, z) �K 0

e m b o t e c h
Doing more w i th less

Recall: Path-following IPMs

36

Primal & Dual SOCP Problem

Optimality Conditions & Central Path

TPUPTPaL cT x
Z\IQLJ[[V Ax = b

Gx + s = h, s � K

TH_PTPaL �bT y � hT z
Z\IQLJ[[V AT y + GT z = �c

z � K

[Vandenberghe et al., 2010], [Nesterov & Todd, 1997], [Schmieta & Alizadeh, 2003]

�

�
0
0
s

�

� =

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
x
y
z

�

�+

�

�
c
b
h

�

�

s � z = 0 � s � z = µ1

(s, z) �K 0 � (s, z) �K 0

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

µ = 100

e m b o t e c h
Doing more w i th less

Recall: Path-following IPMs

36

Primal & Dual SOCP Problem

Optimality Conditions & Central Path

TPUPTPaL cT x
Z\IQLJ[[V Ax = b

Gx + s = h, s � K

TH_PTPaL �bT y � hT z
Z\IQLJ[[V AT y + GT z = �c

z � K

[Vandenberghe et al., 2010], [Nesterov & Todd, 1997], [Schmieta & Alizadeh, 2003]

�

�
0
0
s

�

� =

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
x
y
z

�

�+

�

�
c
b
h

�

�

s � z = 0 � s � z = µ1

(s, z) �K 0 � (s, z) �K 0

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

µ = 1

e m b o t e c h
Doing more w i th less

Recall: Path-following IPMs

36

Primal & Dual SOCP Problem

Optimality Conditions & Central Path

TPUPTPaL cT x
Z\IQLJ[[V Ax = b

Gx + s = h, s � K

TH_PTPaL �bT y � hT z
Z\IQLJ[[V AT y + GT z = �c

z � K

[Vandenberghe et al., 2010], [Nesterov & Todd, 1997], [Schmieta & Alizadeh, 2003]

�

�
0
0
s

�

� =

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
x
y
z

�

�+

�

�
c
b
h

�

�

s � z = 0 � s � z = µ1

(s, z) �K 0 � (s, z) �K 0

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

µ = 0.1

e m b o t e c h
Doing more w i th less

Recall: Path-following IPMs

36

Primal & Dual SOCP Problem

Optimality Conditions & Central Path

TPUPTPaL cT x
Z\IQLJ[[V Ax = b

Gx + s = h, s � K

TH_PTPaL �bT y � hT z
Z\IQLJ[[V AT y + GT z = �c

z � K

[Vandenberghe et al., 2010], [Nesterov & Todd, 1997], [Schmieta & Alizadeh, 2003]

�

�
0
0
s

�

� =

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
x
y
z

�

�+

�

�
c
b
h

�

�

s � z = 0 � s � z = µ1

(s, z) �K 0 � (s, z) �K 0

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

µ = 0.01

e m b o t e c h
Doing more w i th less

Recall: Path-following IPMs

36

Primal & Dual SOCP Problem

Optimality Conditions & Central Path

TPUPTPaL cT x
Z\IQLJ[[V Ax = b

Gx + s = h, s � K

TH_PTPaL �bT y � hT z
Z\IQLJ[[V AT y + GT z = �c

z � K

[Vandenberghe et al., 2010], [Nesterov & Todd, 1997], [Schmieta & Alizadeh, 2003]

Path-following Method

1. 0UP[PHSPaL]HYPHISLZ � � (x, y , z, s)

2. 6I[HPU ZLHYJO KPYLJ[PVU ��
3. 3PUL ZLHYJO MVY Z[LW ZPaL �
4. <WKH[L]HYPHISLZ �� � + ���

5. 9LK\JL WH[O WHYHTL[LY µ, NV [V 2.

�

�
0
0
s

�

� =

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
x
y
z

�

�+

�

�
c
b
h

�

�

s � z = 0 � s � z = µ1

(s, z) �K 0 � (s, z) �K 0

e m b o t e c h
Doing more w i th less

Recall: Path-following IPMs

36

Primal & Dual SOCP Problem

Optimality Conditions & Central Path

TPUPTPaL cT x
Z\IQLJ[[V Ax = b

Gx + s = h, s � K

TH_PTPaL �bT y � hT z
Z\IQLJ[[V AT y + GT z = �c

z � K

[Vandenberghe et al., 2010], [Nesterov & Todd, 1997], [Schmieta & Alizadeh, 2003]

Search Direction Computation

�

�
0
0
�s

�

��

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
�x
�y
�z

�

� =

�

�
bx
by
bz

�

�

W�z +W�1�s = bs

Solve linearized central path equation:

Path-following Method

1. 0UP[PHSPaL]HYPHISLZ � � (x, y , z, s)

2. 6I[HPU ZLHYJO KPYLJ[PVU ��
3. 3PUL ZLHYJO MVY Z[LW ZPaL �
4. <WKH[L]HYPHISLZ �� � + ���

5. 9LK\JL WH[O WHYHTL[LY µ, NV [V 2.

�

�
0
0
s

�

� =

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
x
y
z

�

�+

�

�
c
b
h

�

�

s � z = 0 � s � z = µ1

(s, z) �K 0 � (s, z) �K 0

e m b o t e c h
Doing more w i th less

Recall: Path-following IPMs

36

Primal & Dual SOCP Problem

Optimality Conditions & Central Path

TPUPTPaL cT x
Z\IQLJ[[V Ax = b

Gx + s = h, s � K

TH_PTPaL �bT y � hT z
Z\IQLJ[[V AT y + GT z = �c

z � K

�

�
0
0
s

�

� =

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
x
y
z

�

�+

�

�
c
b
h

�

�

s � z = 0 � W�1s �Wz = µ1

(s, z) �K 0 � (s, z) �K 0

[Vandenberghe et al., 2010], [Nesterov & Todd, 1997], [Schmieta & Alizadeh, 2003]

Search Direction Computation

�

�
0
0
�s

�

��

�

�
0 AT GT

�A 0 0
�G 0 0

�

�

�

�
�x
�y
�z

�

� =

�

�
bx
by
bz

�

�

W�z +W�1�s = bs

Solve linearized central path equation:

Path-following Method

1. 0UP[PHSPaL]HYPHISLZ � � (x, y , z, s)

2. 6I[HPU ZLHYJO KPYLJ[PVU ��
3. 3PUL ZLHYJO MVY Z[LW ZPaL �
4. <WKH[L]HYPHISLZ �� � + ���

5. 9LK\JL WH[O WHYHTL[LY µ, NV [V 2.

e m b o t e c h
Doing more w i th less

Search Direction Computation

37

‣ Per iteration, solve up to 3 linear systems with indefinite coefficient matrix:

‣ Common approach: Cholesky factorization of reduced system

• implemented in FORCES, MOSEK, CVXOPT, SeDuMi, and many others
• potentially slow if dense columns in A or G are present
• additional code needed (e.g. low rank modifications)

‣ In ECOS: sparse LDL factorization directly of (SD):
• sparsity exploitation in A and G
• small and efficient code

A(GW�2GT)�1AT�y = A(GW�2GT)�1(bx + GTW�2bz)� by

�

�
0 AT GT

A 0 0
G 0 �W 2

�

�

� �� �
K

�

�
�x
�y
�z

�

�

� �� �
x

=

�

�
bx
by
bz

�

�

� �� �
b

(SD)

e m b o t e c h
Doing more w i th less

On Sparse LDL Factorization

38

‣ Direct approach for solving
1. Factorize:
2. Solve:

where P is chosen to obtain sparse triangular L and D is (block-)diagonal

PKP T = LDLT

u = L\(Pb), v = D\u, w = LT \v , x = P Tw

Kx = b ^P[O PUKLÄUP[L K :

e m b o t e c h
Doing more w i th less

On Sparse LDL Factorization

38

‣ Direct approach for solving
1. Factorize:
2. Solve:

where P is chosen to obtain sparse triangular L and D is (block-)diagonal

‣ Standard LDL requires pivoting for numerical stability [Bunch & Parlett, 1976]
• effective elimination ordering P is data dependent
• requires complex code and is potentially slow

PKP T = LDLT

u = L\(Pb), v = D\u, w = LT \v , x = P Tw

Kx = b ^P[O PUKLÄUP[L K :

e m b o t e c h
Doing more w i th less

On Sparse LDL Factorization

38

‣ Direct approach for solving
1. Factorize:
2. Solve:

where P is chosen to obtain sparse triangular L and D is (block-)diagonal

‣ Standard LDL requires pivoting for numerical stability [Bunch & Parlett, 1976]
• effective elimination ordering P is data dependent
• requires complex code and is potentially slow

‣

PKP T = LDLT

u = L\(Pb), v = D\u, w = LT \v , x = P Tw

Theorem [Vanderbei, 1994] If K is quasi-definite,

can be computed stably for all permutations P.

Quasi-definite Matrix
PKP T = LDLT

�
H F T

F � E

�
^P[O H,E � 0

Kx = b ^P[O PUKLÄUP[L K :

e m b o t e c h
Doing more w i th less

On Sparse LDL Factorization

38

‣ Direct approach for solving
1. Factorize:
2. Solve:

where P is chosen to obtain sparse triangular L and D is (block-)diagonal

‣ Standard LDL requires pivoting for numerical stability [Bunch & Parlett, 1976]
• effective elimination ordering P is data dependent
• requires complex code and is potentially slow

‣

‣ Advantage: Ordering P fixed, D diagonal, factorization code ~20 lines of C

PKP T = LDLT

u = L\(Pb), v = D\u, w = LT \v , x = P Tw

Theorem [Vanderbei, 1994] If K is quasi-definite,

can be computed stably for all permutations P.

Quasi-definite Matrix
PKP T = LDLT

�
H F T

F � E

�
^P[O H,E � 0

Kx = b ^P[O PUKLÄUP[L K :

e m b o t e c h
Doing more w i th less

On Sparse LDL Factorization

38

‣ Direct approach for solving
1. Factorize:
2. Solve:

where P is chosen to obtain sparse triangular L and D is (block-)diagonal

‣ Standard LDL requires pivoting for numerical stability [Bunch & Parlett, 1976]
• effective elimination ordering P is data dependent
• requires complex code and is potentially slow

‣

‣ Advantage: Ordering P fixed, D diagonal, factorization code ~20 lines of C

PKP T = LDLT

u = L\(Pb), v = D\u, w = LT \v , x = P Tw

Issue: K is not quasi-definite

Theorem [Vanderbei, 1994] If K is quasi-definite,

can be computed stably for all permutations P.

Quasi-definite Matrix
PKP T = LDLT

�
H F T

F � E

�
^P[O H,E � 0

Kx = b ^P[O PUKLÄUP[L K :

e m b o t e c h
Doing more w i th less

Obtaining a Quasi-definite KKT Matrix

39

‣ Regularization makes K quasi-definite:

where . Solving is stable for any permutation

‣ Iterative refinement recovers true solution in a few steps:

‣ This is standard in many solvers (e.g. CVXGEN, PDCO, ...)

� � 10�6 . . . 10�8 K̃x̃ = b

:L[x � x̃
JVTW\[L e = b �Kx
ZVS]L K̃d = e
\WKH[L x � x + d

K =

�

�
0 AT GT

A 0 0
G 0 �W 2

�

��

�

�
+�I AT GT

A ��I 0
G 0 �W 2

�

� = K̃

x MYVT x̃

[Arioli, Demmel & Duff, 1989]

�

e m b o t e c h
Doing more w i th less

Obtaining a Quasi-definite KKT Matrix

39

‣ Regularization makes K quasi-definite:

where . Solving is stable for any permutation

‣ Iterative refinement recovers true solution in a few steps:

‣ This is standard in many solvers (e.g. CVXGEN, PDCO, ...)

� � 10�6 . . . 10�8 K̃x̃ = b

:L[x � x̃
JVTW\[L e = b �Kx
ZVS]L K̃d = e
\WKH[L x � x + d

K =

�

�
0 AT GT

A 0 0
G 0 �W 2

�

��

�

�
+�I AT GT

A ��I 0
G 0 �W 2

�

� = K̃

x MYVT x̃

Issue: Matrix W is dense for second-order cones method slow for “large” cones

[Arioli, Demmel & Duff, 1989]

�

e m b o t e c h
Doing more w i th less

Por tfolio Minimization Example

40

‣ Maximize risk-adjusted return for portfolio investments x:

‣ Risk covariance matrix is in factor model form:
D diagonal, fairly large SOC cones

‣ Sparsity pattern:

� = D + FF T

m � n

TH_ µT x � �(xT�x)
Z�[� 1T x = 1

x � 0

[Boyd & Vandenberghe, 2004]
F � Rn�m,

PKP T -HJ[VY L

�W 2

K

nz = 251’964 nz = 251’964 nz = 158’584

AT GT

A

G

+�I

��I

e m b o t e c h
Doing more w i th less

Nesterov-Todd Scalings for Large Steps

41

‣ An invertible matrix W is called scaling if it preserves the conic inequalities:

‣ Scaling for product cone is block-diagonal:

‣ Nesterov-Todd scaling yields large step sizes - used in most solvers:

•

•

s � PU[K� Ws � PU[K� W T s � PU[K �s � PU[K

W = ISRKPHN(W1, . . . ,WN) MVY s, z � K = K1 � · · ·�KN

s, z � PU[Qn : WQ = �(qqT � J), J =

�
1 0
0 �I

�
MVY ZJHSHY �(s, z) HUK]LJ[VY q(s, z)

[Nesterov & Todd, 1997]

s, z � Rn
++ : WR++ = KPHN(s)/KPHN(z) = SZ�1 �Z[HUKHYK KPYLJ[PVUZ MVY 37Z�87Z�

e m b o t e c h
Doing more w i th less

Nesterov-Todd Scalings for Large Steps

41

‣ An invertible matrix W is called scaling if it preserves the conic inequalities:

‣ Scaling for product cone is block-diagonal:

‣ Nesterov-Todd scaling yields large step sizes - used in most solvers:

•

•

s � PU[K� Ws � PU[K� W T s � PU[K �s � PU[K

W = ISRKPHN(W1, . . . ,WN) MVY s, z � K = K1 � · · ·�KN

Approach: Exploit diagonal + rank 1 structure of SOC scaling

s, z � PU[Qn : WQ = �(qqT � J), J =

�
1 0
0 �I

�
MVY ZJHSHY �(s, z) HUK]LJ[VY q(s, z)

[Nesterov & Todd, 1997]

s, z � Rn
++ : WR++ = KPHN(s)/KPHN(z) = SZ�1 �Z[HUKHYK KPYLJ[PVUZ MVY 37Z�87Z�

e m b o t e c h
Doing more w i th less

Stable Sparse Expansion of KKT Matrix

42

‣

‣ Consequence: SOC blocks in K can be safely expanded into sparse form:

‣ New KKT matrix is quasi-definite

W 2Main Result The square of scaling matrix, , can be rewritten as

for carefully chosen diagonal D and vectors u and v such that the matrix

is quasi-definite.

W 2 = D + uuT � vvT

�

�
D v u
vT 1 0
uT 0 �1

�

�

�

�
+�I AT GT

A ��I 0
G 0 �W 2

�

�

�

�
�x
�y
�z

�

� =

�

�
bx
by
bz

�

��

�

�����

+�I AT GT 0 0
A ��I 0 0 0
G 0 �D �v �u
0 0 �vT �1 0
0 0 �uT 0 1

�

�����

�

�����

�x
�y
�z
t1
t2

�

�����
=

�

�����

bx
by
bz
0
0

�

�����

e m b o t e c h
Doing more w i th less

Stable Sparse Expansion of KKT Matrix

42

‣

‣ Consequence: SOC blocks in K can be safely expanded into sparse form:

‣ New KKT matrix is quasi-definite

W 2Main Result The square of scaling matrix, , can be rewritten as

for carefully chosen diagonal D and vectors u and v such that the matrix

is quasi-definite.

W 2 = D + uuT � vvT

�

�
D v u
vT 1 0
uT 0 �1

�

�

�

�
+�I AT GT

A ��I 0
G 0 �W 2

�

�

�

�
�x
�y
�z

�

� =

�

�
bx
by
bz

�

��

�

�����

+�I 0 AT GT 0
0 1 0 �uT 0
A 0 ��I 0 0
G �u 0 �D �v
0 0 0 �vT �1

�

�����

�

�����

�x
t2
�y
�z
t1

�

�����
=

�

�����

bx
0
by
bz
0

�

�����

e m b o t e c h
Doing more w i th less

Stable Sparse Expansion of KKT Matrix

42

‣

‣ Consequence: SOC blocks in K can be safely expanded into sparse form:

‣ New KKT matrix is quasi-definite

W 2Main Result The square of scaling matrix, , can be rewritten as

for carefully chosen diagonal D and vectors u and v such that the matrix

is quasi-definite.

W 2 = D + uuT � vvT

�

�
D v u
vT 1 0
uT 0 �1

�

�

�

�
+�I AT GT

A ��I 0
G 0 �W 2

�

�

�

�
�x
�y
�z

�

� =

�

�
bx
by
bz

�

��

�

�����

+�I 0 AT GT 0
0 1 0 �uT 0
A 0 ��I 0 0
G �u 0 �D �v
0 0 0 �vT �1

�

�����

�

�����

�x
t2
�y
�z
t1

�

�����
=

�

�����

bx
0
by
bz
0

�

�����

e m b o t e c h
Doing more w i th less

Effect of Expansion for Por tfolio Problem

43

PKP T -HJ[VY L

No
 E

xp
an

sio
n

Pr
op

os
ed

 E
xp

an
sio

n

K

nz = 251’964 nz = 251’964 nz = 158’584

nz = 3’144 nz = 3’144 nz = 13’971

e m b o t e c h
Doing more w i th less

Embedded Conic Solver

44

.com/embotech/ecos

‣ Primal-dual Mehrotra IPM with
Nesterov-Todd scalings

‣ Detects infeasibility

‣ ANSI C implementation
• Solve has ~800 lines of code,

including all linear algebra code
• size of binary: ~110 KB
• library free
• safe divisions

‣ Interfaces:
• Native: C, Matlab, Python, Julia, MLlib
• Modeling: CVX, Yalmip, QCML, CVXPY
• With simple branch-and-bound

Setup
• Allocate memory
• Determine elimination ordering

Solve
• Return certificate of

optimality or infeasibility

Cleanup
• Free memory

new
problem
data

‣ Divided into 3 functions:

can be generated

e m b o t e c h
Doing more w i th less

Por tfolio Benchmark

45

‣ Maximize risk-adjusted
return for portfolio
investments x:

‣ Risk covariance matrix
is in factor model form:

D diagonal,

‣ Converting to SOCP
yields large cone sizes

0.001

0.006

0.018

0.054

0.159

0.494

1.564

2.742

0.001

0.01

0.1

1

10

217
 622
 1032
 2042
 4052
 8062
 15072
 20082

5
 10
 20
 30
 40
 50
 60
 70

100
 300
 500
 1000
 2000
 4000
 7500
 10000

SDPT3 v4.0

Sedumi v1.21

Gurobi v5.50

MOSEK v6.0.0.141

ECOS v1.0.0

Portfolio optimization benchmark

S
ol

ut
io

n
tim

e
[s

]

#factors

#assets

#variables

� = D + FF T

m � n

TH_ µT x � �(xT�x)
Z�[� 1T x = 1

x � 0

[Boyd & Vandenberghe, 2004]

F � Rn�m,

Solve times on Mac Book Pro, Intel Core i7 @2.6 GHz

e m b o t e c h
Doing more w i th less

Soft-constrained MPC Benchmark

46

0.003

0.009

0.021

0.044

0.082

0.135

0.222
 0.274

0.404

0.001

0.01

0.1

1

10

861
 2844
 6693
 15208
 26411
 42113
 63085
 90090
 123901

10x3 | 10x6 |
10x3 | 1x10 |

8x5

10x5 | 10x10 |
10x3 | 1x20 |

16x9

10x7 | 10x14 |
10x3 | 1x30 |

24x13

10x9 | 10x18 |
10x3 | 1x40 |

32x17

10x11 | 10x22 |
10x3 | 1x50 |

40x21

10x13 | 10x26 |
10x3 | 1x60 |

48x25

10x15 | 10x30 |
10x3 | 1x70 |

56x29

10x17 | 10x34 |
10x3 | 1x80 |

64x33

10x19 | 10x38 |
10x3 | 1x90 |

72x37

120
 252
 384
 516
 648
 780
 912
 1044
 1176

97
 163
 229
 295
 361
 427
 493
 559
 625

1
 3
 5
 7
 9
 11
 13
 15
 17

4
 8
 12
 16
 20
 24
 28
 32
 36

10
 10
 10
 10
 10
 10
 10
 10
 10

2
 4
 6
 8
 10
 12
 14
 16
 18

SeDuMi v1.21

Gurobi v5.50

MOSEK v6.0.0.1

ECOS v1.0.0

S
ol

ut
io

n
tim

e
[s

]

Computation Times for Soft-constrained MPC with Stability Guarantees

SOC constraints

Linear constraints

of variables

of inputs

of states

horizon length

of masses

non-zeros in [A;G]

Solve times on Mac Book Pro, Intel Core i7 @2.6 GHz‣ Relax state
constraints but
guarantee stability
[Zeilinger et al., 2013]

‣ Many second-
order cone
constraints of
small dimension

e m b o t e c h
Doing more w i th less

Soft-constrained MPC Benchmark

46

0.003

0.009

0.021

0.044

0.082

0.135

0.222
 0.274

0.404

0.001

0.01

0.1

1

10

861
 2844
 6693
 15208
 26411
 42113
 63085
 90090
 123901

10x3 | 10x6 |
10x3 | 1x10 |

8x5

10x5 | 10x10 |
10x3 | 1x20 |

16x9

10x7 | 10x14 |
10x3 | 1x30 |

24x13

10x9 | 10x18 |
10x3 | 1x40 |

32x17

10x11 | 10x22 |
10x3 | 1x50 |

40x21

10x13 | 10x26 |
10x3 | 1x60 |

48x25

10x15 | 10x30 |
10x3 | 1x70 |

56x29

10x17 | 10x34 |
10x3 | 1x80 |

64x33

10x19 | 10x38 |
10x3 | 1x90 |

72x37

120
 252
 384
 516
 648
 780
 912
 1044
 1176

97
 163
 229
 295
 361
 427
 493
 559
 625

1
 3
 5
 7
 9
 11
 13
 15
 17

4
 8
 12
 16
 20
 24
 28
 32
 36

10
 10
 10
 10
 10
 10
 10
 10
 10

2
 4
 6
 8
 10
 12
 14
 16
 18

SeDuMi v1.21

Gurobi v5.50

MOSEK v6.0.0.1

ECOS v1.0.0

S
ol

ut
io

n
tim

e
[s

]

Computation Times for Soft-constrained MPC with Stability Guarantees

SOC constraints

Linear constraints

of variables

of inputs

of states

horizon length

of masses

non-zeros in [A;G]

Solve times on Mac Book Pro, Intel Core i7 @2.6 GHz‣ Relax state
constraints but
guarantee stability
[Zeilinger et al., 2013]

‣ Many second-
order cone
constraints of
small dimension

e m b o t e c h
Doing more w i th less

Soft-constrained MPC Benchmark

46

0.003

0.009

0.021

0.044

0.082

0.135

0.222
 0.274

0.404

0.001

0.01

0.1

1

10

861
 2844
 6693
 15208
 26411
 42113
 63085
 90090
 123901

10x3 | 10x6 |
10x3 | 1x10 |

8x5

10x5 | 10x10 |
10x3 | 1x20 |

16x9

10x7 | 10x14 |
10x3 | 1x30 |

24x13

10x9 | 10x18 |
10x3 | 1x40 |

32x17

10x11 | 10x22 |
10x3 | 1x50 |

40x21

10x13 | 10x26 |
10x3 | 1x60 |

48x25

10x15 | 10x30 |
10x3 | 1x70 |

56x29

10x17 | 10x34 |
10x3 | 1x80 |

64x33

10x19 | 10x38 |
10x3 | 1x90 |

72x37

120
 252
 384
 516
 648
 780
 912
 1044
 1176

97
 163
 229
 295
 361
 427
 493
 559
 625

1
 3
 5
 7
 9
 11
 13
 15
 17

4
 8
 12
 16
 20
 24
 28
 32
 36

10
 10
 10
 10
 10
 10
 10
 10
 10

2
 4
 6
 8
 10
 12
 14
 16
 18

SeDuMi v1.21

Gurobi v5.50

MOSEK v6.0.0.1

ECOS v1.0.0

S
ol

ut
io

n
tim

e
[s

]

Computation Times for Soft-constrained MPC with Stability Guarantees

SOC constraints

Linear constraints

of variables

of inputs

of states

horizon length

of masses

non-zeros in [A;G]

Solve times on Mac Book Pro, Intel Core i7 @2.6 GHz‣ Relax state
constraints but
guarantee stability
[Zeilinger et al., 2013]

‣ Many second-
order cone
constraints of
small dimension

Competitive computation times, but embeddable

e m b o t e c h
Doing more w i th less

Exercise Session

‣ Two Tasks:
• TASK 1: ECOS as sparse QP solver

- Errata: The hint should read

• TASK 2: Thrust allocation problem

47

�
(t, x) |

1

2
xTW TWx + qT x � t

�
=

�

(t, x) |

�����
Wx

t�qT x�1�
2

�����
2

�
t � qT x + 1�

2

�

