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(First a Distillation NMPC Story for Warm-Up)



Brain predicts and optimizes: 
e.g. slow down before curve

Model Predictive Control (MPC)

Always look a bit into the future.
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Principle of Optimal Feedback Control / Nonlinear MPC: Computations in Model Predictive Control (MPC)

Main challenge for MPC: fast and reliable real-time optimization
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Conventional:
Initial Value Embedding:

Very different results after first iteration!
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Real-Time Iterations minimize feedback delay







Transient in 15 minutes instead of 2 hours!







(Now back to the history of NMPC)



Outline of the Talk 

PART I: Offline Optimal Control 

!NMPC and MHE Problem Statement 

!Simultaneous vs. Sequential Formulation  

!Newton Type Optimization: IP vs. SQP Methods 

PART II: Online Algorithms 

!Parametric Sensitivities  

!Review of Three Classical Algorithms



NMPC Optimal Control Problem in Continuous Time

How to solve these nonlinear problems reliably and fast?



Optimal Control Family Tree
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(curse of 
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NMPC Problem in Discrete Time

Structured parametric Nonlinear Program, “mp-NLP” 
! Initial Value        is not known beforehand (“online data”) 
! Discrete time dynamics often come from ODE simulation (“shooting”)  
! “Algebraic States” z implicitly defined via third condition, can come from 

DAEs or from collocation discretization



[Moving Horizon Estimation (MHE) Problem]

! Online problem data:  
! “Controls” w account for unknown disturbances. Often many w. 
! Initial value is free



NMPC = mp-NLP

! Solution manifold is piecewise differentiable

!Critical regions are non-polyhedral



Sequential Approach (Single Shooting): Eliminate States

Pros: 
! Only control degrees of freedom (for NMPC) 
! Can couple with “Vanilla NLP” solver 
Cons: 
! Sparsity of problem lost 
! Unstable systems cannot be treated 

Historically first “direct” approach (“single shooting”, Sargent&Sullivan 1978)



Simultaneous Approach: Keep States in NLP

Variants:  
Multiple Shooting and Collocation 

Pros: 
! Sparsity of problem kept 
! Unstable systems can be treated, nonlinearity reduced 
Cons: 
! Large scale problems 
! Need to develop (or use) structure exploiting NLP solver
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Lagrangian: 

Karush Kuhn Tucker (KKT) conditions: for optimal        exist           such that: 

Newton type methods try to find points satisfying these conditions. But last 
condition non-smooth: cannot apply Newton’s method directly. What to do?

How to solve Nonlinear Programs (NLPs) ?



Approach 1: Interior Point (IP) Methods

! Replace last condition by smoothed version: 

                                             Summarize as 

! Solve with Newton’s method, i.e., 
• Linearize at current guess                                       : 

• solve linearized system, get new trial point 

! For         small, IP problem gets close to original (path-following, 
self-concordance, polynomial time for convex problems, …)



(Note: IP with fixed  τ  makes mp-NLP smooth)



Approach 2: Sequential Quadratic Programming (SQP)

! Linearize all problem functions, solve Quadratic Program (QP): 

with convex quadratic objective using an approximation of Hessian.  
Obtain new guesses for both        and                . 



(Important Variant of SQP: Generalized Gauss-Newton)

If objective is sum of squares: 

then QP objective can well be approximated by: 

(often extremely good linear convergence)



Difference between IP and SQP ?

! Both generate sequence of iterates 
! Both need to linearize problem functions in each iteration. 

! IP iterations cheaper: 
• IP solves only linear system 
• SQP solves a QP in each iteration (maybe even with an IP method!) 

! IP needs more iterations: 
• IP multipliers change slowly, iterates always in interior 
• SQP multipliers jump, active set can quickly be identified 

SQP good if problem function evaluations are expensive (shooting methods)



! SQP even works if all QP matrices are old. Only constraints and Lagrange 
gradient (cheap by adjoint differentiation) need to be exact. 

! Trick: use “modified gradient” 

                in QP objective 

Solve QP with inexact constraints 

Can prove stability of active set and linear convergence [Bock, D., Kostina, 
Schloeder 2007]. Adjoint SQP iterations often orders of magnitude cheaper 
than full SQP iterations.

(Adjoint Based SQP: can use old Jacobians)



Linear Algebra Issues in Optimal Control

! In each SQP iteration, solve structured QP: 

! Algebraic Reduction/compression: first eliminate z



QP after Algebraic Reduction

How to solve this structured QP?



Approach 1: Banded Factorization

! Factorize large banded KKT Matrix e.g. by Riccati based recursion 

! Advantageous for long horizons and many controls 



Approach 2: Condensing - Eliminate all States

! Eliminate states by linear system simulation, keep only controls in QP, 
solve QP with dense solver 

! Note: mp-QP in same form as needed by qpOASES and explicit MPC 
! Can use this QP as fast feedback law for several         
! But QP matrices change after each SQP re-linearization
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The start: “Newton-Type Controller” by Li and Biegler

! SQP type method 
! single shooting 
! perform only one SQP iteration per problem (“real-time iteration”) 
! Method also implemented in “NEPSAC Algorithm” by [De Keyser 

1998] and many others [IPCOS, GE, …]. Many applications. 
! was missing one important feature: parametric sensitivities



Parametric Sensitivities

! In IP case, smoothed KKT conditions are equivalent to parametric 
root finding problem: 

with solution                 depending on initial condition 

Based on old solution, can get “tangential predictor” for new one:



Initial Value Embedding Idea

! Can obtain sensitivity nearly for free in Newton type methods:

        predictor                     corrector



“IP real-time iteration” for sequence of NLPs
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IP Real-Time Iteration ≈ Ohtsuka’s Continuation Method

Additional features of Continuation/GMRES: 
! matrix free and iterative linear algebra via GMRES 
! Interior Point formulation via quadratic slacks 
! Single shooting with adjoint gradient computation 
! (recently extended to multiple shooting with condensing, faster 

contraction) 

But: Ohtsuka’s method “overshoots” at active set changes



(Variant of IP Methods: Quadratic Slacks)

! Ohtsuka (2004) uses for NMPC a variant of IP methods: 

Seems to work well for fixed penalty parameter. But no self-
concordance properties as in usual IP methods.



! Solve a full QP with “initial value embedding”  [D. et al. 2002]. 

! At smooth parts, delivers same predictor-corrector step as Newton. But  is 
“Generalized Tangential Predictor” valid also across active set changes:

Generalized Tangential Predictor via SQP



SQP Real-Time Iteration [D. et al 2002]

! long “preparation phase” for linearization, reduction, and condensing  
! fast “feedback phase” (QP solution once        is known).             Fast, but…



x0 u0



Kite NMPC Problem solved with ACADO (B. Houska)

! 9 states, 3 controls 
! Penalize deviation from “lying eight” 
! Predict half period 
! zero terminal constraint 
! 10 multiple shooting intervals 

Solve with SQP real-time iterations 
with shift (implemented in ACADO)



















Kite NMPC: CPU Time per RTI below 50 ms

! Initial-Value Embedding       :     0.03 ms 
! QP solution (qpOASES)        :   2.23  ms 
----------------------------------------------------------- 
Feedback Phase:                                  3 ms  
(QP after condensing: 30 vars. / 240 constr.) 

! Expansion of the QP             :    0.10 ms 
! Simulation and Sensitivities  :  44.17 ms 
! Condensing (Phase I)            :   2.83 ms 
-----------------------------------------------------------  
Preparation Phase:                           47 ms 

(on Intel Core 2 Duo CPU T7250, 2 GHz… 
without code generation yet)



Nonlinear MPC and MHE on Flight Carousel

(sampling time 50 Hz, using ACADO Code Generation) Milan Vukov



Further algorithmic developments in opposite directions

Multi-Level Real-Time Iterations 
[Bock, D. et al. NMPC 05, Wirsching 2007] 

Make real-time iterations cheaper. 
Four Levels: 
A) mp-QP at innermost level 
B) Feasibility improvement 
C) Optimality Improvement 
D) Full re-linearization, only rarely in 

outer loop 

! Allows extremely fast sampling 
rates at innermost level A 
(feedback phase).  

! Level C allows to converge to 
NLP solution WITHOUT NEW 
JACOBIAN EVALUATIONS. 

Advanced Step NMPC 
[Zavala and Biegler 2007] 

Combine two well-tested ideas [D. 2001] 

! Preparation vs. Feedback Phase 
! Tangential Predictor in Feedback 
with two new building blocks 
! For preparation, iterate next problem 

to convergence via IP method 
! use IP predictor in feedback phase 



Summary: six ideas for fast nonlinear MPC

! simultaneous optimisation: keep states in problem 

! real-time iteration: use linearisation in non-converged points 

! fast feedback phase to avoid delays, and longer preparation phase 

! tangential predictor by initial value embedding 

! solve full QP to make predictions across active set changes 

! code generation to minimise overhead (cf afternoon talk R. Quirynen)
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back control of systems governed by large differential algebraic equations. In:
Biegler, L., Ghattas, O., Heinkenschloss, M., Keyes, D., van Bloemen Waan-
ders, S.B. (eds.) Real-Time and Online PDE-Constrained Optimization, pp.
3–22. SIAM, Philadelphia (2007)

[8] Bock, H.G., Diehl, M., Leineweber, D.B., Schlöder, J.P.: Efficient direct multi-
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Real-time optimization and nonlinear model predictive control of processes
governed by differential-algebraic equations. J. Proc. Contr. 12(4), 577–585
(2002)
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optimal control problems in real-time, as they arise in nonlinear model pre-
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In the first part, we review numerical optimal control solution methods,
focussing exclusively on a discrete time setting. We discuss several algorith-
mic ”building blocks” that can be combined to a multitude of algorithms.
We start by discussing the sequential and simultaneous approaches, the first
leading to smaller, the second to more structured optimization problems. The
two big families of Newton type optimization methods, Sequential Quadratic
Programming (SQP) and Interior Point (IP) methods, are presented, and
we discuss how to exploit the optimal control structure in the solution of the
linear-quadratic subproblems, where the two major alternatives are “condens-
ing” and band structure exploiting approaches. The second part of the paper
discusses how the algorithms can be adapted to the real-time challenge of
NMPC and MHE. We recall an important sensitivity result from parametric
optimization, and show that a tangential solution predictor for online data
can easily be generated in Newton type algorithms. We point out one impor-
tant difference between SQP and IP methods: while both methods are able to
generate the tangential predictor for fixed active sets, the SQP predictor even
works across active set changes. We then classify many proposed real-time
optimization approaches from the literature into the developed categories.

Keywords: real-time optimization, numerical optimal control, Newton type
methods, structure exploitation.

Moritz Diehl, Hans Joachim Ferreau, and Niels Haverbeke
Optimization in Engineering Center (OPTEC) and ESAT-SCD,
K.U. Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
e-mail: {moritz.diehl,joachim.ferreau,niels.haverbeke}@esat.kuleuven.be

L. Magni et al. (Eds.): Nonlinear Model Predictive Control, LNCIS 384, pp. 391–417.
springerlink.com c⃝ Springer-Verlag Berlin Heidelberg 2009

Efficient Numerical Methods for
Nonlinear MPC and Moving Horizon
Estimation

Moritz Diehl, Hans Joachim Ferreau, and Niels Haverbeke

Abstract. This overview paper reviews numerical methods for solution of
optimal control problems in real-time, as they arise in nonlinear model pre-
dictive control (NMPC) as well as in moving horizon estimation (MHE).
In the first part, we review numerical optimal control solution methods,
focussing exclusively on a discrete time setting. We discuss several algorith-
mic ”building blocks” that can be combined to a multitude of algorithms.
We start by discussing the sequential and simultaneous approaches, the first
leading to smaller, the second to more structured optimization problems. The
two big families of Newton type optimization methods, Sequential Quadratic
Programming (SQP) and Interior Point (IP) methods, are presented, and
we discuss how to exploit the optimal control structure in the solution of the
linear-quadratic subproblems, where the two major alternatives are “condens-
ing” and band structure exploiting approaches. The second part of the paper
discusses how the algorithms can be adapted to the real-time challenge of
NMPC and MHE. We recall an important sensitivity result from parametric
optimization, and show that a tangential solution predictor for online data
can easily be generated in Newton type algorithms. We point out one impor-
tant difference between SQP and IP methods: while both methods are able to
generate the tangential predictor for fixed active sets, the SQP predictor even
works across active set changes. We then classify many proposed real-time
optimization approaches from the literature into the developed categories.

Keywords: real-time optimization, numerical optimal control, Newton type
methods, structure exploitation.

Moritz Diehl, Hans Joachim Ferreau, and Niels Haverbeke
Optimization in Engineering Center (OPTEC) and ESAT-SCD,
K.U. Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
e-mail: {moritz.diehl,joachim.ferreau,niels.haverbeke}@esat.kuleuven.be

L. Magni et al. (Eds.): Nonlinear Model Predictive Control, LNCIS 384, pp. 391–417.
springerlink.com c⃝ Springer-Verlag Berlin Heidelberg 2009


