Real-Time Optimization
for Nonlinear Model Predictive Control

Moritz Diehl



(First a Distillation NMPC Story for Warm-Up)



Model Predictive Control (MPC)

Always look a bit into the future.

Brain predicts and optimizes:
e.g. slow down before curve




Computations in Model Predictive Control (MPC)
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1. Estimate current system state- and parameters) from measurements.
2. Solve in real-time an optimal control problem:

x(tg)—xp = 0
to+Ip jc—f(x,z,u) =0,r¢€ :tO’tU+TP:
min [ L(x,z,u)dt +E (x(to+T,)) 5.1. 2(x,2,4) = 0, £ € [to,10+T))
T h(x,2,8) > 0,1 € [to,t0+T,
r(x(to+T,)) > 0

3. Implement first control (w, for time 6 at real plant. Set #, =7, + 6 and go to 1.

Main challenge for MPC: fast and reliable real-time optimization



Example: Distillation Column (ISR, Stuttgart)

e Aim: to ensure product purity, keep two

temperatures (14, 155) constant despite
disturbances

e least squares objective:
. /"*”’P Tya(t) =185
111111
Jibg

o || dt
Tos(t) — T3¢
e control horizon 10 min

D

e prediction horizon 10 h

e stiff DAE model with 82 differential and
122 algebraic state variables

e Desired sampling time: 30 seconds.



Distillation Online Scenario

e System is in steady state, optimizer predicts constant trajectory:
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o Suddenly, system stateffiijis disturbed.
e What to do with optimizer?



Conventional Approach

e use offline method, e.g. MUSCOD-I| with BFGS (Leineweber, 1999).
e initialize with new initial value Jijijand integrate system with old controls.

e iterate until convergence.
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Conventional Approach

e use offline method, e.g. MUSCOD-I| with BFGS (Leineweber, 1999).
e initialize with new initial value Jijijand integrate system with old controls.

e iterate until convergence.
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Conventional Approach

e use offline method, e.g. MUSCOD-I| with BFGS (Leineweber, 1999).
e initialize with new initial value Jijijand integrate system with old controls.

e iterate until convergence.

Initialization 16th lteration Solution (32nd Iteration
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New Approach: Initial Value Embedding

o Initialize with old trajectory, accept violation of s — = 0
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New Approach: Initial Value Embedding

o Initialize with old trajectory, accept violation of s — = 0

Initialization First lteration
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New Approach: Initial Value Embedding

o Initialize with old trajectory, accept violation of s — = 0

Initialization First Iteration Solution (3rd Iteration)
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First iteration nearly solution!



Very different results after first iteration!

Conventional:

Initial Value Embedding:
........................................ 0 o L 5
er § C
—_ <+ . T T T T
; e W) frrrmrmrmrmm e e ea —
= F
<+ — — M - — w —
& [
- s [ '_‘_\_\—\—ﬁ_\__-
o F ]
N - - L <+ | -
e e e o e S
0 500 1000 G 500 100D ™~ - —
t Y PP VRN PR e e e -
1 | - | 1
0 500 1000 c 500 1000
Tia Tog
t t
— .
= I SRR .
: ! Tia T2
af b —_
m N ] T
C ] [8)
C J o
8 L P o
: B -
0 L h N &
™~ ] e
C ] = ]
E L e m e m e manan . ] ]
M BRI B MR I N"g'_ h
0 500 1000 c 500 1000 C ]
t 1 ) . ] -
1 | - 1 1
0 500 1000 c 500 1000




Initial Value Embedding

NLP variables
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active-set change

i solution
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initial value -

o first iteration is tangential
predictor for exact solution
(for exact hessian SQP)

e also valid for active set
changes

o derivative can be computed

before IS known: first iter-
ation nearly without delay



Initial Value Embedding

NLP variables

S /
H /

first iterati<n\d§ 7

2" itaration \\J:_

;™

: exact
initialization

b - — — ——— —— — —— ——— —

active-set change

i solution
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initial value -

o first iteration is tangential
predictor for exact solution
(for exact hessian SQP)

e also valid for active set
changes

o derivative can be computed

before IS known: first iter-
ation nearly without delay

Why wait until convergence and do nothing in the meantime?



Real-Time Iterations . 2001

NLP variables

lterate, while problem is changing!

3rd iteration

2nd iteration

o tangential prediction after
each change in [l

e solution accuracy Is
Increased with each iteration
when-changes little

o Iterates stay close to solution
manifold



Real-Time Iteration Algorithm:

1. Preparation Step (costly):
Linearize system at current iterate, perform

partial reduction and condensing of quadratic
program.

2. Feedback Step (short):
When newjiililis known, solve condensed QP
and implement control-mmediately.
Complete SQP iteration. Go to 1.

e short cycle-duration (as one SQP iteration)
o negligible feedback delay (=~ 1 % of cycle)
o nevertheless fully nonlinear optimization



Real-Time Iterations minimize feedback delay
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Realization at Distillation Column

[D., Findeisen, Schwarzkopf, Uslu, Allgéwer, Bock,
Schléder,2002]

Parameter estimation using dynamic
experiments

Online state estimation with Extended Kalman
Filter variant, using only 3 temperature

measurements to infer all 82 system states

Implementation of estimator and optimizer on
Linux Workstation.

Communication with Process Control System
via FTP all 10 seconds.

Self-synchronizing processes.



Computation Times During Application
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Experiments with a Real Distillation Column

Feedflow Change by 20%: Transient Phase (Comparison with PI-Controller)
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Large Disturbance (Heating), then NMPC
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Overheating by manual control
NMPC only starts at + = 1500 s

Pl-controller not implementable, as
disturbance too large (valve
saturation)

NMPC: at start control bound active
— Ty rises further

Disturbance attenuated after half an
hour



Real vs. Theoretical Optimal Solution
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(Now back to the history of NMPC)



Outline of the Talk

PART I. Offline Optimal Control

® NMPC and MHE Problem Statement

® Simultaneous vs. Sequential Formulation

® Newton Type Optimization: IP vs. SQP Methods
PART II: Online Algorithms

® Parametric Sensitivities

® Review of Three Classical Algorithms



NMPC Optimal Control Problem in Continuous Time

minimize
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(fixed initial value)
(ODE model)
(path constraints)
(terminal constraints).

How to solve these nonlinear problems reliably and fast?




Optimal Control Family Tree

Hamilton-Jacobl-
Bellman Equation:
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Nonlinear Program
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Discretized controls
and states in NLP
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)

Multiple Shooting:

Controls and node

start values in NLP
(simultaneoiuis)
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NMPC Problem in Discrete Time

N-1
minimize Z Li(xi, zi,ui)  + Ef(xn)
T,z U P
subject to 0 = 0,
riv1 — filei,ziiu;) = 0, 1=0,...,N—1
gi(ri,zisu;) = 0, 1=0,...,N—1
hi(xi,ziou;)) < 0, 1=0,...,N—1
r(xy) < 0.

Structured parametric Nonlinear Program, “mp-NLP”
® [nitial Value 2z is not known beforehand (“online data”)
® Discrete time dynamics often come from ODE simulation (“shooting”)

® “Algebraic States” z implicitly defined via third condition, can come from
DAESs or from collocation discretization



[Moving Horizon Estimation (MHE) Problem]

mlnmnze |20 — Zollp + Z "” "~"51‘-5'“-'iruv’i)H?Q+Huv’iH%@

1
T, 2, W P

subject to

O f-i(ll?-i. Ziy Uy, ‘U-‘I') = 0, 1 = O, c s o s N — 1
g.i(;z?.,f.:,-.uA,-.u.-'I-) = 0, 1 = O,...,A’T— 1
/l,ﬁ(;ﬂl?i. Ziy Uy, ‘U-‘;) < 1 = O, . s o s N — 1

® Online problem data: i
® “Controls” w account for unknown disturbances. Often many w.

® [nitial value is free



NMPC = mp-NLP

® Solution manifold is piecewise differentiable

J—

® Critical regions are non-polyhedral

\/




Sequential Approach (Single Shooting): Eliminate States

N—1
minimize § Li(z;i(u), zi(uw),w;) +  E(rn(u))
U —

(=l

subject to hi(Zi(u), Zi(u),u;) < 1 =0,....N—1
F(En(u) <
states x(7:¢)
Pros:
N rf==1 . .

® Only control degrees of freedom (for NMPC) /|, discretized controls u(r:q) E
® Can couple with “Vanilla NLP” solver do | =N
Cons: 0 it r 1

® Sparsity of problem lost
® Unstable systems cannot be treated

Historically first “direct” approach (“single shooting”, Sargent&Sullivan 1978)



Simultaneous Approach: Keep States in NLP

N OF AUTOMATIC GONTROL BUDAPEST, HUNGARY
9TH WORLD CONGRESS JULY 2-6 1984 -

A MULTIPLE SHOOTING ALGORITHM FOR DIRECT SOLUTION OF OPTIMAL CONTROL
PROBLEMS *

Hans Georg Bock and Karl J. Plitt

Institut flir Angewandte Mathematik, SFB 72, Universitdt Bonn, 5300 Bonn,
Federal Republic of Germany

Xi(tit1:51,4i) # Sit1
Variants: | >/ S N
Multiple Shooting and Collocation / ///Si o
S S i
.\‘:)0 lt“": .......... gi
’ e A g 1
Pros: Iy :
® Sparsity of prOblem kept fo t ot T tN-1 tN
® Unstable systems can be treated, nonlinearity reduced
Cons:

® |arge scale problems
® Need to develop (or use) structure exploiting NLP solver
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How to solve Nonlinear Programs (NLPs) ?

L D G(X) = 0
minimize F(X) s.t. {
e HX) < 0
Lagrangian: LX M\p)=FX)+GX) "N+ HX) 1

Karush Kuhn Tucker (KKT) conditions: for optimal  x=exist \* ;,*such that:

VXL(X5 N 0") = 0
G(X*) =
0> H(X*) L p° >

Newton type methods try to find points satisfying these conditions. But last
condition non-smooth: cannot apply Newton’s method directly. What to do?



Approach 1: Interior Point (IP) Methods

® Replace last condition by smoothed version:

VxL(X* A pn") = 0
G(X") = 0
L - H,(X ) p, = 7, 1=1,...,nqg.

Summarize as R(W) = 0
® Solve with Newton’s method, i.e.,
+ Linearize at current guess  TJ/k— (Xk? M\ ,u.k)
R(T“-’T" lf) + VR ( Wk )T (n' k+1 W A’) —0

» solve linearized system, get new trial point

® For 7 small, IP problem gets close to original (path-following,
self-concordance, polynomial time for convex problems, ...)



(Note: IP with fixed T makes mp-NLP smooth)




Approach 2: Sequential Quadratic Programming (SQP)

Mathematical Programming 14 (1978) 224-248.

ALGORITHMS FOR NONLINEAR CONSTRAINTS THAT USE
LAGRANGIAN FUNCTIONS*

M.J.D. POWELL

University of Cambridge. Cambridge, United Kingdom

Received 10 October 1976

® Linearize all problem functions, solve Quadratic Program (QP):

G(X*) + VG(XMT(X — Xk) =
H(XF)+ VH(XMT(X - Xk < 0

minimize FgP(X ) s.t.
X

with convex quadratic objective using an approximation of Hessian.
Obtain new guesses for both x*and \* 10



(Important Variant of SQP: Generalized Gauss-Newton)

1
If objective is sum of squares: F(X) = 5

R(X)|3.

then QP objective can well be approximated by:
Fgp(X) = S|R(X®) + VR(XH)T (X — X3

(often extremely good linear convergence)



Difference between IP and SQP ?

® Both generate sequence of iterates X’f? /\’f’ Mk

® Both need to linearize problem functions in each iteration.

® [P iterations cheaper:
* |P solves only linear system
« SQP solves a QP in each iteration (maybe even with an IP method!)

® |IP needs more iterations:

* |P multipliers change slowly, iterates always in interior
« SQP multipliers jump, active set can quickly be identified

SQP good if problem function evaluations are expensive (shooting methods)



(Adjoint Based SQP: can use old Jacobians)

® SQP even works if all QP matrices are old. Only constraints and Lagrange
gradient (cheap by adjoint differentiation) need to be exact.

® Trick: use “modified gradient’ ax = VxL(X" N\, 1) — Bp\" — O

in QP objective F.p(X) = a} X + 1(X XA (X — XP).

Solve QP with inexact constraints
7/ \

G(X*) {BI(X — XF
minimize F“UQP(X) s.t. { HEX"’; i((ér}X B ng
X "R

Can prove stability of active set and linear converﬁe/nce [Bock, D., Kostina,
Schloeder 2007]. Adjoint SQP iterations often orders of magnitude cheaper
than full SQP iterations.

0
0.

A




Linear Algebra Issues in Optimal Control

® In each SQP iteration, solve structured QP:

N—-1
minimize Z Laop.i(xi, zi, u;) + Eqp (zn)
x, 2, U P

subject to ro— 29 = 0,
Tip1 — fi = F'oy — Fizi = Ff'vy = 0, i=0,....N—1
gi + G¥x; ++ Giu; = 0, 1=0,....N—1
h.+H'z; +H 7z +H"'u; < 0, 1=0,...,N—1

r' + Rey < 0.

® Algebraic Reduction/compression: first eliminate z



QP after Algebraic Reduction

x, U
subject to rog— 29 = 0,
rir1—c — A, — Biuyg = 0,
]_2, -+ H Il xr; + H I-u w; < 0,
v+ Ry < 0.

N—-1
minimize E Licaqp.i(Tisu;) +  Eqp ()
i=0

1 =0,....N
1 =0,...,N

—1,

How to solve this structured QP?




Approach 1: Banded Factorization

® Factorize large banded KKT Matrix e.g. by Riccati based recursion

I
I Q 0 So  —A)
A — St Ry —Bj
— AQ — B 0 B ) H
_ I Qnx._

® Advantageous for long horizons and many controls



Approach 2: Condensing - Eliminate all States

® Eliminate states by linear system simulation, keep only controls in QP,
solve QP with dense solver

minimize  JfeondqQp.i(Zo, )
U

subject to r+ R‘”Jr R'w < 0.

® Note: mp-QP in same form as needed by gpOASES and explicit MPC
® Can use this QP as fast feedback law for several X
® But QP matrices change after each SQP re-linearization



Outline of the Talk

PART II: Online Algorithms
® Parametric Sensitivities

® Review of Three Classical Algorithms



The start: “Newton-Type Controller” by Li and Biegler

Chem Eng Res Des, Vo, 67, November 1989

MULTISTEP, NEWTON-TYPE CONTROL
STRATEGIES FOR CONSTRAINED,
NONLINEAR PROCESSES

W. C. L and L. T. BIEGLER
Carnegie-Mellon University, Depariment of Chemical Engineering, Pittsburgh, USA

SQP type method
single shooting
perform only one SQP iteration per problem (“real-time iteration”)

Method also implemented in “NEPSAC Algorithm” by [De Keyser
1998] and many others [IPCOS, GE, ...]. Many applications.

® was missing one important feature: parametric sensitivities



Parametric Sensitivities

® In IP case, smoothed KKT conditions are equivalent to parametric
root finding problem: R(zg, W) =0

7

with solution W * (Z0 ) depending on initial condition

Based on old solution, can get “tangential predictor” for new one:

Y

Lo



Initial Value Embedding Idea

® Can obtain sensitivity nearly for free in Newton type methods:

] ] OR OR ]
Wh=Ww — < 77 (T0, W )> [ (Zo, W) (1( - lo) + R(Zo, W )]

0T
A ’ predictor corrector

b gk}




“IP real-time iteration” for sequence of NLPs




IP Real-Time Iteration = Ohtsuka’s Continuation Method

Available online at www.sciencedirect.com

: ;;"( scuencs@omec'r- automatlca

SR v R
ELSEVIER Automatica 40 (2004) 563-574

www.elsevier.com/locate/automatica

A continuation/GMRES method for fast computation of nonlinear
receding horizon control™

Toshiyuki Ohtsuka*

Department of Computer-Controlled Mechanical Systems, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan

Additional features of Continuation/GMRES:

® matrix free and iterative linear algebra via GMRES
® [nterior Point formulation via quadratic slacks

® Single shooting with adjoint gradient computation

® (recently extended to multiple shooting with condensing, faster
contraction)

But: Ohtsuka’s method “overshoots” at active set changes



(Variant of IP Methods: Quadratic Slacks)

® Ohtsuka (2004) uses for NMPC a variant of IP methods:

ngy
Y ANy GX) =0
1111;111}1/12@ F(X)—7 ;Y' 5.t { H;(X) +Y,~2 = 0,72=1,...,ng.

Seems to work well for fixed penalty parameter. But no self-
concordance properties as in usual IP methods.



Generalized Tangential Predictor via SQP

® Solve a full QP with “initial value embedding” [D. et al. 2002].

minimize f condQP,i (Zo, )
U

subject to T+ ]fl’f R'w < 0.

® At smooth parts, delivers same predictor-corrector step as Newton. But is
“Generalized Tangential Predictor” valid also across active set changes:

A




SQP Real-Time lteration p. et al 2002

® |long “preparation phase” for linearization, reduction, and condensing
® fast “feedback phase” (QP solution once 2 (yis known). Fast, but...



Stability of System-Optimizer Dynamics?

Optimizer
(SQP lterates)

Initial Value i} Control fu,"

Real World System |
(System State) |

e System and optimizer are coupled: can numerical errors grow and
destabilize closed loop?

o Stability analysis combines concepts from both, NMPC stability
theory and convergence theory of Newton-type optimization.

o Stability shown under mild assumptions (short sampling times, stable
NMPC scheme) [Diehl, Findeisen, Allgéwer, 2005]

o Losses w.r.t. optimal feedback control are O(x?¢*) after ¢ disturbance
[Diehl, Bock, Schldder, 2005]



Kite NMPC Problem solved with ACADO (B. Houska)

® 9 states, 3 controls

® Penalize deviation from “lying eight”
® Predict half period

® zero terminal constraint

® 10 multiple shooting intervals

Solve with SQP real-time iterations
with shift (implemented in ACADO)
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Kite NMPC: CPU Time per RTI below 50 ms

® Initial-Value Embedding . 0.03ms
® QP solution (qpOASES) . 2.23 ms
Feedback Phase: 3 ms

(QP after condensing: 30 vars. / 240 constr.)

® Expansion of the QP . 0.10 ms
® Simulation and Sensitivities : 44.17 ms
® Condensing (Phase |) . 2.83ms ST
Preparation Phase: 47 ms

(on Intel Core 2 Duo CPU T7250, 2 GHz...
without code generation yet)




Nonlinear MPC and MHE on Flight Carousel

(sampling time 50 Hz, using ACADO Code Generation) Milan Vukov

Closed loop experiments
with NMPC & NMHE
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Further algorithmic developments in opposite directions

Multi-Level Real-Time Iterations
[Bock, D. et al. NMPC 05, Wirsching 2007]

Make real-time iterations cheaper.

Four Levels:

A) mp-QP at innermost level

B) Feasibility improvement

C) Optimality Improvement

D) Full re-linearization, only rarely in
outer loop

® Allows extremely fast sampling
rates at innermost level A
(feedback phase).

® Level C allows to converge to
NLP solution WITHOUT NEW
JACOBIAN EVALUATIONS.

Advanced Step NMPC
[Zavala and Biegler 2007]

Combine two well-tested ideas [D. 2001]
® Preparation vs. Feedback Phase

® Tangential Predictor in Feedback
with two new building blocks

® For preparation, iterate next problem
to convergence via IP method

® use IP predictor in feedback phase

3




Summary: six ideas for fast nonlinear MPC

simultaneous optimisation: keep states in problem

real-time iteration: use linearisation in non-converged points

fast feedback phase to avoid delays, and longer preparation phase
tangential predictor by initial value embedding

solve full QP to make predictions across active set changes

code generation to minimise overhead (cf afternoon talk R. Quirynen)
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