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Overview

I Convex sets

I Convex functions

I Operations that preserve convexity

I Convex optimization



Convex Sets
A set S ∈ Rn is a convex set if for all x1, x2 ∈ S and λ ∈ [0, 1]:

λx1 + (1− λ)x2 ∈ S

(set contains line segment between any two of its points)

Convex set

line segment between x1 and x2: all points

x = θx1 + (1 − θ)x2

with 0 ≤ θ ≤ 1

convex set: contains line segment between any two points in the set

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1 − θ)x2 ∈ C

examples (one convex, two nonconvex sets)

Convex sets 2–3

A set S ∈ Rn is a convex cone if for all x1, x2 ∈ S and θ1, θ2 ≥ 0:

θ1x1 + θ2x2 ∈ S



Convex hull

Convex combination of z1, . . . , zk : Any point z of the form

z = θ1z1 + θ2z2 + . . .+ θkzk with θ1 + . . .+ θk = 1, θi ≥ 0

Convex hull of S : set of all convex combinations of points in S .



Convex sets: Hyperplanes and Halfspaces

I Hyperplane: Set of the form {x | a>x = b} (a 6= 0)

Hyperplanes and halfspaces

hyperplane: set of the form {x | aTx = b} (a != 0)

a

x

aTx = b

x0

halfspace: set of the form {x | aTx ≤ b} (a != 0)

a

aTx ≥ b

aTx ≤ b

x0

• a is the normal vector

• hyperplanes are affine and convex; halfspaces are convex

Convex sets 2–6

I Halfspace: Set of the form {x | a>x ≤ b} (a 6= 0)

Hyperplanes and halfspaces

hyperplane: set of the form {x | aTx = b} (a != 0)

a

x

aTx = b

x0

halfspace: set of the form {x | aTx ≤ b} (a != 0)

a

aTx ≥ b

aTx ≤ b

x0

• a is the normal vector

• hyperplanes are affine and convex; halfspaces are convex

Convex sets 2–6

I Useful representation:
{
x
∣∣ a>(x − x0) ≤ 0

}

a is normal vector, x0 lies on the boundary

I Hyperplanes are affine and convex, halfspaces are convex



Convex sets: Polyhedra
Polyhedron

A polyhedron is the intersection of a finite number of halfspaces.

P :=
{
x
∣∣∣ a>i x ≤ bi , i = 1, . . . , n

}

A polytope is a bounded polyhedron.

Often written as P := {x |Ax ≤ b}, for matrix A ∈ Rm×n and
b ∈ Rm, where the inequality is understood row-wise.

Polyhedra

P

ak

examples

• nonnegative orthant Rn
+ = {x ∈ Rn | x " 0}

• k-simplex Co{x0, . . . , xk} with x0, . . . , xk affinely
independent, i.e.,

Rank

([
x0 x1 · · · xk

1 1 · · · 1

])
= k + 1,

or equivalently, x1 − x0, . . . , xk − x0 lin. indep.

• probability simplex {x ∈ Rn | x " 0,
∑

i xi = 1}

Convex sets 2–11



Operations that preserve convexity of sets

I intersection: the intersection of (any number of) convex sets
is convex (but unification is generally non-convex)

I affine image: the image f (S) := {f (x) | x ∈ S } of a convex
set S under an affine function f (x) = Ax + b is convex

I affine pre-image: the pre-image f −1(S) := {x | f (x) ∈ S } of a
convex set S under an affine function f (x) = Ax + b is convex



Examples

I
{
x
∣∣ x1 + x2t + x3t

2 + x4t
3 ≥ 0 for all t ∈ [0, 1]

}
is convex

(set of positive polynomials on unit inverval, intersection of
halfspaces)

I {a + Pw | ‖w‖2 ≤ 1} is convex (affine image of unit ball)

I {x | ‖Ax + b‖2 ≤ 1} is convex (affine pre-image of unit ball)



The cone of positive semidefinite matrices

Definitions

I set of symmetric n × n matrices:
Sn :=

{
X ∈ Rn×n ∣∣X = X>

}

I X � 0: for all z ∈ Rn holds z>Xz ≥ 0 (all eigenvalues of X
are non-negative)

I X � 0: all eigenvalues of X are positive

I set of positive semidefinite n × n matrices:
Sn+ := {X ∈ Sn |X � 0}

Theorem: Sn+ is a convex set

Proof: Sn+ =
{
X ∈ Sn

∣∣ z>Xz ≥ 0 for all z ∈ Rn
}

is intersection of
(infinitely many) halfspaces.



Convex function: Definition

I Convex function:
A function f : S → R is convex if S is convex and

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

for all x , y ∈ S , λ ∈ [0, 1]

Definition

f : Rn → R is convex if dom f is a convex set and

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y)

for x, y ∈ dom f , x %= y, 0 < θ < 1

Convex functions 3–2

I A function f : S → R is strictly convex if S is convex and

f (λx + (1− λ)y) < λf (x) + (1− λ)f (y)

for all x , y ∈ S , λ ∈ (0, 1)

I A function f : S → R is concave if −f is convex.



First and second order condition for convexity

First-order condition: Differentiable f with convex domain is
convex if and only if

f (y) ≥ f (x) +∇f (x)>(y − x) for all x , y ∈ dom f

First-order condition

f is differentiable if dom f is open and the gradient

∇f(x) =

(
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)

exists at each x ∈ dom f

1st-order condition: differentiable f with convex domain is convex iff

f(y) ≥ f(x) + ∇f(x)T (y − x) for all x, y ∈ dom f

(x, f(x))

f(y)

f(x) + ∇f(x)T (y − x)

first-order approximation of f is global underestimator

Convex functions 3–7

Note: first-order approximation of f is global underestimator
Second-order condition: Twice differentiable f with convex domain
is convex if and only if

∇2f (x) � 0 for all x ∈ dom f



Convex functions – Examples

Examples on R:

I exponential: eax , for any a ∈ R
I powers: xa on R+ for a ≥ 1 or a ≤ 0 (otherwise concave)

I negative logarithm: − log x on R+

Examples on Rn:

I affine function: f (x) = a>x + b

I norms: ‖x‖p = (
∑n

i=1 |xi |p)1/p for p ≥ 1; ‖x‖∞ = maxk |xk |
I convex quadratic: f (x) = x>Bx + g>x + c with B � 0

(∇2f (x) = 2B)

I log-sum-exp: f (x) = log (
∑n

i=1 exp (xi ))
(“smoothed max”, as lims→0 s f (x/s) = max{x1, . . . , xn})



Operations that preserve convexity of functions

I nonnegative weighted sum: f (x) =
∑m

j=1 αj fj(x) is convex if
αj ≥ 0 and all fj are convex

I composition with affine function: f (x) = g(Ax + b) is convex
if g is convex

I pointwise maximum: f (x) = max{f1(x), . . . , fm(x)} is convex
if all fj are convex (even supremum over infinitely many
functions)

I minimization: if g(x , u) is jointly convex in (x , u) then
f (x) = infu g(x , u) is convex

I convex in monotone convex: f (x) = h(g(x)) is convex if g is
convex and h : R→ R is monotonely non-decreasing and
convex. Proof for smooth functions:
∇2f (x) = h′′(g(x))∇g(x)∇g(x)T + h′(g(x))∇2g(x)



Examples

I composition with affine function: f (x) = ‖Ax + b‖2
I expectation f (x) = Ew{‖A(w)x + b(w)‖2} is convex

(nonnegative weighted sum)

I f (x) = exp(c>x + d)− log(a>x + b) is convex on{
x
∣∣ a>x + b > 0

}

I pointwise maximum:
f (x) = max‖w‖2≤1(a + Pw)>x = a>x + ‖P>x‖2 is convex
(used for robust LP)

I minimization: for R � 0, regard

f (x) = minu

[
x
u

]> [
Q S>

S R

] [
x
u

]
= x>(Q − S>R−1S)x .

This f (x) is convex if

[
Q S>

S R

]
� 0 (cf. Schur complement)



Connecting convex sets and functions: sublevel sets

Theorem: Sublevel set S = {x | f (x) ≤ c } of a convex function f
is a convex set

Proof: x , y ∈ S and convexity of f imply for t ∈ [0, 1] that
f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y) ≤ c .

Note: the sign of the inequality matters - superlevel sets
{x | f (x) ≥ c } would not be convex.



Convex sublevel sets – Examples

I norm balls: {x ∈ Rn | ‖x − xc‖ ≤ r } for any norm ‖ · ‖, with
radius r > 0 and centerpoint xc

I ellipsoids:
{
x ∈ Rn

∣∣ (x − xc)>P−1(x − xc) ≤ 1
}

for any
positive definite shape matrix P � 0

I norm cones:
{

(x , t) ∈ Rn+1 | ‖x‖ ≤ t
}



Overview

I Convex sets

I Convex functions

I Operations that preserve convexity

I Convex optimization



Recall: General Optimization Problem

minimize
z

f (z)

subject to gi (z) = 0, i = 1, . . . , p

hi (z) ≤ 0, i = 1, . . . ,m

I z = (z1, . . . , zn): variables

I f : Rn → R: objective function

I g : Rn → R, i = 1, . . . , p:
equality constraint functions

I h : Rn → R, i = 1, . . . ,m:
inequality constraint functions

z�

C

f (z) = JVUZ[

I C := {z | hi (z) ≤ 0, i = 1, . . . ,m, gi (z) = 0, i = 1, . . . , p}:
feasible set



Optimality

minimal value: smallest possible cost p∗ := inf {f (z) | z ∈ C }.
minimizer: feasible z∗ with f (z∗) = p∗; set of all minimizers:
{z ∈ C | f (z) = p∗ }

I z ∈ C is locally optimal if, for some R > 0, it
satisfies

y ∈ C, ‖y − z‖ ≤ R ⇒ f (y) ≥ f (z)

I z ∈ C is globally optimal if it satisfies

y ∈ C ⇒ f (y) ≥ f (z)

I If p∗ = −∞ the problem is unbounded below

I If C is empty, then the problem is said to be
infeasible (convention: p∗ =∞)

f (z) R

f (y)

C

f (y)
f (z)

C



Convex optimization problem in standard form

minimize
z

f (z)

subject to hi (z) ≤ 0, i = 1, . . . ,m

c>i z = bi , i = 1, . . . , p

I f , h1, . . . , hm are convex

I equality constraints are affine

often rewritten as
minimize

z
f (z)

subject to h(z) ≤ 0

Cz = b

where C ∈ Rp×n and h : Rn → Rm.
Note: With nonlinear equalities, feasible set would generally not be
convex



Local and global optimality in convex optimization

Lemma
Any locally optimal point of a convex problem is globally optimal.

Proof:
Assume x locally optimal and a feasible y such f (y) < f (x).
x locally optimal implies that there exists an R > 0 such that

‖z − x‖2 ≤ R ⇒ f (z) ≥ f (x)

f (x)

xy

f (y)

Rz



Local and global optimality in convex optimization

Lemma
Any locally optimal point of a convex problem is globally optimal.

Proof:
Assume x locally optimal and a feasible y such f (y) < f (x).
x locally optimal implies that there exists an R > 0 such that

‖z − x‖2 ≤ R ⇒ f (z) ≥ f (x)

f (x)

xy

f (y)

Rz

3VJHS�VW[PTHSP[`
� f (z) > f (x)

*VU]L_P[`
� f (z) < f (x)



Linear Program (LP)

minimize
x

c>x

subject to c>i x + di ≤ 0, i = 1, . . . ,m

Ax = b



LP Example

minimize
x∈Rn

‖Ax + b‖1
subject to Cx + d = 0

equivalent to

minimize
x∈Rn,s∈Rm

m∑

i=1

si

subject to − s ≤ Ax + b ≤ s

Cx + d = 0



Quadratic Program (QP)

minimize
x

c>x +
1

2
x>Bx

subject to c>i x + di ≤ 0, i = 1, . . . ,m

Ax = b

convex if B � 0
strictly convex if B � 0



Quadratically Constrained Quadratic Program (QCQP)

minimize
x

x>B0x + c>0 x + r0

subject to x>Bix + c>i x + ri ≤ 0, i = 1, . . . ,m

Ax = b

convex if B0, . . . ,Bm � 0



Second Order Cone Program (SOCP)

minimize
x

c>x

subject to ‖Aix + bi‖2 ≤ c>i x + di , i = 1, . . . ,m

Ax = b



SOCP example: robust LP

Robust LP with uncertain w :

minimize
x

c>x

subject to max
‖w‖2≤1

(ai + Piw)>x ≤ bi i = 1, . . . ,m

equivalent to SOCP

minimize
x

c>x

subject to a>i x + ‖P>x‖2 ≤ bi i = 1, . . . ,m



Semidefinite Program (SDP)

minimize
x

c>x

subject to x1F1 + · · ·+ xnFn + G � 0

Ax = b

with F1, . . . ,Fn,G ∈ Sm.
The generalized inequality is called linear matrix inequality
(LMI).



SDP Example

Eigenvalue minimization: minimize
x∈Rn

λmax(A(x)) with

A(x) = A0 + x1A1 + · · ·+ xnAn

Equivalent SDP:

minimize
x∈Rn,t∈R

t

subject to t I − A(x) � 0

Proof: t I � A(x)⇔ t ≥ λmax(A(x))



SDP comprises LP, QP, QCQP and SOCP

Among all discussed convex problem classes, SDP is most general.

Any LP can be formulated as a QP.
Any QP can be formulated as a QCQP.
Any QCQP can be formulated as a SOCP.
Any SOCP can be formulated as a SDP.

LP⇒ QP⇒ QCQP⇒ SOCP⇒ SDP

In principle, an SDP solver could be used to solve LP, QP, QCQP,
SOCP and SDP... but the tailored solvers are more efficient!

Note: an NLP solver can also be used to globally solve LP, QP, or
QCQP (but not for SOCP and SDP, due to non-smoothness of the
generalized inequalities)



Solvers for Convex Optimization

I LP: myriads of solvers, e.g. CPLEX, GUROBI, SOPLEX

I QP: many solvers, e.g. CPLEX, OOQP, QPSOL, QPKWIK
Embedded QP solvers: qpOASES, FORCES, HPMPC,
qpDUNES, ...

I SOCP: MOSEK, ECOS

I SDP: SDPT3, sedumi

Consult “decision tree for optimization software” by Hans
Mittelmann:

http://plato.la.asu.edu/guide.html



Modelling Environments for Convex Optimization

I YALMIP (from matlab)

I CVX (from matlab)

I CVXOPT (from python)



Summary

I Convex optimization problem:
I Convex cost function
I Convex inequality constraints
I Affine equality constraints

I main benefit of convex problems: local = global optimality
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