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Convex Sets
A set S € R" is a convex set if for all x;,x € S and X € [0,1]:

M+ (1=A)xeS

(set contains line segment between any two of its points)

o N

A set S € R" is a convex cone if for all x;,x € S and 61,6, > O:

01x1 +bxo € S




Convex hull

Convex combination of zy,...,zk: Any point z of the form
z=01z1+ b+ ...+ 0z with 01+ ... +0,=1,0; >0

Convex hull of S: set of all convex combinations of points in S.



Convex sets: Hyperplanes and Halfspaces

> Hyperplane: Set of the form {x | a' x = b} (a # 0)

a

z
a"r=10b

» Halfspace: Set of the form {x | a' x < b} (a # 0)

» Useful representation: {x ‘ al(x —xp) < 0}
a is normal vector, xg lies on the boundary

» Hyperplanes are affine and convex, halfspaces are convex



Convex sets: Polyhedra

Polyhedron

A polyhedron is the intersection of a finite number of halfspaces.
p.— {x ’a,Txg by, i:1,...,n}

A polytope is a bounded polyhedron.

Often written as P := {x | Ax < b}, for matrix A € R™*" and
b € R™, where the inequality is understood row-wise.
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Operations that preserve convexity of sets

> intersection: the intersection of (any number of) convex sets
is convex (but unification is generally non-convex)

> affine image: the image f(S) := {f(x) |x € S} of a convex
set S under an affine function f(x) = Ax + b is convex

> affine pre-image: the pre-image f~1(S) := {x | f(x) € S} of a
convex set S under an affine function f(x) = Ax + b is convex



Examples

> {x }xl + xot + x3t? + xqt3 > 0 for all t € [0, 1]} is convex
(set of positive polynomials on unit inverval, intersection of
halfspaces)

» {a+ Pw |||w|]2 <1} is convex (affine image of unit ball)

» {x |||[Ax + b||2 < 1} is convex (affine pre-image of unit ball)



The cone of positive semidefinite matrices

Definitions
> set of symmetric n X n matrices:
Smi= {XER”X” }X:XT}
» X = 0: forall ze R" holds z' Xz > 0 (all eigenvalues of X
are non-negative)
» X > 0: all eigenvalues of X are positive
> set of positive semidefinite n X n matrices:
St ={XeS"|X=0}
Theorem: S| is a convex set

Proof: §" = {X esS” }ZTXZ > Qfor allz € R”} is intersection of
(infinitely many) halfspaces.



Convex function: Definition

» Convex function:
A function f : S — R is convex if S is convex and

FOx + (1= N)y) < M (x) + (1= Nf(y)
for all x,y € S, A € [0,1]

(v, f(¥))
(z, f(x))

» A function f : S — R is strictly convex if S is convex and

fAx+ (1= XN)y) < M(x)+ (1= Nf(y)
for all x,y € S,A € (0,1)

» A function f : S — R is concave if —f is convex.



First and second order condition for convexity

First-order condition: Differentiable f with convex domain is
convex if and only if

f(y) > f(x)+ VFf(x)"(y —x) forallx,y € domf

F(y)
f@) + Vi) (y— =)

(z, f(z))
Note: first-order approximation of f is global underestimator

Second-order condition: Twice differentiable f with convex domain
is convex if and only if

V2f(x) =0 for all x € dom f



Convex functions — Examples

Examples on R:
» exponential: ¥, for any a € R
» powers: x? on R for a>1 or a < 0 (otherwise concave)
> negative logarithm: —logx on R
Examples on R":
> affine function: f(x) =a'x+ b
> norms: [|xlp = (S04 %PV for p > 1 [Ix]le = max ||
» convex quadratic: f(x) = x' Bx +g'x 4 c with B =0
(V2f(x) = 2B)

> log-sum-exp: f(x) = log (37 exp(xi))
(“smoothed max”, as lims_0 s f(x/s) = max{xy,...,xn})



Operations that preserve convexity of functions
> nonnegative weighted sum: f(x) = >_; a;fi(x) is convex if
aj > 0 and all f; are convex

» composition with affine function: f(x) = g(Ax + b) is convex
if g is convex

> pointwise maximum: f(x) = max{fi(x),..., fm(x)} is convex
if all f; are convex (even supremum over infinitely many
functions)

» minimization: if g(x, u) is jointly convex in (x, u) then
f(x) = inf, g(x, u) is convex

» convex in monotone convex: f(x) = h(g(x)) is convex if g is
convex and h: R — R is monotonely non-decreasing and
convex. Proof for smooth functions:

V2 (x) = h"(g(x))Ve(x)Ve(x)" + H(g(x))Vg(x)



Examples

>

>

composition with affine function: f(x) = ||Ax + b||2

expectation f(x) = E, {||A(w)x + b(w)||2} is convex
(nonnegative weighted sum)

f(x) = exp(c"x + d) — log(a' x + b) is convex on
{x } alx+b> 0}
pointwise maximum:

f(x) = maxy|,<1(a+ Pw)"x = a’x +||PTx|2 is convex
(used for robust LP)

minimization: for R > 0, regard

f(x) = miny mT [? SgMz] =x"(Q—-STR1S)x.
S

This f(x) is convex if [Q

-
s R } = 0 (cf. Schur complement)



Connecting convex sets and functions: sublevel sets

Theorem: Sublevel set S = {x | f(x) < c} of a convex function f
is a convex set

Proof: x,y € S and convexity of f imply for t € [0, 1] that
ftx+ (1 —t)y) <tf(x)+ (1 —t)f(y) <c.

Note: the sign of the inequality matters - superlevel sets
{x | f(x) > c} would not be convex.



Convex sublevel sets — Examples

» norm balls: {x € R" | ||x — xc|| < r} for any norm || - ||, with
radius r > 0 and centerpoint x.

> ellipsoids: {x € R” ! (x = xc)TP7(x — xc) < 1} for any
positive definite shape matrix P > 0

”/, p

» norm cones: {(x,t) € R™* |||x|| <t}
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Recall: General Optimization Problem

minimize  f(z)

subject to gi(z)=0,i=1,...,p
hi(z) <0,i=1,....m

v

z=(z,...,2p): variables

» f:R"” — R: objective function
g:RT=>R, i=1,...,p:
equality constraint functions
h:R" >R, i=1,...,m >
inequality constraint functions f(z) = const

Co={z | h(z2) <0, i=1....mg(z)=0,i=1,....p}
feasible set

v

v

v



Optimality

minimal value: smallest possible cost p* :=inf {f(z) |z € C}.
minimizer. feasible z* with f(z*) = p*; set of all minimizers:
{zeC|f(z2)=p'}

» z € C is locally optimal if, for some R > 0, it
satisfies

yel,y—z| <R=f(y) > f(z2)

» z € C is globally optimal if it satisfies £(y)

f(z)

yeC=fly) = f(z)

» If p* = —oco the problem is unbounded below

» If C is empty, then the problem is said to be
infeasible (convention: p* = c0)



Convex optimization problem in standard form

minimize  f(z)

subject to hi(z) <0,i=1,...,m
c,-Tz:b;,izl,...,p

» f,.hy,..., hy are convex
» equality constraints are affine
often rewritten as
minimize f(z)
subject to h(z) <0
Cz=b
where C € RP*" and h: R" — R™.

Note: With nonlinear equalities, feasible set would generally not be
convex



Local and global optimality in convex optimization

Lemma
Any locally optimal point of a convex problem is globally optimal.

Proof:
Assume x locally optimal and a feasible y such f(y) < f(x).
x locally optimal implies that there exists an R > 0 such that

lz=xl2 <R = f(z) > f(x)

fly)e .

I —x—




Local and global optimality in convex optimization

Lemma
Any locally optimal point of a convex problem is globally optimal.

Proof:
Assume x locally optimal and a feasible y such f(y) < f(x).
x locally optimal implies that there exists an R > 0 such that

lz=xl2 <R = f(z) > f(x)

Local optimality
= f(z) > f(x)

Convexity
= f(z) < f(x)



Linear Program (LP)

minimize c'x
X

subject to c,-Tx+d,-§0, i=1,...,m
Ax=b



LP Example

minimize  [|Ax + b||1
x€RM
subjectto Cx+d=0

equivalent to

m
minimize S;
minimize ) s
i=1
subjectto —s<Ax+b<s
Cx+d=0



Quadratic Program (QP)

. 1
minimize c¢'x+ §XTBX
X

subject to c,-Tx—l—d,-SO, i=1,...

Ax=b

convex if B> 0
strictly convex if B > 0



Quadratically Constrained Quadratic Program (QCQP)

minimize XTB()X + CJX +n
X
. T T : .
subjectto x Bix+c¢; x+r <0, i=1,...,m
Ax=b

convex if By,...,Bn =0



Second Order Cone Program (SOCP)

minimize ¢ x
X

subject to [|Aix + billa < ¢/ x+d;, i=1,...,m
Ax=b



SOCP example: robust LP

Robust LP with uncertain w:

minimize c'x
X

subject to  max (aj+ Piw) ' x < bji=1,...
wll2<1
equivalent to SOCP
minimize  ¢'x
X

subject to a/ x + [P x[a < bii=1,...,m



Semidefinite Program (SDP)

minimize ¢ x
X

subjectto xxF1+---+x,Fp+G >0
Ax=b
with F1,...,F,, G € S™.

The generalized inequality is called linear matrix inequality
(LMI).



SDP Example

Eigenvalue minimization: mini%?ize Amax(A(x)) with
xeRn

A(x) = Ao+ x1A1 + - + x,Ap
Equivalent SDP:

minimize t
xERM teR

subject to t/— A(x) >0

Proof: t1 = A(x) < t > Amax(A(X))



SDP comprises LP, QP, QCQP and SOCP

Among all discussed convex problem classes, SDP is most general.

Any LP can be formulated as a QP.

Any QP can be formulated as a QCQP.
Any QCQP can be formulated as a SOCP.
Any SOCP can be formulated as a SDP.

LP = QP = QCQP = SOCP = SDP

In principle, an SDP solver could be used to solve LP, QP, QCQP,
SOCP and SDP... but the tailored solvers are more efficient!

Note: an NLP solver can also be used to globally solve LP, QP, or
QCQP (but not for SOCP and SDP, due to non-smoothness of the
generalized inequalities)



Solvers for Convex Optimization

» LP: myriads of solvers, e.g. CPLEX, GUROBI, SOPLEX

» QP: many solvers, e.g. CPLEX, OOQP, QPSOL, QPKWIK
Embedded QP solvers: qpOASES, FORCES, HPMPC,
gpDUNES, ...

» SOCP: MOSEK, ECOS

» SDP: SDPT3, sedumi

Consult “decision tree for optimization software” by Hans

Mittelmann:
http://plato.la.asu.edu/guide.html



Modelling Environments for Convex Optimization

» YALMIP (from matlab)
» CVX (from matlab)
» CVXOPT (from python)



Summary

» Convex optimization problem:

» Convex cost function
» Convex inequality constraints
» Affine equality constraints

» main benefit of convex problems: local = global optimality
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