
Constrained Optimization

Moritz Diehl 
(some slide material was provided by W. Bangerth, K. Mombaur)



Nonlinear Programming (Problem Class 3)

f objective function / cost function 
g equality constraints 
h inequality constraints 

f,g,h shall be smooth (twice differentiable) functions
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!General problem formulation:



contour lines of f(x)

gradient vector

unconstrained minimum: 

Recall: ball on a spring without constraints
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Now: ball on a spring with constraints

constrained minimum: 

Lagrange multiplier

inactive constraint h2
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gradient  ∇h1 of active constraint



Ball on a spring with two active constraints

„equilibrium of forces“

„constraint forces“
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Multipliers as „shadow prices“

What happens if we relax a constraint? 
Feasible set becomes bigger, 
so new minimum f(xε*) becomes smaller. 

How much would we gain? 

old constraint:  h(x) ≥ 0 

new constraint: h(x) + ε  ≥ 0 
Multipliers show the hidden cost 
of constraints.

µεε −≈ )()( ** xfxf



The Lagrangian Function

! equality multipliers λi may have both signs in a solution 
! inequality multipliers µi cannot be negative (cf. shadow prices) 
! for inactive constraints, multipliers µi  are zero  

For constrained problems, introduce modification of objective function:
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Karush-Kuhn-Tucker necessary conditions (KKT-conditions): 
! x* feasible 
! there exist λ*, µ* such that 
 
 
 

!                      holds 
! and it holds the complementarity condition 
 
 
 
i.e. µi

*= 0  or  hi (x*)= 0  for each i 

Optimality conditions (constrained)
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Sequential Quadratic Programming (SQP)

Constrained problem:
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SQP Idea: Consider successively quadratic approximations of the problem: 



SQP method

! if we use the exact hessian of the Lagrangian 
 
 
this leads to a newton-method for the optimality conditions and 
feasibility.  

! with update-formulas for Hk, we obtain quasi-Newton SQP-methods.  
! if we use appropriate update-formulas, we can have superlinear 

convergence. 
! global convergence can be achieved by using a stepsize strategy.
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SQP algorithm

0. Start with k=0, start value x0 and H0=I 
1. Compute f(xk), g(xk), h(xk), ∇f(xk), ∇g(xk), ∇h(xk) 
2. If xk feasible and 
 
 
then stop ➨  convergence achieved 

3. Solve quadratic problem and get Δxk

4. Perform line search and get stepsize tk 

5. Iterate  
 

6. Update hessian 
7. k=k+1, goto step 1
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Summary

! Lagrangian function plays important role in constrained optimization 

! Lagrange multipliers of inequalities have positive sign 

! KKT conditions are necessary optimality conditions


