Constrained Optimization
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(some slide material was provided by W. Bangerth, K. Mombaur)



Nonlinear Programming (Problem Class 3)

® General problem formulation:

min f(x) f: DCR"—R
st.g(x) = 0 g: DCR"—R
h(x) = 0 h: DCR"—R"

f objective function / cost function
g equality constraints
h inequality constraints

f,g,h shall be smooth (twice differentiable) functions



Recall: ball on a spring without constraints
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contour lines of f(x)

gradient vector

Vf(x)=(2x,,2x, + m)

unconstrained minimum:

0=V/(x') < (x.%) = (0.-5)



Now: ball on a spring with constraints

min f(x)
h(x)=1+x+x, = 0
h(x)=3-x+x, = 0

_~ gradient Vh, of active constraint

M inactive constraint h,
constrained minimum:
* *
‘Vf(x )?’l‘lv}ll (x )‘

Lagrange multiplier




Ball on a spring with two active constraints

min f(x)
h(x)=1+x+x, = 0
h(x)=3-x+x, = 0

~equilibrium of forces”

‘Vf(X*) = u, Vi (X*) + Mth‘z (X*) w,u, =0

~

,constraint forces*




Multipliers as ,,shadow prices*

old constraint: h(x)= 0

new constraint: h(x) + & =0

What happens if we relax a constraint?
Feasible set becomes bigger,

so new minimum f(x_*) becomes smaller.

How much would we gain?

/() = f(x") - ue]

Muiltipliers show the hidden cost
of constraints.




The Lagrangian Function

For constrained problems, introduce modification of objective function:

‘L(x,?», w):= f(X*) - 2 Ngi(x) - 2 w.h, (x)‘

® equality multipliers A; may have both signs in a solution

® inequality multipliers u; cannot be negative (cf. shadow prices)
e for inactive constraints, multipliers u; are zero



Optimality conditions (constrained)

Karush-Kuhn-Tucker necessary conditions (KKT-conditions):
® x feasible
® there exist A”, u” such that

VLN, 1) =0

(< "Equilibrium" Vf = Ewgi + EW@- )
O uw" =0 holds
® and it holds the complementarity condition

‘M*Th(x*) _ O‘

i.,e.u, =0 or h;(x)=0 foreach i




Sequential Quadratic Programming (SQP)

Constrained problem:

min f(x)

gx) = 0
h(ix) = 0

SQP Idea: Consider successively quadratic approximations of the problem:

min (VF) Ax + %AXTHkAX
g(x*) + Vg(x") Ax = 0

hx*) + VE(x*) Ax = 0




SQP method

If we use the exact hessian of the Lagrangian

H=V’L(x,\, 1)
this leads to a newton-method for the optimality conditions and
feasibility.
with update-formulas for H¥, we obtain quasi-Newton SQP-methods.

if we use appropriate update-formulas, we can have superlinear
convergence.

global convergence can be achieved by using a stepsize strategy.



SQP algorithm

—

AN

. Start with k=0, start value x% and H°=/
. Compute f(x¥), g(x¥), h(x*), V(x*), Vg(xk), Vh(x¥)
. If xkfeasible and

HVL(x,?», “)H <€

then stop » convergence achieved

. Solve quadratic problem and get Axk

. Perform line search and get stepsize t
. Ilterate

k+1 k k
= X AT

. Update hessian
. k=k+1, goto step 1



® |[agrangian function plays important role in constrained optimization
® |Lagrange multipliers of inequalities have positive sign

® KKT conditions are necessary optimality conditions



