The Newton Method

Moritz Diehl

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Overview

- The Newton Method
- Newton Type Methods
- Convergence Theory
- Globalization
- Application to Unconstrained Optimization

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Nonlinear Root Finding Problem

Regard nonlinear continuously differentiable function $F : \mathbb{R}^n \to \mathbb{R}^n$, $w \mapsto F(w)$. Aim is to solve **nonlinear root finding problem**

$$F(w) = 0.$$

Newton's idea: start with guess w_0 , and recursively generate sequence of iterates $\{w_k\}_{k=0}^{\infty}$ by linearizing the nonlinear equation at the current iterate:

$$F(w_k) + \frac{\partial F}{\partial w}(w_k)(w-w_k) = 0.$$

Can explicitly compute next iterate:

$$w_{k+1} = w_k - \left(\frac{\partial F}{\partial w}(w_k)\right)^{-1} F(w_k)$$

Note: we have to assume that Jacobian $\frac{\partial F}{\partial w}(w)$ is invertible.

Example: fifth root of two

Regard
$$F(w) = w^5 - 2$$
, where $\frac{\partial F}{\partial w}(w) = 5w^4$.

Newton iteration:

$$w_{k+1} = w_k - (5w_k^4)^{-1}(w^5 - 2)$$

Iterates quickly converge to solution w^* with $F(w^*) = 0$. In fact, the convergence rate of Newton's method is *quadratic*.

Convergence Rates

Sequence w_k converges to limit point $w^* = \lim_{k \to \infty} w_k$. Rate of convergence is

▶ q-linear if there exists α < 1 and k₀ such that for all k ≥ k₀ holds

$$\|\mathbf{w}_{k+1} - \mathbf{w}^*\| \le \alpha \|\mathbf{w}_k - \mathbf{w}^*\|$$

► q-superlinear if there exists a sequence α_k with lim_{k→∞} α_k = 0 such that

$$\|\mathbf{w}_{k+1} - \mathbf{w}^*\| \le \alpha_k \|\mathbf{w}_k - \mathbf{w}^*\|$$

▶ q-quadratic if there exists a β and k₀ such that for all k ≥ k₀ holds

$$||w_{k+1} - w^*|| \le \beta ||w_k - w^*||^2$$

Correct digits double in each iteration. E.g. $||w_k - w^*|| = 10^{-2^k}$ with $\beta = 1$.

Newton Type Methods

More general, can use an approximation M_k of the Jacobian $J(w_k) := \frac{\partial F}{\partial w}(w_k)$. The Newton type iteration is

$$w_{k+1} = w_k - M_k^{-1}F(w_k)$$

Depending on how closely M_k approximates $J(w_k)$, the convergence rate can be faster or slower.

Local Contraction of Newton Type Methods

THEOREM: Sequence w_k converges to w^* with contraction rate

$$\|w_{k+1} - w^*\| \le \left(\kappa + \frac{\omega}{2} \|w_k - w^*\|\right) \|w_k - w^*\|$$

if $||w_0 - w^*||$ is sufficiently small and there exist $\omega < \infty$ and $\kappa < 1$ such that for all w_k and w holds

$$\begin{split} \|M_k^{-1}(J(w_k) - J(w))\| &\leq \omega \|w_k - w\| \qquad \text{(Lipschitz condition)} \\ \|M_k^{-1}(J(w_k) - M_k)\| &\leq \kappa \qquad \qquad \text{(compatibility condition)} \end{split}$$

Note: $\kappa = 0$ for exact Newton.

Proof (1):

$$w_{k+1} - w^* = w_k - w^* - M_k^{-1} F(w_k)$$

$$= w_k - w^* - M_k^{-1} (F(w_k) - F(w^*))$$

$$= M_k^{-1} (M_k(w_k - w^*))$$

$$-M_k^{-1} \int_0^1 J(w^* + t(w_k - w^*))(w_k - w^*) dt$$

$$= M_k^{-1} (M_k - J(w_k))(w_k - w^*)$$

$$-M_k^{-1} \int_0^1 \left[J(w^* + t(w_k - w^*)) - F(w_k) \right] (w_k - w^*) dt$$

Proof (2):

Taking the norm of both sides:

$$\begin{aligned} \|w_{k+1} - w^*\| &\leq \kappa \|w_k - w^*\| \\ &+ \int_0^1 \omega \|w^* + t(w_k - w^*) - w_k\| dt \|w_k - w^*\| \\ &= \left(\kappa + \omega \underbrace{\int_0^1 (1 - t) dt}_{=\frac{1}{2}} \|w_k - w^*\|\right) \|w_k - w^*\| \\ &= \left(\kappa + \frac{\omega}{2} \|w_k - w^*\|\right) \|w_k - w^*\| \end{aligned}$$

Globalization

The condition $||w_0 - w^*||$ is usually not satisfied, and the iteration needs to be *globalized* before it enters the area of local convergence. Different strategies:

- ► Homotopy: modify F(w) = 0 to an easier or solved problem (e.g. F(w) - λF(w₀) = 0), slowly change homotopy parameter λ from 1 to 0, each time restarting Newton iteration at previous solution
- Line search: take smaller steps $\alpha_k \leq 1$

$$w_{k+1} = w_k - \alpha_k M_k^{-1} F(w_k)$$

(equivalent to an increase of M_k to $\alpha_k^{-1}M_k$)

► Trust region/Levenberg Marquard: modify iteration to ensure that steps ||w_{k+1} - w_k|| remain sufficiently small, e.g.

$$w_{k+1} = w_k - (\beta_k I + M_k)^{-1} F(w_k)$$

Newton for unconstrained optimization

Optimization problem $\min_x f(x)$ is solved by $\nabla f(x^*) = 0$. Identify $w \equiv x$ and $F(w) \equiv \nabla f(x)$. Exact Newton method iterates

$$x_{k+1} = x_k - (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

General Newton type methods iterate

$$x_{k+1} = x_k - B_k^{-1} \nabla f(x_k)$$

with some **Hessian approximation** B_k , for example:

- gradient method: $B_k = I$
- quasi Newton updates such as BFGS
- ► Gauss-Newton, for least squares problems $f(x) = ||R(x)||_2^2$ use $B_k = 2\frac{\partial R}{\partial x}(x_k)^{\top}\frac{\partial R}{\partial x}(x_k)$
- ► exact Hessian with Levenberg-Marquard modification: B_k = ∇²f(x_k) + β_kI to ensure positive definiteness and descent

Literature

 J. Nocedal and S. Wright: Numerical Optimization, Springer, 2006 (2nd edition)

 S. Boyd and L. Vandenberghe: Convex Optimization, Cambridge Univ. Press, 2004