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Nonlinear Root Finding Problem

Regard nonlinear continuously differentiable function F : Rn → Rn,
w 7→ F (w). Aim is to solve nonlinear root finding problem

F (w) = 0.

Newton’s idea: start with guess w0, and recursively generate
sequence of iterates {wk}∞k=0 by linearizing the nonlinear equation
at the current iterate:

F (wk) +
∂F

∂w
(wk)(w − wk) = 0.

Can explicitly compute next iterate:

wk+1 = wk −
(
∂F

∂w
(wk)

)−1
F (wk)

Note: we have to assume that Jacobian ∂F
∂w (w) is invertible.



Example: fifth root of two

Regard F (w) = w5 − 2, where ∂F
∂w (w) = 5w4.

Newton iteration:

wk+1 = wk − (5w4
k )−1(w5 − 2)

Iterates quickly converge to solution w∗ with F (w∗) = 0.
In fact, the convergence rate of Newton’s method is quadratic.



Convergence Rates

Sequence wk converges to limit point w∗ = limk→∞ wk . Rate of
convergence is

I q-linear if there exists α < 1 and k0 such that for all k ≥ k0
holds

‖wk+1 − w∗‖ ≤ α‖wk − w∗‖

I q-superlinear if there exists a sequence αk with
limk→∞ αk = 0 such that

‖wk+1 − w∗‖ ≤ αk‖wk − w∗‖

I q-quadratic if there exists a β and k0 such that for all k ≥ k0
holds

‖wk+1 − w∗‖ ≤ β‖wk − w∗‖2

Correct digits double in each iteration. E.g.
‖wk − w∗‖ = 10−2

k
with β = 1.



Newton Type Methods

More general, can use an approximation Mk of the Jacobian
J(wk) := ∂F

∂w (wk). The Newton type iteration is

wk+1 = wk −M−1k F (wk)

Depending on how closely Mk approximates J(wk), the
convergence rate can be faster or slower.



Local Contraction of Newton Type Methods

THEOREM: Sequence wk converges to w∗ with contraction rate

‖wk+1−w∗‖ ≤
(
κ+

ω

2
‖wk−w∗‖

)
‖wk−w∗‖

if ‖w0 − w∗‖ is sufficiently small and there exist ω <∞ and κ < 1
such that for all wk and w holds

‖M−1k (J(wk)− J(w))‖ ≤ ω‖wk − w‖ (Lipschitz condition)

‖M−1k (J(wk)−Mk)‖ ≤ κ (compatibility condition)

Note: κ = 0 for exact Newton.



Proof (1):

wk+1 − w∗ = wk − w∗ −M−1k F (wk)

= wk − w∗ −M−1k (F (wk)− F (w∗))

= M−1k (Mk(wk − w∗))

−M−1k

∫ 1

0
J(w∗ + t(wk − w∗))(wk − w∗)dt

= M−1k (Mk − J(wk))(wk − w∗)

−M−1k

∫ 1

0

[
J(w∗+t(wk−w∗))−F (wk)

]
(wk−w∗)dt



Proof (2):

Taking the norm of both sides:

‖wk+1 − w∗‖ ≤ κ‖wk − w∗‖

+

∫ 1

0
ω‖w∗ + t(wk − w∗)− wk‖dt ‖wk − w∗‖

=
(
κ+ ω

∫ 1

0
(1− t)dt︸ ︷︷ ︸
= 1

2

‖wk − w∗‖
)
‖wk − w∗‖

=
(
κ+

ω

2
‖wk − w∗‖

)
‖wk − w∗‖



Globalization

The condition ‖w0 − w∗‖ is usually not satisfied, and the iteration
needs to be globalized before it enters the area of local
convergence. Different strategies:

I Homotopy: modify F (w) = 0 to an easier or solved problem
(e.g. F (w)− λF (w0) = 0), slowly change homotopy
parameter λ from 1 to 0, each time restarting Newton
iteration at previous solution

I Line search: take smaller steps αk ≤ 1

wk+1 = wk − αkM
−1
k F (wk)

(equivalent to an increase of Mk to α−1k Mk)

I Trust region/Levenberg Marquard: modify iteration to ensure
that steps ‖wk+1 − wk‖ remain sufficiently small, e.g.

wk+1 = wk − (βk I + Mk)−1F (wk)



Newton for unconstrained optimization

Optimization problem minx f (x) is solved by ∇f (x∗) = 0. Identify
w ≡ x and F (w) ≡ ∇f (x). Exact Newton method iterates

xk+1 = xk − (∇2f (xk))−1∇f (xk)

General Newton type methods iterate

xk+1 = xk − B−1k ∇f (xk)

with some Hessian approximation Bk , for example:

I gradient method: Bk = I

I quasi Newton updates such as BFGS

I Gauss-Newton, for least squares problems f (x) = ‖R(x)‖22 use
Bk = 2∂R

∂x (xk)> ∂R
∂x (xk)

I exact Hessian with Levenberg-Marquard modification:
Bk = ∇2f (xk) + βk I to ensure positive definiteness and
descent
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