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Discrete Time Optimal Control Problem

minimize
s,q

N−1∑
i=0

li (si , qi ) + E (sN)

subject to

s0 − x0 = 0, (initial value)
si+1 − fi (si , qi ) = 0, i = 0, . . . ,N − 1, (discrete system)

hi (si , qi ) ≥ 0, i = 0, . . . ,N, (path constraints)
r (sN) ≥ 0. (terminal constraints)

In DP, can easily get rid of inequality constraints hi , r by giving
infinite costs li (s, u) or E (s) to infeasible points (s, u).



Dynamic Programming Recursion

Iterate backwards, for k = N − 1,N − 2, . . .

Jk(x) = min
u

lk(x , u) + Jk+1(fk(x , u))︸ ︷︷ ︸
=J̃k (x ,u)

starting with
JN(x) = E (x)

In recursion with constraints, make sure you assign infinite costs to
all infeasible points, in all three functions lk ,E , and J.



Dynamic Programming: three nested loops

I Regard discrete states and controls xk ∈ {1, . . . ,Nx} and
uk ∈ {1, . . . ,Nu}. Can e.g. be obtained by rounding of
discrete time dynamics.

I Initialization by setting JN(xN) := E (xN) for xN = 1, . . . ,Nx

I 1st loop through time steps: k = N − 1, . . . , 0
I 2nd loop through states: xk = 1, . . . ,Nx

I 3rd loop through controls: uk = 1, . . . ,Nu

innermost command: evaluation of minimum

Jk(xk) := min
uk

L(xk , uk) + Jk+1(f (xk , uk))



How to get optimal controls?

Based on J̃k , obtain feedback control laws for k = 0, 1, . . . ,N − 1

u∗k(x) = arg min
u

lk(x , u) + Jk+1(f (x , u))︸ ︷︷ ︸
=J̃k (x ,u)

.

For given initial value x0, we can thus obtain the optimal
trajectories of xk and uk by the closed-loop system:

xk+1 = fk(xk , u
∗
k(xk))

This is a forward recursion yielding in particular u0, . . . , uN−1.



Linear Quadratic Problems

Regard now linear quadratic optimal control problems of the form

minimize
x ,u

N−1∑
i=0

[
xi
ui

]T [
Qi ST

i

Si Ri

] [
xi
ui

]
+ xTN PNxN

subject to

x0 − xfix
0 = 0, (initial value)

xi+1 − Aixi − Biui = 0, i = 0, . . . ,N − 1, (discrete system)

How to apply dynamic programming here?



Linear Quadratic Recursion

If

li (x , u) =

[
x
u

]T [
Q ST

S R

] [
x
u

]
and

Jk+1 = xTPx

and
fi (x , u) = Ax + Bu

then

Jk(x) = min
u

[
x
u

]T ([Q ST

S R

]
+

[
ATPA ATPB
BTPA BTPB

]) [x
u

]
This has an easy explicit solution if R + BTPB is invertible . . . we
need the Schur Complement Lemma.



Schur Complement Lemma

Let us simplify notation and regard

φ(x) = min
u

[
x
u

]T [
Q ST

S R

] [
x
u

]
︸ ︷︷ ︸

=ψ(x ,u)

with R positive definite. Then

φ(x) = xT
(
Q − STR−1S

)
x

and
arg min

u
ψ(x , u) = −R−1Sx

PROOF: exercise.



Riccati Recursion

The Schur Complement Lemma applied to the LQ recursion:

Jk(x) = min
u

[
x
u

]T [
Q + ATPA ST + ATPB
S + BTPA R + BTPB

] [
x
u

]
delivers directly, if R + BTPB is invertible:

Jk(x) = xTPnewx

with

Pnew = Q + ATPA− (ST + ATPB)(R + BTPB)−1(S + BTPA)

Thus, if Jk+1 was quadratic, also Jk is!



Difference Riccati Equation

Backwards recursion: starting with PN , we iterate for
k = N − 1, . . . , 0

Pk = Qk + AT
k Pk+1Ak

− (ST
k + AT

k Pk+1Bk)(Rk + BT
k Pk+1Bk)−1(Sk + BT

k Pk+1Ak)

Then, we obtain the optimal feedback u∗k by

u∗k = −(Rk + BT
k Pk+1Bk)−1(Sk + BT

k Pk+1Ak)xk

and forward recursion

xk+1 = Akxk + Bku
∗
k .



Inhomogenous Linear Systems

Can we extend the Riccati recursion also to inhomogenous costs
and systems? I.e. problems of the form:

minimize
x ,u

N−1∑
i=0

 1
xi
ui

T  0 qTi sTi
qi Qi ST

i

si Si Ri

 1
xi
ui

+

[
1
xN

]T [
0 pTN
pN PN

] [
1
xN

]
subject to

x0 − xfix
0 = 0, (initial value)

xi+1 − Aixi − Biui − ci = 0, i = 0, . . . ,N − 1, (discrete system)



Why Inhomogenous Systems and Costs?

They appear in

I Linearization of Nonlinear Systems

I Reference Tracking Problems e.g. with
li (xi , ui ) = ‖xi − x ref

i ‖2Q + ‖ui‖2R
I Filtering Problems (Moving Horizon Estimation, Kalman

Filter) with cost li (xi , ui ) = ‖Cxi − ymeas
i ‖2Q + ‖ui‖2R

I Subproblems in Active Set Methods for Constrained LQ



A Simple Programming Trick

By augmenting the system states xk to

x̃k =

[
1
xk

]
and replacing the dynamics by

x̃k+1 =

[
1 0
ck Ak

]
x̃k +

[
0
Bk

]
uk

with initial value

x̃fix
0 =

[
1
xfix
0

]
This is a homogenous problem and can be solved exactly as before!



Linear Quadratic Regulator (LQR)

Regard now LQ problem with infinite horizon and autonomous
(time independent) system and cost:

minimize
x ,u

∞∑
i=0

[
xi
ui

]T [
Q ST

S R

] [
xi
ui

]
subject to

x0 − xfix
0 = 0, (initial value)

xi+1 − Axi + Bui = 0, i = 0, . . . ,∞, (discrete system)

How to apply dynamic programming here?



Algebraic Riccati Equation

Require stationary solution of Riccati Recursion:

Pk = Pk+1

i.e.

P = Q + ATPA− (ST + ATPB)(R + BTPB)−1(S + BTPA)

This is called the Algebraic Riccati Equation (in discrete time)
Then, wew obtain the optimal feedback u∗(x) by

u∗(x) = − (R + BTPB)−1(S + BTPA)︸ ︷︷ ︸
=K

x

This feedback is called the Linear Quadratic Regulator (LQR), and
K is the LQR gain.



Infinite Horizon Problem

Can regard more general infinite horizon problem:

minimize
s,q

∞∑
i=0

l(si , qi )

subject to

s0 − x0 = 0, (initial value)
si+1 − f (si , qi ) = 0, i = 0, . . . ,∞, (discrete system)



The Bellman Equation

Requiring stationarity of solutions of Dynamic Programming
Recursion:

Jk = Jk+1

leads directly to the famous Bellman Equation:

J(x) = min
u

l(x , u) + J(f (x , u))︸ ︷︷ ︸
=J̃(x ,u)

The optimal controls are then obtained by the function

u∗(x) = arg min
u

J̃(x , u).

This feedback is called the stationary “Optimal Feedback Control”.
It is a static state feedback law that generalizes LQR. But in
contrast to LQR it is generally nonlinear.



Overview

I Discrete Time Systems
I DP recursion
I Linear Quadratic Regulator
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I stationary Hamilton-Jacobi-Bellman equation

(* all contents after this slide are optional and not relevant for
exam)



Robust Dynamic Programming

Dynamic Programming can easily be applied to games (like chess).
Here, an adverse player choses disturbances wk against us. They
influence both the stage costs li as well as the system dynamics fi .
The robust DP recursion is simply:

Jk(x) = min
u

max
w

lk(x , u,w) + Jk+1(fk(x , u,w))︸ ︷︷ ︸
J̃k (x ,u)

starting with
JN(x) = E (x)



Stochastic Dynamic Programming

Also, we might find the feedback law that gives us the best
expected value. Here, we take an expectation over the
disturbances wk .
The stochastic DP recursion is simply:

Jk(x) = min
u

Ew{lk(x , u,w) + Jk+1(fk(x , u,w))}︸ ︷︷ ︸
J̃k (x ,u)

where Ew{·} is the expectation operator, i.e. the integral over w
weighted with the probability density function p(w |x , u) of w given
x and u:

Ew{φ(x , u,w)} =

∫
φ(x , u,w)P(w |x , u)dw

In case of finitely many scenarios, this is just a weighted sum.
Dynamic Programming can avoid the combinatorial explosion of
scenario trees.



Monotonicity of Dynamic Programming

The “cost-to-go” Jk is often also called the “value function”.
The “dynamic programming operator” Tk acting on one value
function and giving another one is defined by

Tk(J)[x ] = min
u

lk(x , u) + J(fk(x , u)).

(the dynamic programming recursion is then compactly written as
Jk = Tk(Jk+1))
If J ≥ J ′ (in the sense J(x) ≥ J ′(x) for all x) then also

Tk(J) ≥ Tk(J ′).

This is called “monotonicity” of dynamic programming. It holds
also for robust or stochastic dynamic programming. It can e.g. be
used in existence proofs for solutions of the stationary Bellman
equation.



Convex Dynamic Programming

An interesting observation is that certain DP operators Tk preserve
convexity of the value function J.
THEOREM

I If system is linear, f (x , u,w) = A(w)x + B(w)u + c(w),

I stage cost l(x , u,w) is convex in (x , u)

then DP, robust DP, and stochastic DP operators T preserve
convexity of J.
This means: if J is a convex function, then T (J) is again a convex
function.



Proof of Convexity Preservation

Regard l(x , u,w) + J(f (x , u,w)).
For fixed w , this is a convex function in (x , u). Because also
maximum over w or expectation preserve convexity, the function

J̃(x , u)

is in all three cases convex in both x and u.
Finally, the minimization of a convex function over one of its
arguments preserves convexity, i.e. the resulting value function
T (J) defined by

T (J)[x ] = min
u

J̃(x , u)

is convex.



Why is convexity important?

I computation of feedback law arg minu J̃(x , u) is a convex
parametric program: can be solved by local optimization
methods.

I Can represent value function J(x) more efficiently than by
tabulation, e.g. as maximum of linear functions

J(x) = max
i

aTi

[
1
x

]
I In robust DP, convexity of value function allows to conclude

that worst case is assumed on boundary of uncertainty sets.
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Continuous Time Optimal Control

Regard simplified optimal control problem:

terminal
cost E(x(T ))

6

initial value
x0 r states x(t)

controls u(t)
-p

0 t
p
T

minimize
x(·),u(·)

∫ T

0
L(x(t), u(t)) dt + E (x(T ))

subject to

x(0)− x0 = 0, (fixed initial value)
ẋ(t)−f (x(t), u(t)) = 0, t ∈ [0,T ]. (ODE model)



Euler Discretization

Introduce timestep

h =
T

N

minimize
s,q

N−1∑
i=0

hL(si , qi ) + E (sN)

subject to

s0 − x0 = 0, (initial value)
si+1 − si − hf (si , qi ) = 0, i = 0, . . . ,N − 1, (discretized system)



Dynamic Programming for Euler Scheme

Using DP for Euler Discretized OCP yields:

Jk(x) = min
u

hL(x , u) + Jk+1(x + hf (x , u))

Replacing the index k by time points tk = kh we obtain

J(x , tk) = min
u

hL(x , u) + J(x + hf (x , u), tk + h).

Assuming differentiability of J(x , t) in (x , t) and Taylor expansion
yields

J(x , t) = min
u

hL(x , u)+J(x , t)+h∇J(x , t)T f (x , u)+h
∂J

∂t
(x , t)+O(h2)



Hamilton-Jacobi-Bellman (HJB) Equation

Bringing all terms independent of u to the left side and dividing by
h→ 0 yields

−∂J
∂t

(x , t) = min
u

L(x , u) +∇J(x , t)T f (x , u)

This is the famous Hamilton-Jacobi-Bellman equation.
We solve this partial differential equation (PDE) backwards for
t ∈ [0,T ], starting at the end of the horizon with

J(x ,T ) = E (x).

NOTE: Optimal feedback control for state x at time t is obtained
from

u∗(x , t) = arg min
u

L(x , u) +∇J(x , t)T f (x , u)



Hamiltonian function

Introducing the Hamiltonian function

H(x , λ, u) := L(x , u) + λT f (x , u)

and the so called “true” Hamiltonian

H∗(x , λ) := min
u

H(x , λ, u)︸ ︷︷ ︸
=H(x ,λ,u∗(x ,u))

we can write the Hamilton-Jacobi-Bellman equation compactly as:

−∂J
∂t

(x , t) = H∗(x ,∇J(x , t))



Linear Quadratic Problems

Regard now linear quadratic optimal control problem of the form

minimize
x(·),u(·)

∫ T

0

[
x
u

]T [
Q(t) S(t)T

S(t) R(t)

] [
x
u

]
dt + x(T )TPT x(T )

subject to

x(0)− x0 = 0, (fixed initial value)
ẋ − A(t)x − B(t)u = 0, t ∈ [0,T ]. (linear ODE model)



Linear Quadratic HJB

Assuming that J(x , t) = xTP(t)x , the HJB Equation reads as:

−∂J
∂t

(x , t) = min
u

[
x
u

]T [
Q(t) S(t)T

S(t) R(t)

] [
x
u

]
+2xTP(t)(A(t)x+B(t)u)

Symmetrizing, the right hand side is:

min
u

[
x
u

]T [
Q + PA + ATP ST + PB

S + BTP R

] [
x
u

]
which by the Schur Complement Lemma yields

−∂J
∂t

= xT
(
Q + PA + ATP − (ST + PB)R−1(S + BTP)

)
x

Thus, if J was quadratic, it remains quadratic!



Differential Riccati Equation

The matrix differential equation

−Ṗ = Q + PA + ATP − (ST + PB)R−1(S + BTP)

with terminal condition

P(T ) = PT

is called the “differential Riccati equation”.
Its feedback law is by the Schur complement lemma:

u∗(x , t) = −R(t)−1(S(t) + B(t)TP(t))x



Linear Quadratic Regulator

The solution to the infinite horizon problem with time independent
costs and system matrices is given by setting

Ṗ = 0

and solving

0 = Q + PA + ATP − (ST + PB)R−1(S + BTP).

This equation is called the algebraic Riccati equation (in
continuous time). Its feedback law is again a static linear gain:

u∗(x) = −R−1(S + BTP)︸ ︷︷ ︸
=K

x



Continous vs. Discrete Time

Regard Euler transition from continuous time to discrete time:

f (x , u)→ x + hf (x , u)

and
L(x , u)→ hL(x , u)

In both cases, J and u∗ will remain the same:

J(x , tk)→ Jk(x)

and
u∗(x , tk)→ u∗k(x)

NOTE: In LQR, both discrete and continuous time formulation
yield same matrices P and K .



Infinite Time Optimal Control

Regard infinite time optimal control problem:

minimize
x(·),u(·)

∫ ∞
0

L(x(t), u(t))dt + E (x(T ))

subject to

x(0)− x0 = 0, (fixed initial value)
ẋ(t)− f (x(t), u(t)) = 0, t ∈ [0,∞]. (ODE model)

This leads to stationary HJB equation

0 = min
u

L(x , u) +∇J(x)T f (x , u)

with stationary optimal feedback control law u∗(x).



Summary

I Dynamic Programming:
Jk(x) = minu lk(x , u) + Jk+1(fk(x , u))

I Hamilton Jacobi Bellman Equation:
−∂J
∂t (x , t) = minu H(x ,∇J(x , t), u)

I with Hamiltonian function H(x , λ, u) := L(x , u) + λT f (x , u)

I Linear quadratic systems can be analytically solved (LQR),
easiest example of larger class of convex dynamic
programming

I DP framework generalizes easily to minimax games and
stochastic optimal control.
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