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Overview

» Ordinary Differential Equations (ODE)
» Boundary Conditions, Objective

» Differential-Algebraic Equations (DAE)
» Multi Stage Processes

» Partial Differential Equations (PDE)

> From continuous to discrete time

» Linear Quadratic Regulator (LQR)



Dynamic Systems and Optimal Control

» “Optimal control” = optimal choice of inputs for a
dynamic system



Dynamic Systems and Optimal Control

» “Optimal control” = optimal choice of inputs for a
dynamic system
» What type of dynamic system?

» Stochastic or deterministic?
» Discrete or continuous time?
» Discrete or continuous states?



Dynamic Systems and Optimal Control

» “Optimal control” = optimal choice of inputs for a
dynamic system
» What type of dynamic system?
» Stochastic or deterministic?
> Discrete or continuous time?
» Discrete or continuous states?
> In this course, treat deterministic differential equations and
discrete time systems



Continous and discrete time deterministic systems

» Continuous time Ordinary Differential Equation (ODE):
x(t) = f(x(¢), u(r)), t<€[0,T]

states x € R™, control inputs u € R™, f : R™ x R™ — R,

» Discrete time systems:
Xk+1 = f(Xkauk)a k:0717

states xx € X, control inputs uy € U. Sets X, U can be
continuous or discrete.



(Some other dynamic system classes)

» Games like chess: discrete time and state (chess figure
positions), adverse player exists.

» Robust optimal control: like chess, but continuous time and
state (adverse player exists in form of worst-case disturbances)

» Control of Markov chains: discrete time, system described by
transition probabilities

P(xk+1|xk, uk), k=0,1,...

» Stochastic Optimal Control of ODE: like Markov chain, but
continuous time and state



Ordinary Differential Equations (ODE)

System dynamics can be manipulated by controls and parameters:

F(t,x(t), u(t), p) |

X(t) =
simulation interval:
time
state
controls

design parameters

[t0, tend]

t € [to, tend]

x(t) € R™

u(t) e R™  +— manipulated

peR™ +— manipulated



ODE Example: Dual Line Kite Model

v

Kite position relative to pilot in spherical
polar coordinates r, ¢, 6. Line length r
fixed.

System states are x = (6, ¢, 6, ¢).
> We can control roll angle u = 1.

v

> Nonlinear dynamic equations:
6 = Fg(@,qb”,nw + sin(0) cos(6) > %
. S/
. Fs(0,0,0; ¢, ..
b= W — 2 cot(0) ¢l

» Summarize equations as x = f(x, u).



Initial Value Problems (IVP)

THEOREM [Picard 1890, Lindelof 1894]:
Initial value problem in ODE

X(t): f(t,x(t),u(t),p), te [thtend]v
X(to) = X0

» with given initial state xg, design parameters p, and controls

u(t),

» and Lipschitz continuous f(t, x, u(t), p)

has unique solution
x(t), t€ [to, tend]

NOTE: Existence but not uniqueness guaranteed if
f(t,x,u(t), p) only continuous [G. Peano, 1858-1932].
Non-uniqueness example: x = /x|



Boundary Conditions

Constraints on initial or intermediate values are important
part of dynamic model.

STANDARD FORM:

| r(x(to), x(t1), -, x(tena), p) =0, r €R™

E.g. fixed or parameter dependent initial value xg:
x(to) = x0(P) =0 (n =ny)
or periodicity:
x(tp) — x(tend) =0 (nr = ny)

NOTE: Initial values x(to) need not always be fixed!



Kite Example: Periodic Solution Desired

» Formulate periodicity as
constraint.

> Leave x(0) free.

» Minimize integrated power
per cycle

.
min. /0 L(x(), u(t))dt

subject to

x(0) —x(T)=0
x(t) — f(x(t),u(t)) =0, t [0, T].
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Objective Function Types

Typically, distinguish between

» Lagrange term (cost integral, e.g. integrated deviation):

T
/O L(t, x(t), u(t), p)dt

» Mayer term (at end of horizon, e.g. maximum amount of
product):
E(T,x(T),p)

» Combination of both is called Bolza objective.



Differential-Algebraic Equations (DAE) - Semi-Explicit

Augment ODE by algebraic equations g and algebraic
states z

x(t) = f(
0 =g(

e differential states  x(t) € R™

t, x
t, x

—~~ N
~
N—
N
—~~
~
N—r
-
—
~
N—

o algebraic states z(t) e R"™
e algebraic equations g(-) € R™

Standard case: index one < matrix % € RM%"z jnvertible.

Existence and uniqueness of initial value problems similar as
for ODE.



Tutorial DAE Example

Regard x € R and z € R, described by the DAE

x(t) =x(t)+ z(t)
0 =exp(z) —x

» Here, one could easily eliminate z(t) by z = log x, to get the
ODE

x(t) = x(t) + log(x(t))



Tutorial DAE Example

Regard x € R and z € R, described by the DAE

x(t) =x(t)+ z(t)
0 =exp(z)—x+z

» Now, z cannot be eliminated as easily as before, but still, the
DAE is well defined because g—i(x,z) = exp(z) + 1 is always
positive and thus invertible.



Fully Implicit DAE

A fully implicit DAE is just a set of equations:

0 = f(t,x(t),x(t),z(t), u(t), p)

e derivative of differential states x(t) € R™

e algebraic states z(t) € R"™

Standard case: fully implicit DAE of index one < matrix

S0 € R0 <(c4n) nvertible.

Again, existence and uniqueness similar as for ODE.




Multi Stage Processes

Two dynamic stages can be connected by a discontinuous
“transition”. E.g. Intermediate Fill Up in Batch Distillation

transition
x1(t1) = fer(xo0(t1); P)

Volume




Multi Stage Processes Il

Also different dynamic systems can be coupled. E.g. batch
reactor followed by distillation (different state dimensions)

transition
‘ x1(t1) = fr(x0(t1), p)

A+B — C

" xolt)

dynamic stage 0  t;  dynamic stage 1 " time



Partial Differential Equations

» Instationary partial differential equations (PDE) arise e.g in
transport processes, wave propagation, ...

» Also called “distributed parameter systems”

» Often PDE of subsystems are coupled with each other (e.g.
flow connections)

» Method of Lines (MOL): discretize PDE in space to yield
ODE or DAE system.

» Often MOL can be interpreted in terms of compartment
models.



From continous ODE to discrete time systems

» Solution x(t) of ODE x = f(x, u) can be computed by
numerical integration (details in talk by Rien)

» if control is kept constant u(t) = g and initial value x(0) = s
specified, integrator delivers solution trajectory

x(t;s,q)

» for sampling time At, can use fy(s, q) := x(At; s, q) to
obtain discrete time system

Sk+1 = fa(Sk, qk)

> In case of linear ODE x = Ax + Bu, discrete linear system
Sk+1 = AqSk + Bag can be obtained by matrix exponentials:

At
Aq = eAAt, By := / M Bdt
0



Linearization of Nonlinear Systems

» Nonlinear discrete time system f;(s, ) can be linearized at
any point (5, g) to obtain first order Taylor expansion:

o0fq

fd(sa q) ~ fd(s_’a C_I) + a(i C_I)(S - §) + aiq(ga ‘7)(q - C_I)
=:Aq T,B—/

» If evaluated at steady state, derivatives are identical to matrix
exponentials of linearized continous time system (matter of
convenience which way to go).



Linear Quadratic Regulator (LQR)

Simplest optimal control problem: linear system xy 11 = Axyx + Buy
with quadratic cost on infinite horizon:

o0
min E x,jka + uZRuk
uo,Xx1,U1,..- k—0

» Solved with help of discrete time Riccati equation
P=Q+ATPA—(ATPB)(R+ B"PB)"}(BTPA)
to determine matrix P yielding optimal feedback control

u*(x) = —(R+BTPB)"Y(BT PA) x

=K

» Implemented e.g. in MATLAB's dlgr command.



Summary

Dynamic models for optimal control consist of

» differential equations (ODE/DAE/PDE)

» boundary conditions, e.g. initial/final values, periodicity
» objective in Lagrange and/or Mayer form

» transition stages in case of multi stage processes

PDE can be transformed to DAE by Method of Lines (MOL)

ODE standard form for this course:

> Discrete time models can be obtained by numerical integration

» Linear quadratic regulator (LQR) can easily be computed for
linearized systems
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Exercise on Linear Quadratic Regulator (LQR)

Tasks:
» Learn how to use integrators and get derivatives from them

» integrate and linearize ODE of test problem (inverted
pendulum) to get linear system xx1 = Axx + Buy

» Get LQR by dlgr command

» Simulate nonlinear closed-loop system
Xk+1 = fa(xk, 0 — K(xx — X))
» Outlook to rest of the course:

1001 sophisticated ways to replace LQR feedback
i — K(xx — X) by embedded optimization



