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Overview

I Ordinary Differential Equations (ODE)

I Boundary Conditions, Objective

I Differential-Algebraic Equations (DAE)

I Multi Stage Processes

I Partial Differential Equations (PDE)

I From continuous to discrete time

I Linear Quadratic Regulator (LQR)



Dynamic Systems and Optimal Control

I “Optimal control” = optimal choice of inputs for a
dynamic system

I What type of dynamic system?
I Stochastic or deterministic?
I Discrete or continuous time?
I Discrete or continuous states?

I In this course, treat deterministic differential equations and
discrete time systems
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Continous and discrete time deterministic systems

I Continuous time Ordinary Differential Equation (ODE):

ẋ(t) = f (x(t), u(t)), t ∈ [0,T ]

states x ∈ Rnx , control inputs u ∈ Rnu , f : Rnx × Rnu → Rnx ,

I Discrete time systems:

xk+1 = f (xk , uk), k = 0, 1, . . .

states xk ∈ X , control inputs uk ∈ U. Sets X ,U can be
continuous or discrete.



(Some other dynamic system classes)

I Games like chess: discrete time and state (chess figure
positions), adverse player exists.

I Robust optimal control: like chess, but continuous time and
state (adverse player exists in form of worst-case disturbances)

I Control of Markov chains: discrete time, system described by
transition probabilities

P(xk+1|xk , uk), k = 0, 1, . . .

I Stochastic Optimal Control of ODE: like Markov chain, but
continuous time and state



Ordinary Differential Equations (ODE)

System dynamics can be manipulated by controls and parameters:

ẋ(t) = f (t, x(t), u(t), p)

• simulation interval: [t0, tend]

• time t ∈ [t0, tend]

• state x(t) ∈ Rnx

• controls u(t) ∈ Rnu ←− manipulated

• design parameters p ∈ Rnp ←− manipulated



ODE Example: Dual Line Kite Model

I Kite position relative to pilot in spherical
polar coordinates r , φ, θ. Line length r
fixed.

I System states are x = (θ, φ, θ̇, φ̇).

I We can control roll angle u = ψ.

I Nonlinear dynamic equations:

θ̈ =
Fθ(θ, φ, θ̇; φ̇, ψ)

rm
+ sin(θ) cos(θ)φ̇2

φ̈ =
Fφ(θ, φ, θ̇; φ̇, ψ)

rm sin(θ)
− 2 cot(θ)φ̇θ̇

I Summarize equations as ẋ = f (x , u).



Initial Value Problems (IVP)

THEOREM [Picard 1890, Lindelöf 1894]:

Initial value problem in ODE

ẋ(t) = f (t, x(t), u(t), p), t ∈ [t0, tend],

ẋ(t0) = x0

I with given initial state x0, design parameters p, and controls
u(t),

I and Lipschitz continuous f (t, x , u(t), p)

has unique solution

x(t), t ∈ [t0, tend]

NOTE: Existence but not uniqueness guaranteed if
f (t, x , u(t), p) only continuous [G. Peano, 1858-1932].
Non-uniqueness example: ẋ =

√
|x |



Boundary Conditions

Constraints on initial or intermediate values are important
part of dynamic model.

STANDARD FORM:

r(x(t0), x(t1), . . . , x(tend), p) = 0, r ∈ Rnr

E.g. fixed or parameter dependent initial value x0:

x(t0)− x0(p) = 0 (nr = nx)

or periodicity:

x(t0)− x(tend) = 0 (nr = nx)

NOTE: Initial values x(t0) need not always be fixed!



Kite Example: Periodic Solution Desired

I Formulate periodicity as
constraint.

I Leave x(0) free.

I Minimize integrated power
per cycle

min
x(·),u(·)

∫ T

0
L(x(t), u(t))dt

subject to

x(0)− x(T ) = 0

ẋ(t)− f (x(t), u(t)) = 0, t ∈ [0,T ].



Objective Function Types

Typically, distinguish between

I Lagrange term (cost integral, e.g. integrated deviation):∫ T

0
L(t, x(t), u(t), p)dt

I Mayer term (at end of horizon, e.g. maximum amount of
product):

E (T , x(T ), p)

I Combination of both is called Bolza objective.



Differential-Algebraic Equations (DAE) - Semi-Explicit

Augment ODE by algebraic equations g and algebraic
states z

ẋ(t) = f (t, x(t), z(t), u(t), p)
0 = g(t, x(t), z(t), u(t), p)

• differential states x(t) ∈ Rnx

• algebraic states z(t) ∈ Rnz

• algebraic equations g(·) ∈ Rnz

Standard case: index one ⇔ matrix ∂g
∂z ∈ Rnz×nz invertible.

Existence and uniqueness of initial value problems similar as
for ODE.



Tutorial DAE Example

Regard x ∈ R and z ∈ R, described by the DAE

ẋ(t) = x(t) + z(t)
0 = exp(z)− x

I Here, one could easily eliminate z(t) by z = log x , to get the
ODE

ẋ(t) = x(t) + log(x(t))



Tutorial DAE Example

Regard x ∈ R and z ∈ R, described by the DAE

ẋ(t) = x(t) + z(t)
0 = exp(z)− x + z

I Now, z cannot be eliminated as easily as before, but still, the
DAE is well defined because ∂g

∂z (x , z) = exp(z) + 1 is always
positive and thus invertible.



Fully Implicit DAE

A fully implicit DAE is just a set of equations:

0 = f (t, x(t), ẋ(t), z(t), u(t), p)

• derivative of differential states ẋ(t) ∈ Rnx

• algebraic states z(t) ∈ Rnz

Standard case: fully implicit DAE of index one ⇔ matrix
∂f

∂(ẋ ,z) ∈ R(nx+nz )×(nx+nz ) invertible.

Again, existence and uniqueness similar as for ODE.



Multi Stage Processes

Two dynamic stages can be connected by a discontinuous
“transition”. E.g. Intermediate Fill Up in Batch Distillation
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Multi Stage Processes II

Also different dynamic systems can be coupled. E.g. batch
reactor followed by distillation (different state dimensions)
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Partial Differential Equations

I Instationary partial differential equations (PDE) arise e.g in
transport processes, wave propagation, ...

I Also called “distributed parameter systems”

I Often PDE of subsystems are coupled with each other (e.g.
flow connections)

I Method of Lines (MOL): discretize PDE in space to yield
ODE or DAE system.

I Often MOL can be interpreted in terms of compartment
models.



From continous ODE to discrete time systems

I Solution x(t) of ODE ẋ = f (x , u) can be computed by
numerical integration (details in talk by Rien)

I if control is kept constant u(t) ≡ q and initial value x(0) = s
specified, integrator delivers solution trajectory

x(t; s, q)

I for sampling time ∆t, can use fd(s, q) := x(∆t; s, q) to
obtain discrete time system

sk+1 = fd(sk , qk)

I In case of linear ODE ẋ = Ax + Bu, discrete linear system
sk+1 = Adsk + Bdq can be obtained by matrix exponentials:

Ad := eA∆t , Bd :=

∫ ∆t

0
eAtBdt



Linearization of Nonlinear Systems

I Nonlinear discrete time system fd(s, q) can be linearized at
any point (s̄, q̄) to obtain first order Taylor expansion:

fd(s, q) ≈ fd(s̄, q̄) +
∂fd
∂s

(s̄, q̄)︸ ︷︷ ︸
=:Ad

(s − s̄) +
∂fd
∂q

(s̄, q̄)︸ ︷︷ ︸
=:Bd

(q − q̄)

I If evaluated at steady state, derivatives are identical to matrix
exponentials of linearized continous time system (matter of
convenience which way to go).



Linear Quadratic Regulator (LQR)

Simplest optimal control problem: linear system xk+1 = Axk + Buk
with quadratic cost on infinite horizon:

min
u0,x1,u1,...

∞∑
k=0

x>k Qxk + u>k Ruk

I Solved with help of discrete time Riccati equation

P = Q + ATPA− (ATPB)(R + BTPB)−1(BTPA)

to determine matrix P yielding optimal feedback control

u∗(x) = − (R + BTPB)−1(BTPA)︸ ︷︷ ︸
=K

x

I Implemented e.g. in MATLAB’s dlqr command.



Summary

Dynamic models for optimal control consist of
I differential equations (ODE/DAE/PDE)
I boundary conditions, e.g. initial/final values, periodicity
I objective in Lagrange and/or Mayer form
I transition stages in case of multi stage processes

PDE can be transformed to DAE by Method of Lines (MOL)

ODE standard form for this course:

ẋ(t) = f (x(t), u(t))

I Discrete time models can be obtained by numerical integration

I Linear quadratic regulator (LQR) can easily be computed for
linearized systems
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Exercise on Linear Quadratic Regulator (LQR)

Tasks:

I Learn how to use integrators and get derivatives from them

I integrate and linearize ODE of test problem (inverted
pendulum) to get linear system xk+1 = Axk + Buk

I Get LQR by dlqr command

I Simulate nonlinear closed-loop system

xk+1 = fd(xk , ū − K (xk − x̄))

I Outlook to rest of the course:
1001 sophisticated ways to replace LQR feedback
ū − K (xk − x̄) by embedded optimization


